Lecture 2: Vertex algebras and Poisson vertex algebras

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ����

1/18

Going from a *finite* to an *infinite* number of degrees of freedom, we pass from:

classical & quantum mechanics

to

Classical Field Theory & Quantum Field Theory Question: what are the corresponding correct algebraic structures?

In conformal field theory, the algebraic structures describing chiral fields are known as vertex algebras (they were introduced by [Borcherds, 1986]).

Their quasi-classical limits are the Poisson vertex algebras (introduced by [DS, Kac, 2006]): they are associated to classical field theory in the same way as Poisson algebras are associated to classical mechanics.

1. Review of Quantum Field Theory

Basic postulates:

- The space of states is a Hilbert space V,
- The vacuum is a state $|0\rangle \in V$.
- The physical observables are operator valued distributions $\Phi(x)$, functions of x in the space-time M, with values in End V, called the quantum fields.

Einstein's relativity principle states that:

No signal can travel at speed higher than the speed of light c = 1. Hence:

If $x, y \in M$ are at space-like distance, $|x - y|^2 < 0$, then measures $\Phi(x)$ and $\Psi(y)$ must be independent.

Heisenberg principle of uncertainty states that: If the observable $\Phi(x)$ and $\Psi(y)$ are independent, then they commute: $[\Phi(x), \Psi(y)] = 0$

(So, they can be simultaneously diagonalized, i.e. they can be measured simultaneously without uncertainty.)

In dimension dim M = 1 + 1: combining the Relativity and the Uncertainty principles, we get locality of chiral fields.

1. We make the chance of variables

 $z = x_0 - x_1, \quad \bar{z} = x_0 + x_1 \quad \Rightarrow \quad |x|^2 = z\bar{z}$

2. By the Relativity and Uncertainty principles, we get:

(1)
$$(z-w)(\bar{z}-\bar{w}) < 0 \Rightarrow [\Phi(z,\bar{z}),\Psi(w,\bar{w})] = 0$$

3. A chiral field is Φ(z) (depending only on z, not on z̄). **4.** Hence, equation (1) for chiral fields becomes:

$$z - w \neq 0 \quad \Rightarrow \quad [\Phi(z), \Psi(w)] = 0$$

This in turn is equivalent to locality:

$$(z-w)^{N}[\Phi(z),\Psi(w)] = 0$$
 for $N >> 0$

Creation and annihilation operators

Usually a quantum (chiral) field $\Phi(z)$ is expanded in its Fourier modes, as a (formal) power series:

$$\Phi(z) = \sum_{n \in \mathbb{Z}} \Phi_n z^n , \quad \Phi_n \in \operatorname{End} V$$

1. Φ_n , n < 0 are annihilation operators $(v \in V)$:

 $\Phi_n |0
angle = 0$, $\forall n < 0$ and $\Phi_n v = 0$, $\forall n << 0$

2. Φ_n , $n \ge 0$ are the creation operators:

$$|\Phi_n|0\rangle = |\Phi_n\rangle \neq 0, \ \forall n \ge 0$$

Equivalently:

- $\Phi(z)|0\rangle \in V[[z]]$ is a Taylor series in z;
- $\Phi(z)v \in V((z))$ (Laurent series in z).

2. Quantum field theory and vertex algebras

The notion of a *vertex algebra* describes the algebraic structure of chiral fields in a quantum field theory in 1 + 1-dimension.

Let: V, the space of states; $|0\rangle \in V$ the vacuum; $T \in \text{End } V$, the translation operator.

Definition: A quantum field is a series $\Phi(z) = \sum_{n \in \mathbb{Z}} \Phi_n z^n$ \in End $V[[z, z^{-1}]]$ such that, for all $v \in V$,

 $\Phi(z)v \in V((z))$ or, equivalently, $\Phi_n(v) = 0$ for $n \ll 0$

<u>Definition</u>: A (pre)vertex algebra $(V, |0\rangle, T, \mathcal{F})$ is a (complete) collection of quantum fields $\mathcal{F} = \{\Phi^{\alpha}(z)\}_{\alpha \in J}$ satisfying:

- 1. vacuum axiom: $\Phi^{\alpha}(z)|0\rangle \in V[[z]]$ for all α ;
- 2. translation covariance: $[T, \Phi^{\alpha}(z)] = \partial_z \Phi^{\alpha}(z);$
- 3. locality: $(z-w)^N[\Phi^{\alpha}(z),\Phi^{\beta}(w)] = 0$ for N >> 0

