
Lecture 3: W-algebras
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1. Overwiew on W-algebras

Recall: The four fundamental physical theories
and the corresponding algebraic structures.

PV A− CFT

Zhu

��

quantization
,,
QFT − V A

cl.limit
oo

Zhu

��
PA− CM

affiniz.

FF

quantization

22 QM −AA
cl.limitoo

affiniz.

WW

Note: The classical limit corresponds to taking the associated graded
of a filtered AA or VA.

The Zhu algebra [Zhu96] is an AA (resp. PA) associated to a positive

energy VA (resp. PVA).
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W-algebras provide a rich family of examples, parametrized by
g: simple Lie algebra, and f ∈ g: nilpotent, appearing in all 4
fundamental aspects:

Wcl
z (g, f)

Zhu

��

quantization
++
Wk(g, f)

cl.limit
oo

Zhu

��
Wcl,fin(g, f)

affiniz.

GG

quantization

22W
fin(g, f)

cl.limitoo

affiniz.

WW

They were introduced separately and played important roles in

different areas of math. Only later it became fully clear the relations

between them.
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Classical finite W-algebra: Wcl,fin(g, f)

I Poisson algebra of functions on the Slodowy slice [Slo80].

Finite W-algebra: Wfin(g, f)

I First appearance in [Kos78,Lyn79]: Wfin(g, fpr) ' Z(U(g))

I [Pre02]: general definition; connection to repr. theory of
simple finite-dim Lie alg’s, and to theory of primitive ideals.

Classical W-algebra: Wcl
z (g, f)

I Introduced, for principal f , in [DrSok85] (as PA of
functions on M∞), to study KdV-type integrable equations.

I In the 90’s: gener.’s [deGroot,Delduc,Feher, Miramontes... ]

I formalization within theory of PVA’s: [DS,Kac,Valeri,2013]

W-algebra: Wk(g, f)

I First example: Zamolodchikov W3 (1985) (=W(sl3, f
pr)).

(“non-linear” ∞-dim Lie algebra, extending Virasoro).

I [Fei.Fre.90], [Kac,Roan,Wak.03] general construction via a
quantization of the Drinfeld-Sokolov reduction. Application
to representation theory of superconformal algebras.
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The links among the four appearances of W-algebras are more
recent:

I [Gan,Gin,2002]: finite W-algebra as a quantization of the

Slodowy slice: Wfin(g, f)
cl.limit−→ Wcl,fin(g, f).

I [DS,Kac,2006], (indep. [Ara07]): the (H-twisted) Zhu
algebra of the W-algebra Wk(g, f) is isomorphic to the
finite W-algebra Wfin(g, f). (Hence, their categories of
irreducible representations are equivalent.)
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2. The Poisson structure on the Slodowy slice.

Set up:

I g: simple Lie algebra.

I (· | ·): non-degenerate symmetric invariant form.

I Identify Φ : g
∼→ g∗ , a 7→ (a, ·)

I f ∈ g: a nilpotent element. By the Jacobson-Morozov
Theorem, we can include it in an sl2-triple (f, h = 2x, e).

The corresponding Slodowy slice is the affine space:

S = Φ(f + ge) ⊂ g∗

Claim: S ⊂ g∗ is a Poisson submanifold.

Exercise 1: If ξ ∈ S, the sympl. form ωξ on the sympl. leave
Ad∗G(ξ) restricts to a sympl. form on TξS ∩ Tξ Ad∗G(ξ)
Exercise 2: S intersects transversally the symplectic leafs:
TξS ∩ Tξ Ad∗G(ξ) = Tξg

∗ (i.e. ad∗(g)(ξ) ∩ Φ(ge) = g∗).
The Claim follows by these two exercises
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In order to quantize the theory, we shall describe the Slodowy
slice S as a Hamiltonian reduction of the Poisson manifold g∗

(with the Kirillov-Kostant Poisson bracket).

Recall: the general procedure of Hamiltonian reduction:

Ham.red.(M,χ,N) = µ−1(χ)/N

where N is a Lie group with a Hamiltonian action on M and
momentum map µ : M → n∗, and χ ∈ n∗ is ad∗N -invariant.

Set up:

I adx-eignespace decomposition: g =
⊕

i∈ 1
2
Z gi

I On g 1
2

we have the non-degenerate skewsymmetric form

ω(u, v) = (f |[u, v])

and we let ` ⊂ g 1
2

be a maximal isotropic subspace.

