
Lecture 2: Vertex algebras and
Poisson vertex algebras
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Going from a finite to an infinite number of degrees of freedom,
we pass from:

classical & quantum mechanics

to

Classical Field Theory & Quantum Field Theory

Question: what are the corresponding correct algebraic
structures?

In conformal field theory, the algebraic structures describing
chiral fields are known as vertex algebras (they were introduced
by [Borcherds, 1986]).

Their quasi-classical limits are the Poisson vertex algebras
(introduced by [DS, Kac, 2006]): they are associated to classical
field theory in the same way as Poisson algebras are associated
to classical mechanics.
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1. Review of Quantum Field Theory

Basic postulates:
I The space of states is a Hilbert space V ,
I The vacuum is a state |0〉 ∈ V .
I The physical observables are operator valued distributions

Φ(x), functions of x in the space-time M , with values in
EndV , called the quantum fields.

Einstein’s relativity principle states that:
No signal can travel at speed higher than the speed of light c = 1.

Hence:
If x, y ∈M are at space-like distance, |x− y|2 < 0, then
measures Φ(x) and Ψ(y) must be independent.

Heisenberg principle of uncertainty states that:
If the observable Φ(x) and Ψ(y) are independent, then they
commute: [Φ(x),Ψ(y)] = 0

(So, they can be simultaneously diagonalized, i.e. they can be

measured simultaneously without uncertainty.)
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In dimension dimM = 1 + 1: combining the Relativity and
the Uncertainty principles, we get locality of chiral fields.

1. We make the chance of variables

z = x0 − x1 , z̄ = x0 + x1 ⇒ |x|2 = zz̄

2. By the Relativity and Uncertainty principles, we get:

(1) (z − w)(z̄ − w̄) < 0 ⇒ [Φ(z, z̄),Ψ(w, w̄)] = 0

3. A chiral field is Φ(z) (depending only on z, not on z̄).
4. Hence, equation (1) for chiral fields becomes:

z − w 6= 0 ⇒ [Φ(z),Ψ(w)] = 0

This in turn is equivalent to locality:

(z − w)N [Φ(z),Ψ(w)] = 0 for N >> 0
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Creation and annihilation operators
Usually a quantum (chiral) field Φ(z) is expanded in its Fourier
modes, as a (formal) power series:

Φ(z) =
∑
n∈Z

Φnz
n , Φn ∈ EndV

1. Φn, n < 0 are annihilation operators (v ∈ V ):

Φn|0〉 = 0 , ∀n < 0 and Φnv = 0 , ∀n << 0

2. Φn, n ≥ 0 are the creation operators:

Φn|0〉 = |Φn〉 6= 0 , ∀n ≥ 0

Equivalently:

I Φ(z)|0〉 ∈ V [[z]] is a Taylor series in z;

I Φ(z)v ∈ V ((z)) (Laurent series in z).
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2. Quantum field theory and vertex algebras

The notion of a vertex algebra describes the algebraic structure
of chiral fields in a quantum field theory in 1 + 1-dimension.

Let: V , the space of states; |0〉 ∈ V the vacuum; T ∈ EndV , the
translation operator.

Definition: A quantum field is a series Φ(z) =
∑

n∈Z Φnz
n

∈ EndV [[z, z−1]] such that, for all v ∈ V ,

Φ(z)v ∈ V ((z)) or, equivalently, Φn(v) = 0 for n << 0

Definition: A (pre)vertex algebra (V, |0〉, T,F) is a (complete)
collection of quantum fields F = {Φα(z)}α∈J satisfying:

1. vacuum axiom: Φα(z)|0〉 ∈ V [[z]] for all α;

2. translation covariance: [T,Φα(z)] = ∂zΦ
α(z);

3. locality: (z − w)N [Φα(z),Φβ(w)] = 0 for N >> 0
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Example1: affine vertex algebra

Let: g a simple Lie algebra; (· , ·) the Killing form.
The affine Kac-Moody algebra is ĝ = g[t±1]⊕ CK with bracket

[atm, btn] = [a, b]tm+n +mδm,−n(a|b)K

The vacuum module of level k is V k(g) = Indg[t]⊕CK Ck (where
g[t] = 0 and K = k on Ck = C).

The affine vertex algebra structure on V k(g) is given by |0〉 = 1,
T = −∂t and the collection of fields F = {a(z)}a∈g, where

a(z) =
∑
n∈Z

(atn)z−n−1

Locality is guaranteed by the Operator Product Expansion:

(2) [a(z), b(w)] = [a, b](w)δ(z − w) + (a|b)K∂wδ(z − w)

where δ(z − w) =
∑

n∈Z z
nw−n−1.

