Lecture 2: Vertex algebras and
Poisson vertex algebras



Going from a finite to an infinite number of degrees of freedom,
we pass from:
classical & quantum mechanics

to
Classical Field Theory & Quantum Field Theory

Question: what are the corresponding correct algebraic
structures?

In conformal field theory, the algebraic structures describing
chiral fields are known as vertex algebras (they were introduced
by [Borcherds, 1986]).

Their quasi-classical limits are the Poisson vertex algebras
(introduced by [DS, Kac, 2006]): they are associated to classical
field theory in the same way as Poisson algebras are associated
to classical mechanics.



1. Review of Quantum Field Theory

Basic postulates:

» The space of states is a Hilbert space V,

» The vacuum is a state |0) € V.

» The physical observables are operator valued distributions
®(x), functions of z in the space-time M, with values in
End V, called the quantum fields.

Einstein’s relativity principle states that:

No signal can travel at speed higher than the speed of light ¢ = 1.

Hence:
If 2,y € M are at space-like distance, |z — y|> < 0, then
measures ®(z) and ¥(y) must be independent.

Heisenberg principle of uncertainty states that:
If the observable ®(z) and ¥(y) are independent, then they
commute: [®(z), U(y)] =0

(So, they can be simultaneously diagonalized, i.e. they can be
measured simultaneously without uncertainty.)
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In dimension dim M = 1+ 1: combining the Relativity and
the Uncertainty principles, we get locality of chiral fields.

1. We make the chance of variables

Z2=x9— 21, Z=x9+x = |x\2:zZ
2. By the Relativity and Uncertainty principles, we get:
(1) (z—w)(z—w) <0 = [®(z,2),V(w,w)] =0

3. A chiral field is ®(z) (depending only on z, not on z).
4. Hence, equation (1) for chiral fields becomes:

z—w#0 = [P(z2),¥(w)]=0
This in turn is equivalent to locality:

(z —w)N[®(2), ¥(w)] =0 for N >>0



Creation and annihilation operators
Usually a quantum (chiral) field ®(z) is expanded in its Fourier
modes, as a (formal) power series:

O(z) = Y Pp2", P, €EndV
neL

1. ®,, n < 0 are annihilation operators (v € V):
®,00=0,Vn<0 and ®,v=0, Vn<<O0
2. @, n > 0 are the creation operators:
®,10) = |D,)#0, V>0

Equivalently:
» O(2)]0) € V[[2]] is a Taylor series in z;
» O(2)v € V((2)) (Laurent series in z).



2. Quantum field theory and vertex algebras

The notion of a wverter algebra describes the algebraic structure
of chiral fields in a quantum field theory in 1 + 1-dimension.

Let: V, the space of states; |0) € V the vacuum; T' € End V| the
translation operator.

Definition: A quantum field is a series ®(2) = > ., ®,2"
€ EndV[[z,27!]] such that, for all v € V,

®(z)v € V((2)) or, equivalently, ®,(v) =0 for n <<0

Definition: A (pre)vertex algebra (V,|0), T, F) is a (complete)
collection of quantum fields F = {®(z)},cs satisfying:

1. vacuum axiom: ®(z)|0) € V[[z]] for all a;

2. translation covariance: [T, ®%(z)] = 9,P%(z);

3. locality: (z — w)N[®@(2), ®5(w)] = 0 for N >> 0
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Examplel: affine vertex algebra

Let: g a simple Lie algebra; (-, -) the Killing form.

The affine Kac-Moody algebra is § = g[t*!] @ CK with bracket
[at™, bt"] = [a,b/t" ™ + mbm —n(alb) K

The vacuum module of level k is V¥(g) = Indgyeck Ck (where

g[t] =0 and K =k on C;, = C).