Exercise 3: Check that ω is a non-degenerate skewsymmetric
form on g 1

2
.
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I Consider the nilpotent subalgebra n = `⊕ g≥1 ⊂ g (and the
corresponding unipotent Lie group N).

I Consider the coadjoint action of N on g∗.

Exercise 4: Prove that the coadjoint action of N on the
Poisson manifold g∗ is a Hamiltonian action, with momentum
map µ : g∗ → n∗ given by restriction.
Exercise 5: The dual of the momentum map µ∗ : n→ g is the
inclusion map.

I Let χ = (f | ·)|n ∈ n∗.

I Its preimage via the momentum map is µ−1(χ) = Φ(f +n⊥)

Exercise 6: Check that χ([n, n]) = 0. Use this to prove that χ
is ad∗N -invariant.

I Hence, we have the corresponding Hamiltonian reduction:

Ham.Red.(g∗, N, χ) = µ−1(χ)/N = Φ(f + n⊥)/N
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Proposition [Gan, Ginzburg, 2001]: The adjoint action

N × (f + ge)
∼−→ f + n⊥

is an isomorphism of affine varieties.

Exercise 7: Prove it.

Conclusion: It follows that

Ham.Red.(g∗, N, χ) = Φ(f + n⊥)/N ' Φ(f + ge) = S

(It is not hard to check that the Poisson structure is the same.)
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By passing to the corresponding algebras of (polynomial)
functions, we get the Hamiltonian reduction definition of the
classical finite W-algebra:

W cl,fin(g, f) = C[S]

=
(
C[g∗]/C[g∗]{f vanish. on µ−1(χ)}

)adµ∗(n)

=
(
S(g)

/
S(g){n− (f |n)}n∈n

)ad n
= N/I

where N =
{
x ∈ S(g)

∣∣ {n, x} ⊂ I} and I = S(g){n− (f |n)}n∈n
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3. The quantum finite W-algebra via
quantized Hamiltonian reduction

To define the finite W-algebra, we want to quantize the classical
finite W-algebra.

First, we quantize the symmetric algebra S(g), by taking the
universal enveloping algebra U(g).

Then, we quantize the Hamiltonian reduction of S(g), to get:

W fin(g, f) =
(
U(g)

/
U(g){n− (f |n)}n∈n

)ad n
= N/I

where N =
{
x ∈ U(g)

∣∣ [n, x] ⊂ I
}

, and I = U(g){n− (f |n)}n∈n.

Exercise 8: N is a subalgebra of U(g), and I is its ideal. So,
the quotient N/I is a well defined algebra.
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We want to see that, indeed, W fin(g, f) is a quantization of
W cl,fin(g, f).

We define the following Kazhdan filtration of the universal
enveloping algebra U(g): for a ∈ gi, we let ∆(a) = 1− i (we call
this the “conformal weight” of a). Then, we let

FnU(g) = Span
{
a1 . . . as

∣∣∣∆(a1) + · · ·+ ∆(as) ≤ n
}

Exercise 9: We have: ∆([a, b]) = ∆(a) + ∆(b)− 1. Hence, we
have a filtration of the algebra U(g), and the associated graded
is the Poisson algebra S(g).

Note: n− (f |n) is “homogeneous” w.r.t. conf. weight. The
Kazhdan filtration of U(g) induces a filtr on Wfin(g, f), and:

Proposition [Gan Ginzburg 01]: grWfin.(g, f) ' Wcl.fin.(g, f).

Exercise 10: prove it.
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4. The quantum affine W-algebra

The quantum affine W-algebra Wk(g, f) is a vertex algebra.

It is not known how to define it via quantized Hamiltonian
reduction. There is a cohomological definition, via the so called
BRST cohomology.

It was first defined by [Feigin and Frenkel.1990] for even
nilpotent f , and generalized by [Kac, Roan and Wakimoto,
2003].