Example1: affine vertex algebra

Let: \mathfrak{g} a simple Lie algebra; (\cdot, \cdot) the Killing form. The affine Kac-Moody algebra is $\hat{\mathfrak{g}} = \mathfrak{g}[t^{\pm 1}] \oplus \mathbb{C}K$ with bracket

$$[at^m, bt^n] = [a, b]t^{m+n} + m\delta_{m, -n}(a|b)K$$

The vacuum module of level k is $V^k(\mathfrak{g}) = \operatorname{Ind}_{\mathfrak{g}[t] \oplus \mathbb{C}K} \mathbb{C}_k$ (where $\mathfrak{g}[t] = 0$ and K = k on $\mathbb{C}_k = \mathbb{C}$).

The affine vertex algebra structure on $V^k(\mathfrak{g})$ is given by $|0\rangle = 1$, $T = -\partial_t$ and the collection of fields $\mathcal{F} = \{a(z)\}_{a \in \mathfrak{g}}$, where

$$a(z) = \sum_{n \in \mathbb{Z}} (at^n) z^{-n-1}$$

Locality is guaranteed by the Operator Product Expansion:

(2) $[a(z), b(w)] = [a, b](w)\delta(z - w) + (a|b)K\partial_w\delta(z - w)$

where $\delta(z - w) = \sum_{n \in \mathbb{Z}} z^n w^{-n-1}$. **Exercise 1**: Check the OPE (2) for the affine vertex algebra $V^k(\mathfrak{g})$. Deduce that the fields $\{a(z)\}_{a \in \mathfrak{g}}$ are pairwise local.

Example 2: Virasoro

The Virasoro Lie algebra is $Vir = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}L_n \oplus \mathbb{C}C$, with

$$[L_m, L_n] = L_{m+n} + c \frac{m^3 - m}{12} \delta_{m, -n} C$$

The vacuum module of central charge c is $Vir^c = \operatorname{Ind}_{Vir_+} \mathbb{C}_c$ (where $L_n = 0$ for $n \ge -1$ and C = c on $\mathbb{C}_c = \mathbb{C}$).

The Virasoro vertex algebra on Vir^c is given by $|0\rangle = 1$, $T = L_0$ and $\mathcal{F} = \{L(z)\}$, where

$$L(z) = \sum_{n} L_n z^{-n-2}$$

Locality is guaranteed by the Operator Product Expansion:

(3)
$$[L(z), L(w)] = (L'(w) + 2L(w)\partial_w + \frac{1}{2}c\partial_w^3)\delta(z-w)$$

Exercise 2: Check the OPE (3) for the Virasoro vertex algebra Vir^c . Deduce that the field L(z) is local with itself.

8/18

3. λ -bracket definition of a vertex algebra

The whole *algebraic structure* of a vertex algebra is encoded in three operations on local quantum fields:

- the derivative $\partial_z \Phi(z)$
- ▶ the normally ordered product

 $:\Phi\Psi:(z) \quad = \quad \Phi_+(z)\Psi(z)+\Psi(z)\Phi_-(z)$

where $\Phi_+(z) = \sum_{n < 0} \Phi_n z^{-n-1}$ (creation part) and $\Phi_-(z) = \sum_{n \ge 0} \Phi_n z^{-n-1}$ (annihilation part).

► the λ -bracket, defined as the Fourier transform of the OPE: $[\Phi_{\lambda}\Psi](w) = \operatorname{Res}_{z} e^{\lambda(z-w)}[\Phi(z), \Psi(w)]$

Exercise 3: check that if we have the OPE $[\Phi(z), \Psi(w)] = \sum_{n=0}^{N} c_n(w) \partial_w^n \delta(z-w)$

then the corresponding λ -bracket is

$$[\Phi_{\lambda} \Psi] = \sum_{n=0}^{N} \frac{\lambda^{n}}{n!} c_{n} + c_{n} +$$

Dong's Lemma: Let \mathcal{F} be a collection of pairwise local quantum fields.

Let $\widetilde{\mathcal{F}}$ be obtained by adding all derivatives, all normally ordered products, and all coefficients of all λ -brackets of elements in \mathcal{F} :

 $\widetilde{\mathcal{F}} \ni \Phi, \partial \Phi, c_n, : \Phi \Psi :$

Then, $\overline{\mathcal{F}}$ is again a collection of pairwise local quantum fields.