The affine vertex algebra structure on V*(g) is given by |0) = 1,
T = —0; and the collection of fields F = {a(z)}4ecq, where

a(z) = Z(at”)z_”_l

neL

Locality is guaranteed by the Operator Product Expansion:
(2)  la(z),b(w)] = [a,b](w)é(z — w) + (a|b) KO (2 — w)

n,,,—n—1

where 0(z —w) =, 2"w
Exercise 1: Check the OPE (2) for the affine vertex algebra
V*(g). Deduce that the fields {a(z)}qeq are pairwise local.



Example 2: Virasoro

The Virasoro Lie algebra is Vir = ®,ezCL,, & CC, with
m3 —m
[Lma Ln] - Lm+n + CT

The vacuum module of central charge ¢ is Vir® = Indy;,., C.
(where L, =0 forn > —1 and C = con C, = C).

The Virasoro vertex algebra on Vir¢ is given by |0) =1, T'= Ly
and F = {L(z)}, where

L(z)=) Lz "?

Sm,-nC.

Locality is guaranteed by the Operator Product Expansion:

(3) [L(2), L(w)] = (L' (w) + 2L(w) 0y, + %(285’})5(2 —w)

Exercise 2: Check the OPE (3) for the Virasoro vertex algebra
Vir¢. Deduce that the field L(z) is local with itself.



3. A-bracket definition of a vertex algebra

The whole algebraic structure of a vertex algebra is encoded in
three operations on local quantum fields:

» the derivative 0,®(z)

» the normally ordered product

QU (2) = Di(2)U(2)+U(2)P_(2)

where @, (2) =, o ®p2"""! (creation part) and
P_(2) =3 ,50Pnz"""! (annihilation part).

» the A-bracket, defined as the Fourier transform of the OPE:

[®,0](w) = Res, ) [®(2), ¥(w)]
Exercise 3: check that if we }]1Vave the OPE

[@(2), U(w)] = Y ealw)Ipd(z — w)
n=0

then the corresponding A-bracket is
N

)\TL
(@ )\ U] = chn

n=0



Dong’s Lemma: Let F be a collection of pairwise local
quantum fields.

Let F be obtained by adding all derivatives, all normally
ordered products, and all coeflicients of all A\-brackets of
elements in F:

F 3 ® 00, c,, : OV :

Then, F is again a collection of pairwise local quantum fields.

Hence: we can assume that F is closed with respect to the
derivative 0,, : - -: and [- ) [; i.e., for &, U € F:

0P € F, :0V:e F, [®,V] € F[A

Question: what are the properties of these maps 9, : - -: and
[a-]?
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We then get an equivalent definition of a vertex algebra:

Theorem / Definition [Bakalov, Kac, 2001]:

A vertex algebra is a space of states V', with a vacuum vector
|0) € V, a translation operator d € End V, a normally ordered
product : ab: € V, and a A-bracket [a)b] € V)], satisfying the
following axioms:

1. vacuum :a|0): = :|0)a: =a

2. translation covariance 9(: ab :) = :(0a)b: + :a(0b):
(Rem: (V,|0),0,: :)is a unital differential algebra)

3. sesquilinearity [Daxb] = —A[axb], [ax0b] = (0 + A)[axb]
4. skewsymmetry [axb] = —[b_—_ad]
5. Jacobi identity [ax[b,c]] — [bulaxc]] = [[arb]a+pc]

(Def: (V,0,[ x-]) is a Lie conformal algebra)
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6. quasi-associativity :(:ab:): — :a(:bc:): =
= :(fod dXa)lbxc]: + :( fod dAb)laxc]:
7. quasi-commutativity :ab: — :ba: = jBa dA [axb]
8. Wick formula [ay:bc:] = :[arb]e: + :blaxc]: + foA dp [[axb],c]

To construct examples, we start with a Lie conformal algebra R
and we take its universal enveloping vertex algebra V(R).

Theorem: given a Lie conformal algebra R, there exists a
unique universal enveloping vertex algebra V(R), and we have
the PBW Theorem: a basis for V(R) is given by ordered
monomials

{:ailah...ais: ‘ ()Silg---gis}
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Let us review the examples of affine VA and Virasoro VA in the
A-bracket notation.

