Multipoint Seshadri constants and explicit Kähler packings of projective complex manifolds.

Aeran Fleming

University of Liverpool

A.fleming2@liverpool.ac.uk

February 22, 2019

1 Seshadri constants and Nagata's conjecture

2 Kähler packings

- 3 The main result
- 4 Kähler packings and polytopes.

Notation

- X is a projective, complex manifold of dimension n and p_1, \ldots, p_k are distinct points of X.
- L is an ample line bundle on X.
- ω is a Kähler form on X such that $[\omega] = c_1(L) \in H^2(X, \mathbb{Z}).$
- $\pi \colon \tilde{X} = Bl_{p_1,...,p_k}(X) \to X$ the blow up of X at the points p_1,\ldots,p_k .
- $\pi^{-1}(p_i) = E_i$ the exceptional divisor corresponding to p_i .

Notation

- X is a projective, complex manifold of dimension n and p_1, \ldots, p_k are distinct points of X.
- L is an ample line bundle on X.
- ω is a Kähler form on X such that $[\omega] = c_1(L) \in H^2(X, \mathbb{Z}).$
- $\pi \colon \tilde{X} = Bl_{p_1,...,p_k}(X) \to X$ the blow up of X at the points p_1,\ldots,p_k .
- $\pi^{-1}(p_i) = E_i$ the exceptional divisor corresponding to p_i .

Definition (Multi-point Seshadri constant)

Using the above notation the k-point Seshadri constant

$$\epsilon(X,L;p_1,\ldots,p_k) = \sup \{\epsilon \in \mathbb{Q} > 0 : \pi^*L - \epsilon \sum_{i=1}^k E_i \text{ is } \mathbb{Q} - \text{ample } \}.$$

Notation

- X is a projective, complex manifold of dimension n and p_1, \ldots, p_k are distinct points of X.
- L is an ample line bundle on X.
- ω is a Kähler form on X such that $[\omega] = c_1(L) \in H^2(X, \mathbb{Z})$.
- $\pi : \tilde{X} = Bl_{p_1,...,p_k}(X) \to X$ the blow up of X at the points $p_1,...,p_k$.
- $\pi^{-1}(p_i) = E_i$ the exceptional divisor corresponding to p_i .

Definition (Multi-point Seshadri constant)

Using the above notation the k-point Seshadri constant

$$\epsilon(X,L;p_1,\ldots,p_k) = \sup \{\epsilon \in \mathbb{Q} > 0 : \pi^*L - \epsilon \sum_{i=1}^k E_i \text{ is } \mathbb{Q} - \text{ample } \}.$$

Exercise

Calculate $\epsilon(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1); p)$.

A nice application of Seshadri constants is the following classical conjecture.

A nice application of Seshadri constants is the following classical conjecture.

Conjecture (Nagata's Conjecture)

Let p_1, \ldots, p_k be points of \mathbb{P}^2 in general position then for $k \ge 9$ the multipoint Seshadri constant is given as

$$\epsilon(\mathbb{P}^2,\mathcal{O}_{\mathbb{P}^2}(1); p_1\dots,p_k) = rac{1}{\sqrt{k}}.$$

A nice application of Seshadri constants is the following classical conjecture.

Conjecture (Nagata's Conjecture)

Let p_1, \ldots, p_k be points of \mathbb{P}^2 in general position then for $k \ge 9$ the multipoint Seshadri constant is given as

$$\epsilon(\mathbb{P}^2,\mathcal{O}_{\mathbb{P}^2}(1); p_1\dots,p_k) = rac{1}{\sqrt{k}}.$$

Conjecture (Nagata's conjecture classic version)

Let p_1, \ldots, p_k be points of \mathbb{P}^2 in general position and m_1, \ldots, m_k be positive integers. Then for $k \ge 9$ any curve $C \subset \mathbb{P}^2$ of degree d which passes each point p_i with multiplicity m_i satisfies

$$d\geq \frac{1}{\sqrt{k}}\sum_{i=1}^k m_i p_i.$$

Remark

- Nagata's conjecture is known to be true if $k = n^2$.
- It is know to be false if $k \leq 9$ with $k \neq 4$ or $k \neq 9$.
- The conjecture is also false if the points are not chosen in general position. An example here is that all the points are chosen to lie on a line.