Hence: we can assume that \mathcal{F} is closed with respect to the derivative ∂_z , : \cdot : and $[\cdot_{\lambda} \cdot]$; i.e., for $\Phi, \Psi \in \mathcal{F}$:

 $\partial \Phi \in \mathcal{F}, \quad : \Phi \Psi : \in \mathcal{F}, \quad [\Phi_{\lambda} \Psi] \in \mathcal{F}[\lambda]$

Question: what are the properties of these maps ∂ , : \cdot : and $[\cdot_{\lambda} \cdot]$?

We then get an equivalent definition of a vertex algebra:

Theorem / Definition [Bakalov, Kac, 2001]:

A vertex algebra is a space of states V, with a vacuum vector $|0\rangle \in V$, a translation operator $\partial \in \text{End } V$, a normally ordered product : $ab : \in V$, and a λ -bracket $[a_{\lambda}b] \in V[\lambda]$, satisfying the following axioms:

- 1. vacuum $:a|0\rangle: = :|0\rangle a: = a$
- 2. translation covariance $\partial(:ab:) = :(\partial a)b: + :a(\partial b):$

(**<u>Rem</u>**: $(V, |0\rangle, \partial, : :)$ is a unital differential algebra)

- 3. sesquilinearity $[\partial a_{\lambda}b] = -\lambda[a_{\lambda}b]$, $[a_{\lambda}\partial b] = (\partial + \lambda)[a_{\lambda}b]$
- 4. skewsymmetry $[a_{\lambda}b] = -[b_{-\lambda-\partial}a]$
- 5. Jacobi identity $[a_{\lambda}[b_{\mu}c]] [b_{\mu}[a_{\lambda}c]] = [[a_{\lambda}b]_{\lambda+\mu}c]$

 $(\underline{\mathbf{Def}}: (V, \partial, [\cdot_{\lambda} \cdot])$ is a Lie conformal algebra)

- 6. quasi-associativity :(:ab:): :a(:bc:): = = : $(\int_0^\partial d\lambda a)[b_\lambda c]$: + : $(\int_0^\partial d\lambda b)[a_\lambda c]$:
- 7. quasi-commutativity :ab: -:ba: = $\int_{-\partial}^{0} d\lambda [a_{\lambda}b]$
- 8. Wick formula $[a_{\lambda}:bc:] = :[a_{\lambda}b]c: + :b[a_{\lambda}c]: + \int_0^{\lambda} d\mu [[a_{\lambda}b]_{\mu}c]$

To construct examples, we start with a Lie conformal algebra Rand we take its *universal enveloping vertex algebra* V(R).

Theorem: given a Lie conformal algebra R, there exists a unique universal enveloping vertex algebra V(R), and we have the PBW Theorem: a basis for V(R) is given by ordered monomials

$$\left\{:a_{i_1}a_{i_2}\ldots a_{i_s}: \mid 0 \le i_1 \le \cdots \le i_s\right\}$$

Let us review the examples of affine VA and Virasoro VA in the λ -bracket notation.

Example 1 The affine LCA is $\operatorname{Cur}_k \mathfrak{g} = (\mathbb{C}[\partial] \otimes \mathfrak{g}) \oplus \mathbb{C}|0\rangle$, with λ -bracket $(a, b \in \mathfrak{g})$

(4)
$$[a_{\lambda}b] = [a,b] + \lambda k(a,b)|0\rangle$$

The affine vertex algebra is $V^k(\mathfrak{g}) = V(\operatorname{Cur}_k \mathfrak{g})$

Exercise 4: check that the λ -bracket (4) defines a structure of a Lie conformal algebra on $\operatorname{Cur}_k \mathfrak{g}$.

Example 2 The Virasoro LCA is $R_c = (\mathbb{C}[\partial]L) \oplus \mathbb{C}|0\rangle$, with λ -bracket

(5)
$$[L_{\lambda}L] = (\partial + 2\lambda)L + \frac{c}{12}\lambda^3|0\rangle$$

 $c \in \mathbb{C}$ is the central charge.

The Virasoro vertex algebra is $Vir^c = V(R_c)$

Exercise 5: check that the λ -bracket (5) defines a structure of a Lie conformal algebra on R_c .

4. Classical limit and Poisson vertex algebras

We can apply the *classical limit* procedure, to get algebraic structure of *classical field theory*: this leads to the notion of a *Poisson vertex algebra*.