Exercise 1: Check the OPE (2) for the affine vertex algebra
V k(g). Deduce that the fields {a(z)}a∈g are pairwise local.
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Example 2: Virasoro

The Virasoro Lie algebra is V ir = ⊕n∈ZCLn ⊕ CC, with

[Lm, Ln] = Lm+n + c
m3 −m

12
δm,−nC

The vacuum module of central charge c is V irc = IndV ir+ Cc
(where Ln = 0 for n ≥ −1 and C = c on Cc = C).

The Virasoro vertex algebra on V irc is given by |0〉 = 1, T = L0

and F = {L(z)}, where

L(z) =
∑
n

Lnz
−n−2

Locality is guaranteed by the Operator Product Expansion:

(3) [L(z), L(w)] = (L′(w) + 2L(w)∂w +
1

2
c∂3w)δ(z − w)

Exercise 2: Check the OPE (3) for the Virasoro vertex algebra
V irc. Deduce that the field L(z) is local with itself.
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3. λ-bracket definition of a vertex algebra

The whole algebraic structure of a vertex algebra is encoded in
three operations on local quantum fields:

I the derivative ∂zΦ(z)
I the normally ordered product

: ΦΨ : (z) = Φ+(z)Ψ(z) + Ψ(z)Φ−(z)

where Φ+(z) =
∑

n<0 Φnz
−n−1 (creation part) and

Φ−(z) =
∑

n≥0 Φnz
−n−1 (annihilation part).

I the λ-bracket, defined as the Fourier transform of the OPE:

[ΦλΨ](w) = Resz e
λ(z−w)[Φ(z),Ψ(w)]

Exercise 3: check that if we have the OPE

[Φ(z),Ψ(w)] =

N∑
n=0

cn(w)∂nwδ(z − w)

then the corresponding λ-bracket is

[Φ λ Ψ] =

N∑
n=0

λn

n!
cn
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Dong’s Lemma: Let F be a collection of pairwise local
quantum fields.

Let F̃ be obtained by adding all derivatives, all normally
ordered products, and all coefficients of all λ-brackets of
elements in F :

F̃ 3 Φ, ∂Φ, cn, : ΦΨ :

Then, F̄ is again a collection of pairwise local quantum fields.

Hence: we can assume that F is closed with respect to the
derivative ∂z, : · ·: and [· λ ·]; i.e., for Φ,Ψ ∈ F :

∂Φ ∈ F , : ΦΨ : ∈ F , [Φ λ Ψ] ∈ F [λ]

Question: what are the properties of these maps ∂, : · ·: and
[· λ ·]?
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We then get an equivalent definition of a vertex algebra:

Theorem / Definition [Bakalov, Kac, 2001]:
A vertex algebra is a space of states V , with a vacuum vector
|0〉 ∈ V , a translation operator ∂ ∈ EndV , a normally ordered
product : ab : ∈ V , and a λ-bracket [aλb] ∈ V [λ], satisfying the
following axioms:

1. vacuum :a|0〉: = :|0〉a: = a

2. translation covariance ∂(: ab :) = :(∂a)b: + :a(∂b):

(Rem: (V, |0〉, ∂, : :) is a unital differential algebra)

3. sesquilinearity [∂aλb] = −λ[aλb] , [aλ∂b] = (∂ + λ)[aλb]

4. skewsymmetry [aλb] = −[b−λ−∂a]

5. Jacobi identity [aλ[bµc]]− [bµ[aλc]] = [[aλb]λ+µc]

(Def: (V, ∂, [· λ ·]) is a Lie conformal algebra)
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6. quasi-associativity :(:ab:):− :a(:bc:): =

= :
( ∫ ∂

0 dλ a
)
[bλc]: + :

( ∫ ∂
0 dλ b

)
[aλc]:

7. quasi-commutativity :ab:− :ba: =
∫ 0
−∂ dλ [aλb]

8. Wick formula [aλ:bc:] = :[aλb]c: + :b[aλc]: +
∫ λ
0 dµ [[aλb]µc]

To construct examples, we start with a Lie conformal algebra R
and we take its universal enveloping vertex algebra V (R).

Theorem: given a Lie conformal algebra R, there exists a
unique universal enveloping vertex algebra V (R), and we have
the PBW Theorem: a basis for V (R) is given by ordered
monomials {

:ai1ai2 . . . ais :
∣∣ 0 ≤ i1 ≤ · · · ≤ is

}
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Let us review the examples of affine VA and Virasoro VA in the
λ-bracket notation.