Example 1 The affine LCA is Curgg = (C[0] ® g) & C|0),
with A-bracket (a,b € g)

(4) [axb] = [a, 0] + Ak(a, )[0)

The affine vertex algebra is V*(g) = V(Curgg)

Exercise 4: check that the A-bracket (4) defines a structure of
a Lie conformal algebra on Curgg.

Example 2 The Virasoro LCA is R. = (C[0]L) & C|0), with
A-bracket
(5) [LaL] = (8 +2)\)L + %A3|O>

c € C is the central charge.
The Virasoro vertex algebra is Vir¢ = V(R,)

Exercise 5: check that the A\-bracket (5) defines a structure of
a Lie conformal algebra on R..
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4. Classical limit and Poisson vertex algebras

We can apply the classical limit procedure, to get algebraic
structure of classical field theory: this leads to the notion of a
Poisson vertex algebra.

» Assume that the vertex algebra V has an increasing
filtration

0=F'VcFVcF'Vc . .cV
such that
PV LRIV C PNV and [F'VAFIV] € FPHIV)
» Then, we take the associated graded

gV =@ e"V where g"V = F"V/F"'V
n>0

All the quantum corrections in the axioms of a vertex algebra

disappear, and what we get is a (graded) Poisson vertez algebra.



Definition [DS, Kac, 2006]:
A Poisson vertex algebra V is:

» a unital, commutative, associative, differential algebra,

» a Lie conformal algebra with A-bracket {- -},

and the two structures are related by the following Leibniz rule:

{axbe} = {ab}e+ {axc}d

Exercise 6: Check that grV is a graded Poisson vertex alg.

Conversely, given a graded Poisson vertex algebra V), its
quantization is a filtered vertex algebra V', such that grV =V

Theorem: If R is a Lie conformal algebra, then V(R) = S(R)
has a natural structure of a Poisson vertex algebra. Its
quantization is the universal enveloping vertex algebra V(R).

Exercise 7: Prove the above claim.
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Example 1: the GFZ PVA is V = Flu,u/,u”,...], with
A-bracket: [uyu] = A (extended by sesquil. and Leibniz rules).

Example 2: the affine PVA: V(g) = S(F[0]g), with A-bracket

(6) [axb] = [a,b] + (alb)X, a,b € g,

(extended by sesquil. and Leibniz rules).
Note: it is the classical limit of the affine vertex alg. V*(g).

Example 3: the Virasoro-Magri PVA is V =F[L, L', L",...],
with A-bracket

(7) [LAL] = (0 + 2)\)L + 1%»”’ ,

(extended by sesquil. and Leibniz rules).
Note: it is the classical limit of the Virasoro vertex alg. Vire.



5. Poisson vertex algebras and Hamiltonian PDE

Notation: a local functional is [ f € V/9V
Observation: If V is a PVA, then V/9V is a Lie algebra, with

(£ [a} = [{fa} =0
Definition: the Hamiltonian equation associated to the PVA
V, and the Hamiltonian functional [h € V/9V, is
du
(8) o {hu}],
An integral of motion for (8) is a local functional [¢ € V/9V s.t.
{nfat =0 ( <= (g}, € V)
GOAL: construct an infinite sequence [hg = [h, [h1, [ho,...,
of lin.indep. integrals of motion in involution:

{[hm, [hrn} =0VYm,n >0

We then have the integrable hierarchy: gt—: = {[hy,u}.
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Example: the KdV equation:

ou 3 ou n Pu

Ot Oz Ox3
It is Hamiltonian w.r.t. the GFZ PVA and the Hamiltonian
functional [h = 1 [(u® + cuu”):

(ceC)

ou

i {Pau}|r=0

Exercise 8: Check this (again!) using A-bracket computations
(and the axioms of Poisson vertex algebra).
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