 \blacktriangleright Assume that the vertex algebra V has an increasing filtration

 $0 = F^{-1}V \subset F^0V \subset F^1V \subset \cdots \subset V$

such that

 $:F^iV \cdot F^jV: \subset F^{i+j}V \text{ and } [F^iV_{\lambda}F^jV] \subset F^{i+j-1}V[\lambda]$

▶ Then, we take the associated graded

$$\operatorname{gr} V = \bigoplus_{n \ge 0} \operatorname{gr}^n V$$
 where $\operatorname{gr}^n V = F^n V / F^{n-1} V$

All the quantum corrections in the axioms of a vertex algebra disappear, and what we get is a (graded) Poisson vertex algebra.

Definition [DS, Kac, 2006]:

A Poisson vertex algebra \mathcal{V} is:

- \blacktriangleright a unital, commutative, associative, differential algebra,
- a Lie conformal algebra with λ -bracket $\{\cdot_{\lambda} \cdot\}$,

and the two structures are related by the following Leibniz rule:

$$\{a_{\lambda}bc\} = \{a_{\lambda}b\}c + \{a_{\lambda}c\}b$$

Exercise 6: Check that $\operatorname{gr} V$ is a graded Poisson vertex alg.

Conversely, given a graded Poisson vertex algebra \mathcal{V} , its quantization is a filtered vertex algebra V, such that $\operatorname{gr} V = \mathcal{V}$

<u>**Theorem</u></u>: If R is a Lie conformal algebra, then \mathcal{V}(R) = S(R) has a natural structure of a Poisson vertex algebra. Its quantization is the universal enveloping vertex algebra V(R).</u>**

Exercise 7: Prove the above claim.

Example 1: the GFZ PVA is $\mathcal{V} = \mathbb{F}[u, u', u'', \dots]$, with $\overline{\lambda}$ -bracket: $[u_{\lambda}u] = \lambda$ (extended by sesquil. and Leibniz rules). **Example 2**: the affine PVA: $\mathcal{V}(\mathfrak{g}) = S(\mathbb{F}[\partial]\mathfrak{g})$, with λ -bracket

(6)
$$[a_{\lambda}b] = [a,b] + (a|b)\lambda, \ a,b \in \mathfrak{g},$$

(extended by sesquil. and Leibniz rules). **Note:** it is the *classical limit* of the affine vertex alg. $V^k(\mathfrak{g})$.

Example 3: the Virasoro-Magri PVA is $\mathcal{V} = \mathbb{F}[L, L', L'', \dots]$, with λ -bracket

(7)
$$[L_{\lambda}L] = (\partial + 2\lambda)L + \frac{c}{12}\lambda^3,$$

(extended by sesquil. and Leibniz rules). **Note:** it is the *classical limit* of the Virasoro vertex alg. Vir^c .

5. Poisson vertex algebras and Hamiltonian PDE

Notation: a local functional is $\int f \in \mathcal{V}/\partial \mathcal{V}$

Observation: If \mathcal{V} is a PVA, then $\mathcal{V}/\partial \mathcal{V}$ is a Lie algebra, with $\{\int f, \int g\} = \int \{f_{\lambda}g\}|_{\lambda=0}$

Definition: the Hamiltonian equation associated to the PVA \mathcal{V} , and the Hamiltonian functional $\int h \in \mathcal{V}/\partial \mathcal{V}$, is

(8)
$$\frac{du}{dt} = \{h_{\lambda}u\}\big|_{\lambda=0}$$

An integral of motion for (8) is a local functional $\int g \in \mathcal{V}/\partial \mathcal{V}$ s.t. $\{\int h, \int g\} = 0 \ \left(\iff \{h_{\lambda}g\}|_{\lambda=0} \in \partial \mathcal{V} \right)$

GOAL: construct an infinite sequence $\int h_0 = \int h, \int h_1, \int h_2, \ldots$, of lin.indep. integrals of motion in involution:

$$\{\int h_m, \int h_n\} = 0 \ \forall m, n \ge 0$$

We then have the integrable hierarchy: $\frac{du}{dt_{n_k}} = \{ \int_{\square} h_n, u \}$.

Example: the KdV equation:

$$\frac{\partial u}{\partial t} = 3u\frac{\partial u}{\partial x} + c\frac{\partial^3 u}{\partial x^3} \quad (c \in \mathbb{C})$$

It is Hamiltonian w.r.t. the GFZ PVA and the Hamiltonian functional $\int h = \frac{1}{2} \int (u^3 + cuu'')$:

$$\frac{\partial u}{\partial t} = \left\{ h_{\lambda} u \right\}|_{\lambda = 0}$$

<u>Exercise</u> 8: Check this (again!) using λ -bracket computations (and the axioms of Poisson vertex algebra).