
Multipoint Seshadri constants and explicit Kähler
packings of projective complex manifolds.

Aeran Fleming

University of Liverpool

A.fleming2@liverpool.ac.uk

February 22, 2019

1 / 26



Outline

1 Seshadri constants and Nagata’s conjecture

2 Kähler packings

3 The main result

4 Kähler packings and polytopes.

2 / 26



Notation

X is a projective, complex manifold of dimension n and p1, . . . , pk are
distinct points of X .

L is an ample line bundle on X .

ω is a Kähler form on X such that [ω] = c1(L) ∈ H2(X ,Z).

π : X̃ = Blp1,...,pk (X )→ X the blow up of X at the points p1, . . . , pk .

π−1(pi ) = Ei the exceptional divisor corresponding to pi .

Definition (Multi-point Seshadri constant)

Using the above notation the k−point Seshadri constant

ε(X , L; p1, . . . , pk) = sup {ε ∈ Q > 0 : π∗L− ε
k∑

i=1

Ei is Q− ample }.

Exercise

Calculate ε(P2,OP2(1); p).
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A nice application of Seshadri constants is the following classical
conjecture.

Conjecture (Nagata’s Conjcture)

Let p1, . . . , pk be points of P2 in general position then for k ≥ 9 the
multipoint Seshadri constant is given as

ε(P2,OP2(1); p1 . . . , pk) =
1√
k
.

Conjecture (Nagata’s conjecture classic version)

Let p1, . . . , pk be points of P2 in general position and m1, . . . ,mk be
positive integers. Then for k ≥ 9 any curve C ⊂ P2 of degree d which
passes each point pi with multiplicity mi satisfies

d ≥ 1√
k

k∑
i=1

mipi .
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Remark
,

Nagata’s conjecture is known to be true if k = n2.

It is know to be false if k ≤ 9 with k 6= 4 or k 6= 9.

The conjecture is also false if the points are not chosen in general
position. An example here is that all the points are chosen to lie on a
line.

The case when k = n2 was proved and used by Nagata in 1959 in his
construction of a counter example to Hilbert’s 14th problem.
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Kähler packings

Let B2n
r (0) denote a ball in R2n and ωstd the standard Euclidean form.

Then (Br (0), ωstd) ↪→ (Cn, ωstd) such that if (z1, . . . , zn) are coordinates
of Cn:

B2n
r (0) = {(z1, . . . , zn) : |z1|2 + . . .+ |zn|2 ≤ r2}

ωstd = i
2πdz1 ∧ dz̄1 + . . . dzn ∧ dz̄n.

Definition

(X , ω) a Kähler manifold, then a Kähler packing of k disjoint, flat balls of
radius r is a holomorphic embedding

φ = (φ1, . . . , φk) : qk
i=1(B2n

r (0), ωstd) ↪→ (X , ω)

such that there exists a Kähler form ω′ ∈ [ω] with φ∗ω′ = ωstd and for
each point pi we have φi (0) = pi .
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Does such a Kähler packing always exist?

Yes for small enough radius
since Darboux’s Theorem tells us that locally any Kähler (symplectic)
manifold looks like R2n, equipped with the standard Euclidian form.

Question

How much can we increase the radius before we obtain an obstruction to
the packing?

Definition (The Kähler packing constant)

The k-ball Kähler packing constant

γk = sup{r ∈ R : ∃ a Kähler packing of k disjoint, flat balls of radius r .}
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Statment of main theorem

Theorem (Eckl ’14, Witt-Nystrom ’15, Trussiani ’18, — ’18)

Let X be a Kahler manifold of dimension n, L a ample line bundle on X
and p1, . . . , pk be distinct points of X . Then if ω is a Kähler form on X
such that [ω] = c1(L), we have that

γk(X , ω; p1, . . . , pk) = ε(X , L; p1, . . . , pk).

The above theorem was first proved by Thomas Eckl in 2014 for the
case when X is a surface blown up at any number of points.

In 2015 David Witt-Nystrom proved the case when X is of dimension
n but only blown up at a single point.

In 2018 Trussiani and myself proved (independently) that the theorem
holds for a projective, complex manifold of any dimension blown up at
any number of points.
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Kähler packings and polytopes

Toric example

X = P2

L a line.

Moment polytope of KL ⊃ { lattice points } ↔ Basis of H0(P2,OP2(kL)).

X aY bZ k−a−b
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Blowing up P2 at p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1] gives the
moment polytope of π∗kL−m

∑3
i=1 Ei

We would now like to construct a Kähler packing on X̃ = Blp1,p2,p3(X ).
Idea: Construct a family of Kähler forms ωδ on X from sections of kL such
that contributions of sections not present in |π∗L−m

∑
Ei | vanish if δ

tends to 0.
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Difficulty: writing down the ωδ exactly as we need to determine all the

coefficients of monomials X aY bZ k−a−b and how they behave under the
limit of δ → 0.
The embedding φi ,δ : B4

r (0) ↪→ P2 is given by (z1, z2) 7→ [1 : δz1, δz2].
When δ = 0 the limit does not exist so we take δ very small and glue in.
This choice of embedding and Kähler form satisfies the definition of a
Kähler packing so we are done.

Remark

This provides a nice interpretation of the cut off triangles of the moment
polytope as we find that they are the shadows under the moment map of
the glued in balls.
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The End
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