Lecture 3: VW-algebras



1. Overwiew on W-algebras

Recall: The four fundamental physical theories
and the corresponding algebraic structures.

quantization
e e
PVA—-CFT — QFT —V A
4 cl.limit N
affiniz. Zhu Zhu - affiniz.
) 1limit g
PA—-CM cl.limi QM — AA
quantization

Note: The classical limit corresponds to taking the associated graded
of a filtered AA or VA.

The Zhu algebra [Zhu96] is an AA (resp. PA) associated to a positive
energy VA (resp. PVA).
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W-algebras provide a rich family of examples, parametrized by
g: simple Lie algebra, and f € g: nilpotent, appearing in all 4
fundamental aspects:

quantization
Wi(e, f) T Wi(9; f)
4 N
affiniz. : Zhu Zhu : affiniz.
Webfin(g, f) it yyfing, f)
quantization

They were introduced separately and played important roles in
different areas of math. Only later it became fully clear the relations
between them.
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Classical finite W-algebra: W</ (g, f)
» Poisson algebra of functions on the Slodowy slice [S1o80].
Finite W-algebra: W/ (g, f)
» First appearance in [Kos78,Lyn79]: W/ (g, fP") ~ Z(U(g))
» [Pre02]: general definition; connection to repr. theory of
simple finite-dim Lie alg’s, and to theory of primitive ideals.
Classical W-algebra: W (g, f)
» Introduced, for principal f, in [DrSok85] (as PA of
functions on M), to study KdV-type integrable equations.
» In the 90’s: gener.’s [deGroot,Delduc,Feher, Miramontes... ]
» formalization within theory of PVA’s: [DS,Kac,Valeri,2013]
Wh-algebra: Wi(g, f)
» First example: Zamolodchikov Ws; (1985) (= W(sls, fP")).
(“non-linear” oco-dim Lie algebra, extending Virasoro).

> [Fei.Fre.90], [Kac,Roan,Wak.03] general construction via a
quantization of the Drinfeld-Sokolov reduction. Application
to representation theory of superconformal algebras.
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The links among the four appearances of W-algebras are more
recent:
» [Gan,Gin,2002]: finite WW-algebra as a quantization of the
Slodowy slice: W/in(g, f) 28 yyelfin(g £y,
» [DS,Kac,2006], (indep. [Ara07]): the (H-twisted) Zhu
algebra of the W-algebra Wy (g, f) is isomorphic to the

finite W-algebra W/ (g, f). (Hence, their categories of
irreducible representations are equivalent.)



2. The Poisson structure on the Slodowy slice.

Set up:
> g: simple Lie algebra.
> (-]-): non-degenerate symmetric invariant form.
» Identify ®: g = g* , a (a, )
» f € g: anilpotent element. By the Jacobson-Morozov
Theorem, we can include it in an sly-triple (f, h = 2z, ¢).
The corresponding Slodowy slice is the affine space:

S=d(f+g°) Cg”

Claim: S C g* is a Poisson submanifold.

Exercise 1: If { € S, the sympl. form w¢ on the sympl. leave
Ad* G(§) restricts to a sympl. form on TeS N T Ad* G(§)
Exercise 2: S intersects transversally the symplectic leafs:
TeS N Te Ad* G(E) = Teg* (ie. ad*(a)(€) N B(g€) = g*).

The Claim follows by these two exercises
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In order to quantize the theory, we shall describe the Slodowy
slice § as a Hamiltonian reduction of the Poisson manifold g*
(with the Kirillov-Kostant Poisson bracket).

Recall: the general procedure of Hamiltonian reduction:
Ham.red.(M, x, N) = ' (x)/N

where N is a Lie group with a Hamiltonian action on M and

momentum map p: M — n*, and y € n* is ad® N-invariant.

Set up:
» ad z-eignespace decomposition: g = P,c1, 9
2

» On g1 we have the non-degenerate skewsymmetric form
2

w(uvv) = (fH’LL, U])

and we let £ C g1 be a maximal isotropic subspace.
2

Exercise 3: Check that w is a non-degenerate skewsymmetric
form on gi.
2
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» Consider the nilpotent subalgebra n =& g>; C g (and the
corresponding unipotent Lie group N).

» Consider the coadjoint action of IV on g*.
Exercise 4: Prove that the coadjoint action of N on the
Poisson manifold g* is a Hamiltonian action, with momentum
map 4 : g* — n* given by restriction.
Exercise 5: The dual of the momentum map p* : n — g is the
inclusion map.

> Let x = (f[)[n € n™.

» Its preimage via the momentum map is = *(x) = ®(f +n')
Exercise 6: Check that x([n,n]) = 0. Use this to prove that x

is ad™ N-invariant.