The case when $k = n^2$ was proved and used by Nagata in 1959 in his construction of a counter example to Hilbert's 14th problem.

Kähler packings

Let $B_r^{2n}(0)$ denote a ball in \mathbb{R}^{2n} and ω_{std} the standard Euclidean form. Then $(B_r(0), \omega_{std}) \hookrightarrow (\mathbb{C}^n, \omega_{std})$ such that if (z_1, \ldots, z_n) are coordinates of \mathbb{C}^n :

• $B_r^{2n}(0) = \{(z_1, ..., z_n) : |z_1|^2 + ... + |z_n|^2 \le r^2\}$ • $\omega_{std} = \frac{i}{2\pi} dz_1 \wedge d\bar{z_1} + ... dz_n \wedge d\bar{z_n}.$

Kähler packings

Let $B_r^{2n}(0)$ denote a ball in \mathbb{R}^{2n} and ω_{std} the standard Euclidean form. Then $(B_r(0), \omega_{std}) \hookrightarrow (\mathbb{C}^n, \omega_{std})$ such that if (z_1, \ldots, z_n) are coordinates of \mathbb{C}^n :

•
$$B_r^{2n}(0) = \{(z_1, \ldots, z_n) : |z_1|^2 + \ldots + |z_n|^2 \le r^2\}$$

• $\omega_{std} = \frac{i}{2\pi} dz_1 \wedge d\bar{z_1} + \ldots dz_n \wedge d\bar{z_n}.$

Definition

 (X, ω) a Kähler manifold, then a Kähler packing of k disjoint, flat balls of radius r is a holomorphic embedding

$$\phi = (\phi_1, \ldots, \phi_k) : \coprod_{i=1}^k (B_r^{2n}(0), \omega_{std}) \hookrightarrow (X, \omega)$$

such that there exists a Kähler form $\omega' \in [\omega]$ with $\phi^* \omega' = \omega_{std}$ and for each point p_i we have $\phi_i(0) = p_i$.

Does such a Kähler packing always exist?

Does such a Kähler packing always exist? Yes for small enough radius since Darboux's Theorem tells us that locally any Kähler (symplectic) manifold looks like \mathbb{R}^{2n} , equipped with the standard Euclidian form.

Does such a Kähler packing always exist? Yes for small enough radius since Darboux's Theorem tells us that locally any Kähler (symplectic) manifold looks like \mathbb{R}^{2n} , equipped with the standard Euclidian form.

Question

How much can we increase the radius before we obtain an obstruction to the packing?

Does such a Kähler packing always exist? Yes for small enough radius since Darboux's Theorem tells us that locally any Kähler (symplectic) manifold looks like \mathbb{R}^{2n} , equipped with the standard Euclidian form.

Question

How much can we increase the radius before we obtain an obstruction to the packing?

Definition (The Kähler packing constant)

The k-ball Kähler packing constant

 $\gamma_k = \sup\{r \in \mathbb{R} : \exists a K \\ ahler packing of k disjoint, flat balls of radius r.\}$

Let X be a Kahler manifold of dimension n, L a ample line bundle on X and p_1, \ldots, p_k be distinct points of X. Then if ω is a Kähler form on X such that $[\omega] = c_1(L)$, we have that

 $\gamma_k(X,\omega;p_1,\ldots,p_k)=\epsilon(X,L;p_1,\ldots,p_k).$

Let X be a Kahler manifold of dimension n, L a ample line bundle on X and p_1, \ldots, p_k be distinct points of X. Then if ω is a Kähler form on X such that $[\omega] = c_1(L)$, we have that

$$\gamma_k(X,\omega;p_1,\ldots,p_k) = \epsilon(X,L;p_1,\ldots,p_k).$$

• The above theorem was first proved by Thomas Eckl in 2014 for the case when X is a surface blown up at any number of points.

