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Messages

Hodge theory is a very powerful tool for studying the topology of complex varieties in
general, and arrangement complements in particular.

In some situations, what can be done for normal crossing divisors can be done more
generally for hypersurface arrangements.

Co-arrangements (and more generally bi-arrangements) are fascinating objects, between
geometry, topology, combinatorics and number theory.
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Classical Hodge theory

Definition
A pure Hodge structure of weight w is the datum of a finite-dimensional Q-vector space
H and a direct sum decomposition

HC := H ⊗Q C =
⊕

p+q=w Hp,q with Hp,q = Hq,p for every p, q.

The Hodge filtration F pHC =
⊕

r>p H
r,s satisfies HC = F pHC ⊕ Fw−p+1HC.

Theorem (Hodge ’41)

Let X be a smooth and projective complex variety. Then for every w ,
Hw (X ) := Hw (X ,Q) carries a functorial pure Hodge structure of weight w .

Application
The odd Betti numbers of a smooth projective variety are even.

Example : S a compact Riemann surface of genus g , dimH1(S) = 2g .

H1(S ,C) = H0,1 ⊕ H1,0 , H0,1 = H1,0.
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Mixed Hodge structures

Definition (Deligne)

A mixed Hodge structure is the datum of a f. d. Q-vector space H together with

– an increasing filtration W•H, the weight filtration;

– a decreasing filtration F •HC, the Hodge filtration;

such that for every w , F • induces a pure Hodge structure of weight w on
grWw H = WwH/Ww−1H.

– A pure Hodge structure of weight w = a mixed Hodge structure such that

Ww−1H = 0 , WwH = H .

– First approximation: a mixed Hodge structure is “a collection of pure Hodge structures
of different weights” (it is actually much more than that).

– Mixed Hodge structures form a Q-linear abelian category. Key lemma:

Let f : H → H ′ be a morphism of mixed Hodge structures. If H and H ′ are pure of
different weights, then f = 0.

 tool to prove that spectral sequences degenerate.
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Mixed Hodge theory

Theorem (Deligne ’74)

Let X be any complex variety. For every k, Hk(X ) carries a functorial mixed Hodge
structure.

Example

– H1(C∗) is a pure Hodge structure of weight 2.

– For S a compact Riemann surface of genus g and p0, . . . , pr ∈ S , H1(S −{p0, . . . , pr})
has weights 1 and 2, of respective dimensions 2g and r .

Leitmotiv
All “natural” constructions are compatible with mixed Hodge structures.

Example : cup product, classical long exact sequences and spectral sequences, etc.

What is important
– There is a canonical weight filtration on the cohomology of complex varieties.

– Morally, every natural construction is compatible with this filtration.

– No non-zero morphism between pure cohomology groups of different weights.
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Purity implies formality

Definition (Quillen, Sullivan)

A differentiable manifold U is formal if the dga (E•(U), d) of differential forms on U is
quasi-isomorphic to its cohomology:

(E•(U), d)
∼−→ · · · ∼←− (H•(U,R), d = 0) .

Applications: computation of (rational) homotopical invariants of U. Examples:

(a) Smooth projective complex varieties (Deligne–Griffiths–Morgan–Sullivan ’75).

(b) Complements of hyperplane arrangements (Brieskorn ’72).

(c) Complements of toric arrangements (D. ’16).

Theorem (D. ’16)

Let U be a smooth complex variety such that one of the following conditions is satisfied:

(1) for every k, Hk(U) is pure of weight k;

(2) for every k, Hk(U) is pure of weight 2k.

Then U is formal.

(1) =⇒ (a) and (2) =⇒ (b), (c).
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Ingredients for the proof

Definition
Let X be a smooth complex variety. A normal crossing divisor D in X is a divisor that is
locally a union of coordinate hyperplanes {z1 = 0} ∪ · · · ∪ {zr = 0}.

Choice of a good compactification for U: X a smooth and projective complex variety, D
a normal crossing divisor inside X , such that U = X − D.

Definition
A meromorphic differential form on X with poles along D is logarithmic if in local
coordinates (z1, . . . , zn) in which D = {z1 = 0} ∪ · · · ∪ {zr = 0} it can be written as a
linear combination of

η ∧ dzi1
zi1
∧ · · · ∧ dzik

zik

with η holomorphic on X and {i1, . . . , ik} ⊂ {1, . . . , r}.