» Hence, we have the corresponding Hamiltonian reduction:

Ham Red.(g", N, x) = g~ (x)/N = ®(f +n")/N
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Proposition [Gan, Ginzburg, 2001]: The adjoint action
Nx(f+g°) > f+n"

is an isomorphism of affine varieties.
Exercise 7: Prove it.

Conclusion: It follows that
Ham.Red.(g*? N, X) = (I)(f + nJ—)/N ~ (I)(f + ge) N

(It is not hard to check that the Poisson structure is the same.)
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By passing to the corresponding algebras of (polynomial)
functions, we get the Hamiltonian reduction definition of the
classical finite W-algebra:

webfin(g, f) = C[S)

= (C[g*]/Clg*]{f vanish. on N—l(x)})adu*(n)
d

= (5(0) /@0~ (fI)hnen)” =N/T

where N = {33 € S(g ‘ {n,z} C I} and Z = S(g){n — (f|n) }nen
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3. The quantum finite W-algebra via
quantized Hamiltonian reduction

To define the finite W-algebra, we want to quantize the classical
finite W-algebra.

First, we quantize the symmetric algebra S(g), by taking the
universal enveloping algebra U(g).

Then, we quantize the Hamiltonian reduction of S(g), to get:

Wi(g, ) = (U(e) /U@ n — (fIn)nen) " = N/Z

where N = {z € U(g) | [n,2] C T}, and Z = U(g){n — (f|n)}nen-

Exercise 8: N is a subalgebra of U(g), and Z is its ideal. So,
the quotient N'/Z is a well defined algebra.



We want to see that, indeed, W/ (g, f ) is a quantization of
Wcl,fin(g’ f)

We define the following Kazhdan filtration of the universal
enveloping algebra U(g): for a € g;, we let A(a) =1 —i (we call
this the “conformal weight” of a). Then, we let

F,U(g) = Span {al ... Qg

Afar) + -+ + Aay) < n}

Exercise 9: We have: A([a,b]) = A(a) + A(b) — 1. Hence, we
have a filtration of the algebra U(g), and the associated graded
is the Poisson algebra S(g).

Note: n — (f|n) is “homogeneous” w.r.t. conf. weight. The
Kazhdan filtration of U(g) induces a filtr on W/ (g, ), and:

Proposition [Gan Ginzburg 01]: gr W/ (g, f) ~ We-fin (g, f).

Exercise 10: prove it.



4. The quantum affine VW-algebra

The quantum affine W-algebra W¥(g, f) is a vertex algebra.

It is not known how to define it via quantized Hamiltonian
reduction. There is a cohomological definition, via the so called
BRST cohomology.

It was first defined by [Feigin and Frenkel.1990] for even
nilpotent f, and generalized by [Kac, Roan and Wakimoto,
2003].

To every vertex algebra (conformal, positive energy) V, there is
associated an associative algebra called its Zhu algebra Zhu(V'),
which describes its representations. In the sense that there is an
equivalence of categories

{positive energy repr’s of V} > {ﬁn.dim. repr’s of Zhu(V)}

We proved in [D.S., Kac 2006] that ZhuW¥(g, f) =~ W/™ (g, f).
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5. The classical affine W-algebra via
“affine” Hamiltonian reduction

Set up. It is the same as before:
g: a semisimple Lie algebra. (e, h, f) € g: an sly-triple in g.
g= @ie%z g;: decomposition in eigenspaces of 1(adh).

Construction: (Affine Hamiltonian reduction)

» We start with the Affine PVA: V(g) = S(F[0]g), with
[axb] = [a,b] + (alb)X, a,b € g,

» Consider the differential algebra ideal (a — (f|a))aeq~, -
The quotient V(g)/{a — (f|a))aeq-, is NOT a PVA.

» If we take invariants w.r.t. A-action of the Lie conformal
algebra C[a]g>%, we get a PVA.

14 /
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Definition: The classical affine WW-algebra is

Wi, f) = (V(@)/ (0 = (fa)aegss) "= = N/

where

N={zeV(g ‘{g>1 x}CI[ 1}
and
Z = {a— (fla))acgs, (diff. alg. ideal)

Exercise 11: Check that A is a Poisson vertex subalgebra of
V(g) and Z is its idea. Hence, W(g, f) is a Poisson vertex
algebra.