To every vertex algebra (conformal, positive energy) V , there is
associated an associative algebra called its Zhu algebra Zhu(V ),
which describes its representations. In the sense that there is an
equivalence of categories{

positive energy repr’s of V
}
↔
{

fin.dim. repr’s of Zhu(V )
}

We proved in [D.S., Kac 2006] that ZhuWk(g, f) ' Wfin.(g, f).
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5. The classical affine W-algebra via
“affine” Hamiltonian reduction

Set up. It is the same as before:
g: a semisimple Lie algebra. (e, h, f) ∈ g: an sl2-triple in g.
g =

⊕
i∈ 1

2
Z gi: decomposition in eigenspaces of 1

2(adh).

Construction: (Affine Hamiltonian reduction)

I We start with the Affine PVA: V(g) = S(F[∂]g), with

[aλb] = [a, b] + (a|b)λ , a, b ∈ g ,

I Consider the differential algebra ideal 〈a− (f |a)〉a∈g≥1
.

The quotient V(g)/〈a− (f |a)〉a∈g≥1
is NOT a PVA.

I If we take invariants w.r.t. λ-action of the Lie conformal
algebra C[∂]g≥ 1

2
, we get a PVA.
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Definition: The classical affine W-algebra is

W(g, f) =
(
V(g)

/
〈a− (f |a)〉a∈g≥1

)adλ(F[∂]g≥ 1
2

)
= N/I

where
N =

{
x ∈ V(g)

∣∣ {g≥ 1
2 λ
x} ⊂ I[λ]

}
and

I = 〈a− (f |a)〉a∈g≥1
(diff. alg. ideal)

Exercise 11: Check that N is a Poisson vertex subalgebra of
V(g) and I is its idea. Hence, W(g, f) is a Poisson vertex
algebra.

Structure Thm: as a differential algebra, W(g, f) is
isomorphic to the algebra of differential polynoamials in finitely
many variables wi, i = 1, . . . ,dim(gf ) (Premet’s generators):

W (g, f) ' F[w
(n)
i |

i = 1,. . ., dim(gf )
n ∈ Z+

]

Note: the same is true for all other types of W -algebras.
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Natural questions:

Problem 1: Find explicit formulas for generators {wi}dim(gf )
i=1 .

Problem 2: Find explicit formulas for the λ-brackets among
generators: {wiλwj} ∈ F[λ]W (g, f).

Problem 3: Construct an integrable hierarchy of Hamilt. eq’s
for the PVA structure of W(g, f).

Example / Exercise 12: W (sl2, f) ' V(Vir); corresponding
integrable hierarchy: KdV.

GOAL:

For a classical Lie algebra g = glN , slN , soN , spN and arbitrary
nilpotent f ∈ g we have a new method, based on the notions of
Adler type operators and generalized quasideterminants, which
gives a complete answer to all three problems at the same time,
for every nilpotent element f .
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6. Lax equations

Definition [P. Lax 1968] Let L = L(t), P = P (t) be linear
operators, depending on t. The corresponding Lax equation is

(1)
dL

dt
= [P,L]

Usually, L = ∂n + ... (pseudodiff. operator) and P = (Lk/n)+.

Then: [Lax “theorem”] Equation (1) is integrable, and∫
Res∂ L

k/n, k ≥ 1, are integrals of motion in involution.

Example: Lax main example:

L = ∂2 + u, P = ∂3 + 2u∂ + u′.

Then [P,L] = u′′′ + uu′, hence

dL

dt
= [P,L]⇔ KdV :

du

dt
= u′′′ + uu′.

17 / 40



Main Issue (which hasn’t been completely resolved to date):
the Lax Equation (1) should be selfconsistent.

Example: consider the operators L = ∂3 + u, P = (Lk/3)+.

Then the Lax equation (1) for k = 1 is: du
dt1

= u′ , but
for k = 2 it is

du

dt
= 2u′∂ + u′′

which is inconsistent.
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Examples of L for which the Lax equation (1) is self consistent:

1) L = ∂2 + u ⇒ KdV hierarchy

2) L = ∂3 + u∂ + v ⇒ Boussinesq hierarchy

3) L = ∂n + u1∂
n−2 + · · ·+ un−1 ⇒ n-th KdV hierarchy

4) L = ∂ + u∂−1v ⇒ NLS hierarchy

5) L = ∂2 + u+ v∂−1w ⇒ Yajima-Oikawa hierarchy

For all these examples the Lax equation

dL

dtk
= [(Lk/n)+, Ln], k = 1, 2, ...

is an integrable hierarchy of Hamiltonian PDE, and∫
Res∂ L

k/n

are integrals of motion in involution.