Logarithmic forms and mixed Hodge theory (Griffiths, Deligne)

– The hypercohomology of the complex of sheaves of logarithmic forms is H•(U,C).

– The Hodge and weight filtrations on H•(U,C) come from filtrations on these
complexes of sheaves.
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Proof of the “purity implies formality” theorem

X smooth and projective, D a normal crossing divisor, U = X − D. The dga of global
logarithmic forms : (Ω•(X ,D), d).

Proof of the theorem in case (2):

– Purity =⇒ the sheaves of logarithmic forms are acyclic.

– Thus, we may pass from local to global:

(Ω•(X ,D), d) ↪→ (E•(U)C, d)

is a quasi-isomorphism of dga’s.

– We conclude with a general proposition, which does not use purity (but is a
consequence of Deligne’s mixed Hodge theory).

Proposition
Every global logarithmic form is closed : d = 0 in Ω•(X ,D).

Generalizes the “maximum principle”: every global holomorphic function on the compact
complex manifold X is constant.
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Hyperplane arrangements and the Orlik–Solomon algebra

Definition
A hyperplane arrangement in Cn is a union A of linear hyperplanes / a set of linear
hyperplanes.

The Orlik–Solomon algebra
A•(A) := E•(A) / I•(A)

– E•(A) is the exterior algebra on one generator ei for each hyperplane;

– I•(A) is the homogeneous ideal generated by∑k
s=1(−1)s−1ei1 ∧ · · · ∧ êis ∧ · · · ∧ eik ({i1, . . . , ik} a set of dependent hyperplanes).

A•(A) is a dga : d(ei ) = 1.

Theorem (Brieskorn ’72, Orlik–Solomon ’80)

There is an isomorphism of algebras : H•(Cn −A) ∼= A•(A).

Stratum of A = intersection of some of the hyperplanes in A. Notation |S | := codim(S).

There is a decomposition Ar (A) =
⊕
|S|=r

AS(A) into S-local components.

Clément Dupont (MPIM Bonn) Pisa, Feb. 3, 2016 12 / 21
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Hypersurface arrangements

Definition
Let X be a smooth complex variety. A hypersurface arrangement in X is a divisor A that
is locally a union of hyperplanes.

– Generalizes the notion of a normal crossing divisor (coordinate hyperplanes).

– Example: affine/projective hyperplane arrangements, toric arrangements, arrangements
of diagonals in Sn (S a Riemann surface), etc.

– Simplifying assumption: all irreducible components of A are smooth.

The Orlik–Solomon datum
For S a stratum of A (a connected component of intersections of irreducible
components), one can define the S-local Orlik–Solomon vector space AS(A) by working
in local coordinates around any point of S .

– Differentials AS(A)→ AS′(A).

– Product morphisms AS(A)⊗ AS′(A)→ AT (A).

– dim(AS(A)) = (−1)|S|µ(X , S) (µ: the Möbius function of the poset of strata).

Warning: in general,
⊕

S AS(A) is not a dga.
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The Orlik–Solomon spectral sequence

Theorem (Looijenga ’92, Bibby ’13, D. ’15)

Let X be a smooth complex variety, not necessarily projective, and A a hypersurface
arrangement in X . Then there is a spectral sequence

E−p,q
1 =

⊕
|S|=p

Hq−2p(S)(−p)⊗ AS(A) =⇒ H−p+q(X −A)

in the category of mixed Hodge structures.

– This is (up to a décalage) the Leray spectral sequence of the inclusion X −A ↪→ X .

– The Tate twist (−p) shifts the weight filtration by 2p.

– X projective =⇒ E−p,q
1 is pure of weight q =⇒ spectral sequence degenerates at E2.

Corollary (D. ’16)

If for every stratum S and every integer k, Hk(S) is pure of weight 2k, then:

(1) for every integer k, Hk(X −A) is pure of weight 2k;

(2) X −A is formal.

(in this case, the spectral sequence degenerates at E1)
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Complements of hyperplane arrangements are formal

Theorem (Brieskorn ’72)

Let A be a hyperplane arrangement in Cn. Then the complement Cn −A is formal.

More generally: if A is a hypersurface arrangement in X such that all strata are
contractible, then the complement X −A is formal.

Logarithmic forms
– The proof of the “purity implies formality” theorem extends to the case X smooth

projective, A a hypersurface arrangement in X (D. ’15)

– One can take X = Pn(C) and view A as a projective arrangement.