Structure Thm: as a differential algebra, W(g, f) is
isomorphic to the algebra of differential polynoamials in finitely
many variables w;, i = 1,...,dim(g/) (Premet’s generators):

W(g> f) ~ F[wl(n) | ;:E lz*:Jr A,dim(gf) ]

Note: the same is true for all other types of W-algebras.
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Natural questions:

(o
Problem 1: Find explicit formulas for generators {wz}dlm o),

Problem 2: Find explicit formulas for the A-brackets among
generators: {w;\w;} € FI\]W (g, f).

Problem 3: Construct an integrable hierarchy of Hamilt. eq’s
for the PVA structure of W(g, f).

Example / Exercise 12: W (sly, f) ~ V(Vir); corresponding
integrable hierarchy: KdV.

GOAL:

For a classical Lie algebra g = gly, sly, son, spy and arbitrary
nilpotent f € g we have a new method, based on the notions of
Adler type operators and generalized quasideterminants, which
gives a complete answer to all three problems at the same time,
for every nilpotent element f.
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6. Lax equations
Definition [P. Lax 1968] Let L = L(t), P = P(t) be linear
operators, depending on t. The corresponding Lax equation is

1) ©ip )

Usually, L = 9" + ... (pseudodiff. operator) and P = (L¥/™),.

Then: [Lax “theorem”] Equation (1) is integrable, and
J Resy LK/ | > 1, are integrals of motion in involution.

Example: Lax main example:
L=8+u, P=08+2ud+u.

Then [P, L] = u" + uu/, hence

dL du
Yo preKdv: & w s
praal el ar Wt

17 / 40



Main Issue (which hasn’t been completely resolved to date):

the Lax Equation (1) should be selfconsistent.

Example: consider the operators L = 9% +u, P = (L*/3),.
Then the Lax equation (1) for k = 1is: 4% =4/ | but

dty
for k=21t is p
ditl =200+

which is inconsistent.
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Examples of L for which the Lax equation (1) is self consistent:

1) L=0?+u = KdV hierarchy

2) L=08%4+u0+v = Boussinesq hierarchy

3) L=0"+u10" 24 ---4+up,_1 = n-th KdV hierarchy
4) L =0+u0"'v = NLS hierarchy

5) L=0?+u+v0~'w = Yajima-Oikawa hierarchy

For all these examples the Lax equation

dL

— = [(L*™ ., L), k=1,2, ...
dtk [( )+ﬂ ]a 3 4y

is an integrable hierarchy of Hamiltonian PDE, and

/ Resy LF/™

are integrals of motion in involution.

Exercise 13: Check that for L = 3> + v and P = (L
corresponding Lax equation is the KdV equation,

3
2

)+7the
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Main Goal: for each nilpotent f € g, we construct a Lax
operator L(0), such that:

2) :zlth - [(Lk/p1)+, L] (k € 7)

is an integrable hierarchy of compatible evolution equations,
with the infinitely many integrals of motion in involution:

/ Resy Tr LF/P1 (ke 7))

Moreover:

1) L(0) contains all generators of the W-algebra W (gly, f);
2) we have an Adler identity for the A-brackets;

3) all Lax eq.s (2) are Hamiltonian w.r.t. the PVA W(gly, f)

(This solves all our 3 problems at the same time!)
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7. First ingredient: Adler type operators

Definition. Let V be a PVA with A-bracket {- ) -}.
A(9) € Matyxn V((071)) is of Adler type (w.r.t. {-y-}) if:

{Aij(2)rApj(w)} = Ahj(w—|—)\—|—8)(z—w—)\—a)_l(Aik)*()\—z)
— Ahj(z)(z—w—)\—a)_lAik(w).

Example. V = V(gly) (with {axb} = [a,b] + (a|b)\). Then:

e11+0 e ... EeN1
€12 €99 —1-3 EN?2

E+01=] . . ) € Mat yxnV(gly)
e1N ... eyN+O0

is of Adler type. (Notation: {e;;} = standard basis of gly.)
Exercise 14: Check this.
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Adler type operators are very useful to construct Integrable Systems!

Theorem.[D.S., Kac, Valeri,’15] Let: V a PVA; A(0) an
operator of Adler type; K > 1 s.t. A((‘))% exists. Let

[y, = [RespTr(A(D)K) € V/OV, n€ Zy
They are pairwise in involution:
{[hm, [hn} =0Vm,n

Hence, integrable hierarchy of Hamiltonian eq’s:
du
— ={/hn,u

This hierarchy is equivalently written in Lax form:

dA(9)
dt,,

=[(A(D)F), . A©@)], neZy
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Idea: To construct integrable systems of Hamiltonian
equations, we want Adler operators.