Exercise 13: Check that for L = ∂2 + u and P = (L
3
2 )+, the

corresponding Lax equation is the KdV equation.
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Main Goal: for each nilpotent f ∈ g, we construct a Lax
operator L(∂), such that:

(2)
dL

dtk
=

[(
Lk/p1

)
+
, L

]
(k ∈ Z)

is an integrable hierarchy of compatible evolution equations,
with the infinitely many integrals of motion in involution:∫

Res∂ Tr Lk/p1 (k ∈ Z)

Moreover:

1) L(∂) contains all generators of the W -algebra W (glN , f);

2) we have an Adler identity for the λ-brackets;

3) all Lax eq.s (2) are Hamiltonian w.r.t. the PVA W (glN , f)

(This solves all our 3 problems at the same time!)
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7. First ingredient: Adler type operators

Definition. Let V be a PVA with λ-bracket {· λ ·}.
A(∂) ∈ MatN×N V((∂−1)) is of Adler type (w.r.t. {· λ ·}) if:

{Aij(z)λAhj(w)} = Ahj(w+λ+∂)(z−w−λ−∂)−1(Aik)
∗(λ−z)

−Ahj(z)(z−w−λ−∂)−1Aik(w) .

Example. V = V(glN ) (with {aλb} = [a, b] + (a|b)λ). Then:

E + ∂1 =


e11 + ∂ e21 . . . eN1

e12 e22 + ∂ . . . eN2
...

. . .
...

e1N . . . eNN + ∂

 ∈ MatN×NV(glN )

is of Adler type. (Notation: {eij} = standard basis of glN .)

Exercise 14: Check this.
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Adler type operators are very useful to construct Integrable Systems!

Theorem.[D.S., Kac, Valeri,’15] Let: V a PVA; A(∂) an

operator of Adler type; K ≥ 1 s.t. A(∂)
1
K exists. Let∫

hn =
∫

Res∂Tr(A(∂)
n
K ) ∈ V/∂V , n ∈ Z+

They are pairwise in involution:

{
∫
hm,

∫
hn} = 0 ∀m,n

Hence, integrable hierarchy of Hamiltonian eq’s:

du

dtn
= {
∫
hn, u}

This hierarchy is equivalently written in Lax form:

dA(∂)

dtn
= [
(
A(∂)

n
K
)

+
, A(∂)] , n ∈ Z+
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Idea: To construct integrable systems of Hamiltonian
equations, we want Adler operators.

Question: How do we construct new Adler operators?
(So far, only one example: E + ∂1 ∈ MatN×N (glN ).)

Answer: we use (generalized) quasideterminant
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8. Second ingredient: (generalized) quasideterminants

Definition. [Gelfand,Gelfand, Retakh, ’05] V : assoc. alg.;
A = (aij) ∈MatN×NV . The (i, j)-quasideterminant of A is (if ∃):

|A|ij = aij −Rji (A
ij)−1Cij

where: Rji = i-th row of A without j-entry; Cij = j-th column of

A without i-entry; Aij = matrix A without row i and column j.

Exercise 15: |A|ij =
(
entry (ji) of A−1

)−1
, (if both inverses

exist).

Definition. [DS,Kac,Valeri, ’15] Let I ∈ MatN×M F and
J ∈ MatM×N F with rk(JI) = M . The (I, J)-generalized
quasideterminant of A is (if it exists):

|A|IJ = (JA−1I)−1
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Theorem/Observation. If A(∂) is of Adler type for V, then
any its generalized quasideterminant |A(∂)|I,J is again of Adler
type.

Exercise 16: prove it.
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9) Construction of the Lax operator for W(g, f)

Step 1:
Let ψ : g→ End V be a finite-dimensional representation of g
s.t. (a|b) = trV ψ(a)ψ(b) is non-degenerate.
Choose a basis {ui}i∈B of g and let {ui}i∈B be the dual basis.

The associated ancestor Lax operator is

LV (∂) = ∂1V +
∑
i∈B

uiψ(ui) ∈ V(g)[∂]⊗ EndV

(It is independent of the choice of basis).
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Step 2:
The descendant Lax operator LV,f (∂) for the PVA W (g, f) is
constructed as follows:

Let J : V → V [∆] be the projection and I : V [∆] ↪→ V the
inclusion (∆ = max eigenvalue for ϕ(x)).
Let ρ : V(g)→ V (g) be the differential algebra homomorphism
defined by:

ρ(a) = π≤ 1
2
(a) + (f |a), a ∈ g.