– The global logarithmic differential forms are those written in affine coordinates as
linear combinations of

dfi1
fi1
∧ · · · ∧ dfik

fik

where the fi ’s are the linear equations of the hyperplanes.

– One then recovers Brieskorn’s original proof:

(Ω•(Pn(C),A), d = 0)
∼
↪→ (E•C(Pn(C)−A), d) .
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Complements of toric arrangements are formal

Definition

A toric arrangement T in (C∗)n is a union of finitely many hypertori {zk11 · · · z
kn
n = a},

with ki ∈ Z and a ∈ C∗.

Theorem (D. ’16)

Let T be a toric arrangement in (C∗)n. Then the complement (C∗)n − T is formal.

– De Concini–Procesi ’05: proof for unimodular toric arrangements.

– Deshpande–Sutar ’14: proof for deletion-restriction type toric arrangements.

– Callegaro–Delucchi ’15: use of the Leray spectral sequence to determine the
cohomology algebra of (C∗)n − T .

– For a proof involving logarithmic forms, in the spirit of Brieskorn’s proof for hyperplane
arrangements: need for a compactification

(C∗)n − T ↪→ X

with X smooth and projective, and X − ((C∗)n − T ) a hypersurface arrangement.

– One should recover the De Concini–Procesi and Deshpande–Sutar proofs.
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1 Hodge theory, and “purity implies formality”

2 Formality of arrangement complements

3 Co-arrangements
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Co-arrangements

Definition
A co-arrangement of hypersurfaces is an arrangement of hypersurfaces...

... but with a dual point of view on it!

Arrangement A  cohomology of the complement H•(X −A).
This is the cohomology of j∗QX−A ∈ D(X ,Q) , where j : X −A ↪→ X .

Co-arrangement A∨  relative cohomology H•(X ,A).
This is the cohomology of j!QX−A ∈ D(X ,Q) , where j : X −A ↪→ X .

Poincaré–Verdier duality
DX (j∗QX−A) ∼= j!QX−A [2n] (n := dimC(X )) .

If X is projective, then

Hk(X ,A) ∼= (H2n−k(X −A))∨.

In general, there is no such duality, and H•(X ,A) is a new cohomological invariant.
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Hyperplane co-arrangements (affine setting)

Proposition (D.)

Let A be an essential affine hyperplane arrangement in Cn.

– We have natural isomorphisms Hk(Cn,A) ∼= (Hk(A•(A), d))∨.

– This is zero for k 6= n.

– Thus, the dimension of Hn(Cn,A) is

(−1)n χ(A•(A)) = (−1)n χ(A, 1) .

χ(A, q) is the characteristic polynomial of A:

χ(A, q) :=
∑
r

∑
|S|=r

µ(Cn, S)

 qn−r .

Theorem (Zaslavsky ’75)

If A is an essential affine real arrangement, then the number of bounded connected
components of the real complement Rn −A is (−1)n χ(A, 1).

(This is not surprising!)
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Toric co-arrangements

Observations
– The relative cohomology groups H•((C∗)n, T ) have natural mixed Hodge structures,

which are generally not pure: several non-zero graded quotients

grWw Hk((C∗)n, T ) .

– These graded quotients are combinatorial invariants.

– However, the mixed Hodge structures are arithmetic invariants, not combinatorial.

Example (Kummer extensions)

For a 6= b ∈ C∗, the mixed Hodge structure on H1(C∗, {a, b}) knows about the number∫ b

a

dz

z
= log(b/a).

Proposition (D.)

The dimension of grW0 Hn((C∗)n, T ) is (−1)n χ(T , 1).
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Bi-arrangements of cubical-toric type

Definition
A bi-arrangement of hypersurfaces is the datum of an arrangement of hypersurfaces
together with a partition of the set of strata into ∗-strata and !-strata.

– All strata are ∗-strata: arrangement.

– All strata are !-strata: co-arrangement.

– There is a duality inside bi-arrangements, which exchanges ∗-strata and !-strata.

– To each bi-arrangement of hypersurfaces, one associates its motive, which is a relative
cohomology group.

Bi-arrangements of cubical-toric type
Underlying arrangement in Cn contains the hyperplanes xi = 0, 1 (all corresponding strata
are !-strata) and hypertori (the rest of the strata are ∗-strata). The mixed Hodge
structure on the corresponding motive knows about numbers such as∫
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