Question: How do we construct new Adler operators?
(So far, only one example: E + 91 € Matyxn(gly)-)

Answer: we use (generalized) quasideterminant
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8. Second ingredient: (generalized) quasideterminants

Definition. [Gelfand,Gelfand, Retakh, ’05] V: assoc. alg.;

A = (a;j) EMatyxnV. The (7, j)-quasideterminant of A is (if 3):
(Al = ai; = RI(A7)7'C)

where: Rf = i-th row of A without j-entry; C’]Z: = j-th column of

A without i-entry; AY = matrix A without row 7 and column j.

Exercise 15: |A|;; = (entry (ji) of A_l)_l, (if both inverses

exist).

Definition. [DS,Kac,Valeri, '15] Let I € Matyx s F and
J € Mat s« F with rk(JI) = M. The (I, J)-generalized
quasideterminant of A is (if it exists):

‘A‘[J = (JAilf)il
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Theorem/Observation. If A(9) is of Adler type for V, then
any its generalized quasideterminant |A(0)|r,s is again of Adler

type.

Exercise 16: prove it.
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9) Construction of the Lax operator for W(g, f)

Step 1:

Let ¢ : g — End V be a finite-dimensional representation of g
s.t. (a|b) = try ¥ (a)y(b) is non-degenerate.

Choose a basis {u;}iep of g and let {u’};cp be the dual basis.

The associated ancestor Lax operator is

Ly(0) = 0ly + > uap(u') € V(g)[0] ® EndV
ieB

(It is independent of the choice of basis).



Step 2:
The descendant Lax operator Ly ;(0) for the PVA W (g, f) is
constructed as follows:

Let J : V — V[A] be the projection and I : V[A] < V the
inclusion (A = max eigenvalue for p(z)).
Let p: V(g) — V(g) be the differential algebra homomorphism
defined by:

pa) =7 1(a) + (fla), a€g.

1
=2

Then Ly, ¢(0) is the generalized quasi-determinant:

Ly,1(9) = (J(p(Lv(9)~'1)) ™"
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First Main Theorem
V g,V, f, the descendant Lax operator Ly, (0) is an ri x 11

matriz pseudo-differential operator with leading term OP* and
coefficients in W (g, f):

Lyg(0) = 0 Loy, + ... € W(g, ))((07Y) © End V[A]

(Note: Ly ¢(0) encodes all generators of W (g, f).)
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Second Main Theorem

Let g = gly, ¥ be its standard representation in V = FV,

f € g nilpotent, associated to the partition N = p1 + -+ -+ ps,
(p1 > -+ > ps) and let r1 be the multiplicity of p;.

Then Ly, ;(0) satisfies the following Adler identity (based on the
famous Adler’s map, 1979)

{L(z)aL(w)} =

(1® L(w+A+0))i(z—w—A—09) " (L*(A\—2) ® 1)Q
— Q(L(2) ®i.(z—w—A=0)"'L(w))

where 1, stands for the geometric series expansion for large z,
and ) is the permutation of factors.

Classical Lie algebras: A similar theorem holds for all
classical Lie alg.s: sly, soy, spy, with V =TFN. [DSKV, 2018]

(Note: The Adler identity encodes all A-brackets in W (g, f).)
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As we said, Adler type operators are automatically Lax
operators, i.e. they produce an integrable hierarchy of
Hamiltonian eq.s in Lax form [DSKV, 2015-18]. As a corollary:

Third Main Theorem
1) [hn = [ Resy Tr LVJ((?)# € Wi(g, f)/OW are Hamiltonian

functionals in involution:

{/hm,/hn}:() for all m,n

2) We thus get an integrable hierarchy of Hamiltonian
equations for W (g, f)

du_

dt., { Ty u}

3) This hierarchy can be written in Laz form:

T n
G T
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Historical Remark

» Drinfeld and Sokolov [1985] constructed an integrable
Hamiltonian hierarchy of PDE for any simple Lie algebra g
and its principal nilpotent element f, using Kostant’s cyclic
elements.

» In [DSKV, 2015] we extended their method for any simple
Lie algebra g and its nilpotent elements f of “semisimple
type”.

(There are very few such elements in classical g, but about
% of nilpotents in exceptional g are such: 13 out of 20 in
FEg, 21 out of 44 in E7, 27 out of 69 in Eg, 11 out of 15 in
Fy, 3 out of 4 in G2 [Elashvili-Kac-Vinberg, 2013]).

» The Lax operator method generalizes, in case of classical g,
the DS hierarchy to arbitrary nilpotent f € g.



10. Examples

Recall: In gly the nilpotent orbits are parametrized by
partitions N = pi + ps + -+ + ps, with p1 > pg > -+ > ps.