Let X be a Kahler manifold of dimension n, L a ample line bundle on X and p_1, \ldots, p_k be distinct points of X. Then if ω is a Kähler form on X such that $[\omega] = c_1(L)$, we have that

$$\gamma_k(X,\omega;p_1,\ldots,p_k)=\epsilon(X,L;p_1,\ldots,p_k).$$

- The above theorem was first proved by Thomas Eckl in 2014 for the case when X is a surface blown up at any number of points.
- In 2015 David Witt-Nystrom proved the case when X is of dimension *n* but only blown up at a single point.

Let X be a Kahler manifold of dimension n, L a ample line bundle on X and p_1, \ldots, p_k be distinct points of X. Then if ω is a Kähler form on X such that $[\omega] = c_1(L)$, we have that

$$\gamma_k(X,\omega;p_1,\ldots,p_k)=\epsilon(X,L;p_1,\ldots,p_k).$$

- The above theorem was first proved by Thomas Eckl in 2014 for the case when X is a surface blown up at any number of points.
- In 2015 David Witt-Nystrom proved the case when X is of dimension *n* but only blown up at a single point.
- In 2018 Trussiani and myself proved (independently) that the theorem holds for a projective, complex manifold of any dimension blown up at any number of points.

Kähler packings and polytopes

Toric example

- $X = \mathbb{P}^2$
- L a line.

Moment polytope of $KL \supset \{ \text{ lattice points } \} \leftrightarrow \text{ Basis of } H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(kL)).$

Blowing up \mathbb{P}^2 at $p_1 = [1:0:0], p_2 = [0:1:0], p_3 = [0:0:1]$ gives the moment polytope of $\pi^* kL - m \sum_{i=1}^3 E_i$

Blowing up \mathbb{P}^2 at $p_1 = [1:0:0], p_2 = [0:1:0], p_3 = [0:0:1]$ gives the moment polytope of $\pi^*kL - m\sum_{i=1}^3 E_i$

We would now like to construct a Kähler packing on $\tilde{X} = Bl_{p_1,p_2,p_3}(X)$.

Blowing up \mathbb{P}^2 at $p_1 = [1:0:0], p_2 = [0:1:0], p_3 = [0:0:1]$ gives the moment polytope of $\pi^* kL - m \sum_{i=1}^3 E_i$

We would now like to construct a Kähler packing on $\tilde{X} = Bl_{p_1,p_2,p_3}(X)$. <u>Idea</u>: Construct a family of Kähler forms ω_{δ} on X from sections of kL such that contributions of sections not present in $|\pi^*L - m \sum E_i|$ vanish if δ tends to 0. <u>Difficulty</u>: writing down the ω_{δ} exactly as we need to determine all the coefficients of monomials $X^a Y^b Z^{k-a-b}$ and how they behave under the limit of $\delta \to 0$.

The embedding $\phi_{i,\delta} \colon B^4_r(0) \hookrightarrow \mathbb{P}^2$ is given by $(z_1, z_2) \mapsto [1 : \delta z_1, \delta z_2]$. When $\delta = 0$ the limit does not exist so we take δ very small and glue in. This choice of embedding and Kähler form satisfies the definition of a Kähler packing so we are done. <u>Difficulty</u>: writing down the ω_{δ} exactly as we need to determine all the coefficients of monomials $X^a Y^b Z^{k-a-b}$ and how they behave under the limit of $\delta \to 0$.

The embedding $\phi_{i,\delta} \colon B^4_r(0) \hookrightarrow \mathbb{P}^2$ is given by $(z_1, z_2) \mapsto [1 : \delta z_1, \delta z_2]$. When $\delta = 0$ the limit does not exist so we take δ very small and glue in. This choice of embedding and Kähler form satisfies the definition of a Kähler packing so we are done.

Remark

This provides a nice interpretation of the cut off triangles of the moment polytope as we find that they are the shadows under the moment map of the glued in balls.

The End