Then LV,f (∂) is the generalized quasi-determinant:

LV,f (∂) = (J(ρ(LV (∂))−1I))−1
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First Main Theorem
∀ g, V, f , the descendant Lax operator LV,f (∂) is an r1 × r1

matrix pseudo-differential operator with leading term ∂p1 and
coefficients in W (g, f):

LV,f (∂) = ∂p11r1×r1 + . . . ∈ W (g, f)((∂−1))⊗ EndV [∆]

(Note: LV,f (∂) encodes all generators of W (g, f).)
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Second Main Theorem
Let g = glN , ψ be its standard representation in V = FN ,
f ∈ g nilpotent, associated to the partition N = p1 + · · ·+ ps,
(p1 ≥ · · · ≥ ps) and let r1 be the multiplicity of p1.
Then LV,f (∂) satisfies the following Adler identity (based on the
famous Adler’s map, 1979)

{L(z)λL(w)} =(
1⊗ L(w+λ+∂)

)
iz(z−w−λ−∂)−1

(
L∗(λ−z)⊗ 1

)
Ω

− Ω
(
L(z)⊗ iz(z−w−λ−∂)−1L(w)

)
where iz stands for the geometric series expansion for large z,
and Ω is the permutation of factors.

Classical Lie algebras: A similar theorem holds for all
classical Lie alg.s: slN , soN , spN , with V = FN . [DSKV, 2018]

(Note: The Adler identity encodes all λ-brackets in W (g, f).)
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As we said, Adler type operators are automatically Lax
operators, i.e. they produce an integrable hierarchy of
Hamiltonian eq.s in Lax form [DSKV, 2015-18]. As a corollary:

Third Main Theorem

1)
∫
hn =

∫
Res∂ TrLV,f (∂)

n
p1 ∈W (g, f)/∂W are Hamiltonian

functionals in involution:

{
∫
hm,

∫
hn} = 0 for all m,n

2) We thus get an integrable hierarchy of Hamiltonian
equations for W (g, f)

du

dtn
= {∫ hn, u}

3) This hierarchy can be written in Lax form:

dLV,f (∂)

dtn
= [LV,f (∂)

n
p1
+ , LV,f (∂)]
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Historical Remark

I Drinfeld and Sokolov [1985] constructed an integrable
Hamiltonian hierarchy of PDE for any simple Lie algebra g
and its principal nilpotent element f , using Kostant’s cyclic
elements.

I In [DSKV, 2015] we extended their method for any simple
Lie algebra g and its nilpotent elements f of “semisimple
type”.
(There are very few such elements in classical g, but about
1
2 of nilpotents in exceptional g are such: 13 out of 20 in
E6, 21 out of 44 in E7, 27 out of 69 in E8, 11 out of 15 in
F4, 3 out of 4 in G2 [Elashvili-Kac-Vinberg, 2013]).

I The Lax operator method generalizes, in case of classical g,
the DS hierarchy to arbitrary nilpotent f ∈ g.
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10. Examples

Recall: In glN the nilpotent orbits are parametrized by
partitions N = p1 + p2 + · · ·+ ps, with p1 ≥ p2 ≥ · · · ≥ ps.
Example 1: 2 = 2
it corresponds to the KdV hierarchy, the simplest equation
being:

∂u

∂t
=
∂3u

∂x3
+ u

∂u

∂x
(1895) (1877)

The first important discovery in theory of integrable systems:
KdV is integrable! [Gardner-Green-Kruskal-Miura, 1967]

Example 2: 2 = 1 + 1
it corresponds to the NLS hierarchy (=AKNS) in two variables
u and v, the simplest equation being{

∂u
∂t = ∂2u

∂x2
+ ku2v

∂v
∂t = − ∂2v

∂x2
v − kuv2

(1964)
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Example 3: 3 = 3: corresponds to the Boussinesq hierarchy,
the simplest equation being the Boussinesq equations{

∂u
∂t = ∂v

∂x
∂v
∂t = ∂3u

∂x3
+ u∂u∂x

(1872)

Example 4: 3 = 1 + 1 + 1: corresponds to the 3 wave equation.