Example 1: 2 =2
it corresponds to the KdV hierarchy, the simplest equation
being:

ou  u ou

— == — 1 1

9 923 +u8x (1895) (1877)

The first important discovery in theory of integrable systems:
KdV is integrable! [Gardner-Green-Kruskal-Miura, 1967]

Example 2: 2=1+1
it corresponds to the NLS hierarchy (=AKNS) in two variables
u and v, the simplest equation being

ou _ 9%u

gu — U 4 kuy
0 oz?
{85 020, _ o (1964)

o~ " o2l
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Example 3: 3 = 3: corresponds to the Boussinesq hierarchy,
the simplest equation being the Boussinesq equations

du _ v

ot oo (1872)
3

o = ozt g

Example 4: 3 =1+ 1+ 1: corresponds to the 3 wave equation.

Example 5: 3 =2 + 1: corresponds to the Yajima-Oikawa
hiearchy in three variables u, v, w, the simplest equation
describing sonic-Langmuir solitons:

2
ou 6u+

ot T oz T UW
% = ‘?72 —w (1976)
5 = g (uv)
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Example 6: N = N:
it corresponds to the N-th Gelfand-Dickey hierarchy (1975)

Example 7: N =2+1+---+1:
it corresponds to the N—2-component Yajima-Oikawa hierarchy

Example 8 N =p+p+---+p (r times): corresponds to the
p-th r x r-matrix Gelfand-Dickey hierarchy

Exercise 16: check (some of) these examples.
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11. Multiplicative Poisson vertex algebras
and Hamiltonian difference equations

Parallel Theories:
» PVA = Hamiltonian PDE
» Multiplicative PVA = Hamilt. differential-difference eq.s

The theory of mPVA & Hamiltonian differential-difference
equations is much less developed then the theory of PVA &
Hamiltonian PDE’s.

There are so far only very partial classification results and some
well studied examples of integrable Hamiltonian eq’s.
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Definition
A multiplicative Poisson vertex algebra (mPVA) is an algebra V
with an automorphism D, and a A-bracket {fag} € V[\, A7 s.t.

(sesquilinearity) {D(f)rxg} = X" frg}, {HD(9)} = \D{frg}

(skewsymmetry) {fag} = —«{gr\1p-1f},

(Jacobi identity) {fa{guh}} — {gu{frh}} = {{rg}\.h}.
(Leibniz rule) {fagh} = {frg}h + g{frh}.
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Remark: mPVA & “local” Poisson algebra (V,S) (= a PA YV
with an automorphism S, s.t. {S"a,b} = 0 for |n| >> 0.)

Proof: {axb} =3, ., A"{S"a,b} is a mPVA structure on V.
Exercise 17: prove it.

Example: The most famous example of a “local” PA is the
Faddeev-Takhtajan-Volkov algebra [1986]: V = Flu,|n € Z],
with D(u,,) = un+1, and Poisson bracket

{uma un} = UmUn ((5m+1,n - 5m,n+1) (1 — Um — un)

_um+15m+2,n + un+15m,n+2) .

The corresponding mPVA A-bracket:

{upyu} = u(1 + AD)u(l + AD)u — u(1 + X' D Hu(l + A 1D

—u(AD —A"'D

Exercise 18: Check this formula.
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Basic Lemma. Let V be a mPVA. Let {-, -} = {--}|a=21-

» V:=V/(D — 1)V (= local functionals) is a Lie algebra with
Lie bracket {- ) -}|a=1;

» LA representation of V on V (= functions).

Definition
The Hamiltonian equation associated to the mPVA V and the

Hamiltonian function;l [heVis

dit‘:{fh,u}, wevy
Integrability: 3 [‘ho=/ h, [ h1, [ ho... (linind.) integrals of
motion in involution: { [ A, [ hn} =0 Vm,n
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12. Example: the Volterra lattice eq.

It is the simplest example of a Hamiltonian difference equation.
The Volterra lattice eq. on V = Flup|n € Z], D(uy) = upy1 is
du,
dt
It is a Hamiltonian differential-difference equation with
Hamiltonian functional hy = f u and multiplicative A\-bracket

= un(unJrl - unfl)v n ez

{upu} = Auug — A .

It is the first equation of the Lax hierarchy i—i = [(L*)4, L],
for the pseudodifference operator L = S + uS~!

Exercise 19: Check these facts.

Hence, it is integrable with integrals of motion h,, = [ Res L*™,
(where Res 3, ;57 = ag.)
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The well-known various versions of: the Toda lattice hierarchies,
the Bogoyavlensky lattice hierarchies, the discrete KP
hierarchies, and many other integrable Hamiltonian
differential-difference equations can be treated along the same
lines.

The general theory is work in progress.
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