Example 1 The affine LCA is Curkg = (C[∂]⊗ g)⊕ C|0〉,
with λ-bracket (a, b ∈ g)

(4) [aλb] = [a, b] + λk(a, b)|0〉

The affine vertex algebra is V k(g) = V (Curkg)

Exercise 4: check that the λ-bracket (4) defines a structure of
a Lie conformal algebra on Curkg.

Example 2 The Virasoro LCA is Rc = (C[∂]L)⊕ C|0〉, with
λ-bracket

(5) [LλL] = (∂ + 2λ)L+
c

12
λ3|0〉

c ∈ C is the central charge.

The Virasoro vertex algebra is V irc = V (Rc)

Exercise 5: check that the λ-bracket (5) defines a structure of
a Lie conformal algebra on Rc.
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4. Classical limit and Poisson vertex algebras

We can apply the classical limit procedure, to get algebraic
structure of classical field theory: this leads to the notion of a
Poisson vertex algebra.

I Assume that the vertex algebra V has an increasing
filtration

0 = F−1V ⊂ F 0V ⊂ F 1V ⊂ · · · ⊂ V

such that

:F iV · F jV : ⊂ F i+jV and [F iVλF
jV ] ⊂ F i+j−1V [λ]

I Then, we take the associated graded

grV =
⊕
n≥0

grn V where grn V = FnV/Fn−1V

All the quantum corrections in the axioms of a vertex algebra
disappear, and what we get is a (graded) Poisson vertex algebra.
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Definition [DS, Kac, 2006]:
A Poisson vertex algebra V is:

I a unital, commutative, associative, differential algebra,

I a Lie conformal algebra with λ-bracket {· λ ·},
and the two structures are related by the following Leibniz rule:

{aλbc} = {aλb}c+ {aλc}b

Exercise 6: Check that grV is a graded Poisson vertex alg.

Conversely, given a graded Poisson vertex algebra V, its
quantization is a filtered vertex algebra V , such that grV = V

Theorem: If R is a Lie conformal algebra, then V(R) = S(R)
has a natural structure of a Poisson vertex algebra. Its
quantization is the universal enveloping vertex algebra V (R).

Exercise 7: Prove the above claim.
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Example 1: the GFZ PVA is V = F[u, u′, u′′, . . . ], with
λ-bracket: [uλu] = λ (extended by sesquil. and Leibniz rules).

Example 2: the affine PVA: V(g) = S(F[∂]g), with λ-bracket

(6) [aλb] = [a, b] + (a|b)λ , a, b ∈ g ,

(extended by sesquil. and Leibniz rules).
Note: it is the classical limit of the affine vertex alg. V k(g).

Example 3: the Virasoro-Magri PVA is V = F[L,L′, L′′, . . . ],
with λ-bracket

(7) [LλL] = (∂ + 2λ)L+
c

12
λ3 ,

(extended by sesquil. and Leibniz rules).
Note: it is the classical limit of the Virasoro vertex alg. V irc.
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5. Poisson vertex algebras and Hamiltonian PDE

Notation: a local functional is
∫
f ∈ V/∂V

Observation: If V is a PVA, then V/∂V is a Lie algebra, with

{
∫
f,
∫
g} =

∫
{fλg}

∣∣
λ=0

Definition: the Hamiltonian equation associated to the PVA
V, and the Hamiltonian functional

∫
h ∈ V/∂V, is

(8)
du

dt
= {hλu}

∣∣
λ=0

An integral of motion for (8) is a local functional
∫
g ∈ V/∂V s.t.

{
∫
h,
∫
g} = 0

(
⇐⇒ {hλg}

∣∣
λ=0
∈ ∂V

)
GOAL: construct an infinite sequence

∫
h0 =

∫
h,
∫
h1,
∫
h2, . . . ,

of lin.indep. integrals of motion in involution:

{
∫
hm,

∫
hn} = 0 ∀m,n ≥ 0

We then have the integrable hierarchy: du
dtn

= {
∫
hn, u}.
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Example: the KdV equation:

∂u

∂t
= 3u

∂u

∂x
+ c

∂3u

∂x3
(c ∈ C)

It is Hamiltonian w.r.t. the GFZ PVA and the Hamiltonian
functional

∫
h = 1

2

∫
(u3 + cuu′′):

∂u

∂t
=
{
hλu

}
|λ=0

Exercise 8: Check this (again!) using λ-bracket computations
(and the axioms of Poisson vertex algebra).
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