Example 5: 3 = 2 + 1: corresponds to the Yajima-Oikawa
hiearchy in three variables u, v, w, the simplest equation
describing sonic-Langmuir solitons:

∂u
∂t = −∂2u

∂x2
+ uw

∂v
∂t = ∂2v

∂x2
− vw

∂w
∂t = ∂

∂x(uv)

(1976)
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Example 6: N = N :
it corresponds to the N -th Gelfand-Dickey hierarchy (1975)

Example 7: N = 2 + 1 + · · ·+ 1:
it corresponds to the N−2-component Yajima-Oikawa hierarchy

Example 8: N = p+ p+ · · ·+ p (r times): corresponds to the
p-th r × r-matrix Gelfand-Dickey hierarchy

Exercise 16: check (some of) these examples.
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11. Multiplicative Poisson vertex algebras
and Hamiltonian difference equations

Parallel Theories:

I PVA ⇒ Hamiltonian PDE

I Multiplicative PVA ⇒ Hamilt. differential-difference eq.s

The theory of mPVA & Hamiltonian differential-difference
equations is much less developed then the theory of PVA &
Hamiltonian PDE’s.

There are so far only very partial classification results and some
well studied examples of integrable Hamiltonian eq’s.
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Definition
A multiplicative Poisson vertex algebra (mPVA) is an algebra V
with an automorphism D, and a λ-bracket {fλg} ∈ V[λ, λ−1] s.t.

(sesquilinearity) {D(f)λg} = λ−1{fλg} , {fλD(g)} = λD{fλg}
(skewsymmetry) {fλg} = −←{gλ−1D−1f},
(Jacobi identity) {fλ{gµh}} − {gµ{fλh}} = {{fλg}λµh}.

(Leibniz rule) {fλgh} = {fλg}h+ g{fλh}.
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Remark: mPVA ⇔ “local” Poisson algebra (V, S) (= a PA V
with an automorphism S, s.t. {Sna, b} = 0 for |n| >> 0.)

Proof: {aλb} =
∑

n∈Z λ
n{Sna, b} is a mPVA structure on V.

Exercise 17: prove it.

Example: The most famous example of a “local” PA is the
Faddeev-Takhtajan-Volkov algebra [1986]: V = F[un|n ∈ Z],
with D(un) = un+1, and Poisson bracket

{um, un} =umun ((δm+1,n − δm,n+1) (1− um − un)

−um+1δm+2,n + un+1δm,n+2) .

The corresponding mPVA λ-bracket:

{uλu} = u(1 + λD)u(1 + λD)u− u(1 + λ−1D−1)u(1 + λ−1D−1)u

− u(λD − λ−1D−1)u

Exercise 18: Check this formula.
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Basic Lemma. Let V be a mPVA. Let {· , ·} = {· λ ·}|λ=1.

I V := V/(D − 1)V (= local functionals) is a Lie algebra with
Lie bracket {· λ ·}|λ=1;

I LA representation of V on V (= functions).

Definition
The Hamiltonian equation associated to the mPVA V and the
Hamiltonian functional ∫ h ∈ V is

du

dt
= {∫ h, u} , u ∈ V

Integrability: ∃
∫
h0=

∫
h,
∫
h1,
∫
h2. . . (lin.ind.) integrals of

motion in involution: {
∫
hm,

∫
hn} = 0 ∀m,n
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12. Example: the Volterra lattice eq.

It is the simplest example of a Hamiltonian difference equation.

The Volterra lattice eq. on V = F[un|n ∈ Z], D(un) = un+1 is

dun
dt

= un(un+1 − un−1), n ∈ Z

It is a Hamiltonian differential-difference equation with
Hamiltonian functional h1 =

∫
u and multiplicative λ-bracket

{uλu}1 = λuu1 − λ−1uu−1.

It is the first equation of the Lax hierarchy dL
dtn

= [(L2n)+, L],

for the pseudodifference operator L = S + uS−1

Exercise 19: Check these facts.

Hence, it is integrable with integrals of motion hm = ∫ ResL2m,
(where Res

∑
j ajS

j = a0.)
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The well-known various versions of: the Toda lattice hierarchies,
the Bogoyavlensky lattice hierarchies, the discrete KP
hierarchies, and many other integrable Hamiltonian
differential-difference equations can be treated along the same
lines.

The general theory is work in progress.
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