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Lecture 1: Review of classical and quantum
Hamiltonian mechanics
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General Motivation: we will be mainly concerned with the
role and applications of the concept of symmetry in mechanics,
from a purely algebraic point of view.

Recall that:

I classical mechanics deals with the dynamics of particles,
rigid bodies, etc,

I classical field theory deals with the dynamics of
continuous media (fluids, plasma), and fields such as the
electromagnetic field, gravity, etc. It can be viewed as an
infinite dimensional analogue of the classical mechanics.

We shall deal with the Hamiltonian formulation of both
theories.
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1. Standard Hamiltonian equations.

In classical mechanics, the state of a physical system is a
point (q, p) in a 2n-dimensional space of states M
(q = (q1, . . . , qn) = positions, p = (p1, . . . , pn) = momenta).

The dynamics (=time evolution) of the physical system is
described in terms of the Hamiltonian function H(q, p)
(=energy of the system). The time evolution (q(t), p(t)), t > 0,
is solution of the Hamilton equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

Example: Newton’s law of dynamics F = ma defines a
Hamilton evolution, where F = −∇U is the force field
associated to an energy potential U(q), and the Hamiltonian

H = Ek + U is the sum of the kinetic energy Ek = |p|2
2m and the

potential energy U(q)
4 / 29



The space of physical observables is the space C∞(M) of all
smooth functions of the space of states M .
For example: the coordinates qi and pi, the energy H(q, p), are
physical observables.
C∞(M) is a commutative associative algebra (with respect to
the usual product of functions). It has the Poisson bracket

{f, g} =

n∑
i=1

( ∂f
∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
.

The Hamiltonian equations can then be rewritten in terms of
the Poisson bracket:

dqi
dt

= {H, qi} ,
dpi
dt

= {H, pi}

By the chain rule of derivation, for f ∈ C∞(M):

df

dt
= {H, f}
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2. Hamiltonian evolution on a Poisson manifold

The formulation of Hamilton equations in terms of the Poisson
bracket allows us generalize the theory.

The space of states of a classical mechanical system is a Poisson
manifold: a smooth manifold M (NOT nec. even dim.) with a
Poisson bracket {· , ·} on C∞(M), satisfying skewsymmetry

{f, g} = −{g, f}
the Jacobi identity

{f, {g, h}} − {g, {f, h}} = {{f, g}, h}
and the Leibniz rule

{f, gh} = {f, g}h+ g{f, h}
(Equivalently: C∞(M) is a Poisson algebra.)

Exercise 0: the standard Poisson bracket satisfies these axioms

The Hamilton equations associated to the Hamiltonian H are:

df

dt
= {H, f} 6 / 29



Example: The dynamics of of a rigid body about its center of
mass in absence of external forces is:
(1)

Π̇1 =
I2 − I3

I2I3
Π2Π3 , Π̇2 =

I3 − I1

I3I1
Π3Π1 , Π̇3 =

I1 − I2

I1I2
Π1Π2

Πi = IiΩi, i = 1, 2, 3, =angular momenta (Ωi = angolar
velocities, Ii = moments of inerzia).
It has the Hamiltonian form with Poisson bracket

(2) {f, g}(Π) = Π · (∇f ×∇g)

and Hamiltonian function

(3) H(Π) =
1

2

(Π2
1

I1
+

Π2
2

I2
+

Π2
3

I3

)
Exercise 1: Check that (2) is a Poisson bracket, and that (1)
are the Hamiltonian equations for H in (3).
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Example: The Kirillov-Kostant Poisson structure on g∗

A generalization of the rigid body Poisson bracket is the
Kirillov-Kostant bracket associated to a Lie algebra g.

The underlying Poisson manifold is g∗. The Poisson bracket on
C∞(g∗) is

(4) {f, g}(ζ) = 〈ζ|[dζf, dζg]〉

where 〈· | ·〉 is the pairing of g∗ and g, and the differential
dζf ∈ g is defined by (ζ, ξ ∈ g∗):

lim
ε→0

1

ε
(f(ζ + εξ)− f(ζ)) = 〈ξ|dζf〉

Exercise 2: Check that the Kirilov-Kostant Poisson bracket
(4) satisfies skewsymmetry, Jacobi identity and the Leibniz rule.
Exercise 3: Check that the Poisson bracket of the rigid body
is a special case of the Kirillov-Kostant Poisson bracket when
g = so3(R)
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Remark: From a purely algebraic point of view, we can replace
smooth functions C∞(g∗) by polynomial functions C[g∗] ' S(g).
This identification maps

P =
∑

coeff.a1 . . . as ∈ S(g)

to the polynomial function

P (ζ) =
∑

coeff.〈ζ|a1〉 . . . 〈ζ|as〉 , ζ ∈ g∗

Exercise 4: Under this identification, the Kirillov-Kostant
Poisson bracket (4) corresponds to the canonical Poisson
bracket of the symmetric algebra S(g), obtained by extending
the Lie algebra bracket of g to S(g) by the Leibniz rules.
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3. Hamiltonian equations in classical field theory

Classical field theory describes the evolution of continuous
media, such as fluids, strings, electromagnetic field, etc.

The state of the system is described by a field ϕ(x), i.e. a
function on x ∈ S (=the space or space-time).

Hence, the space of states M = Fun(S) is ∞-dimensional.

Assumptions:

I For simplicity, we assume that S is one-dimensional.

I ϕ(x) is smooth and rapidly decreasing; hence all integrals
are defined, and we can perform integration by parts.

The physical observables are local functionals, F : M→ R:

F (ϕ) =

∫
S
f(ϕ(x), ϕ′(x), . . . , ϕ(n)(x))dx

where the density function f depends on ϕ(x), . . . , ϕ(n)(x) only.
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To give a Hamiltonian formulation of classical field theory, we
assume that the space of states M is a Poisson manifold.

This means that we have a local Poisson bracket {· , ·} on the
space F(M) of local functionals (=physical observables).

It is a Lie algebra bracket on F(M) of the form

{F,G}(ϕ) =

∫
S

δG

δϕ(x)
K(ϕ(x), ϕ′(x), . . . , ϕ(n)(x); ∂x)

δF

δϕ(x)

The Poisson structure K(ϕ(x), ϕ′(x), . . . , ϕ(n)(x); d
dx) is a finite

order differential operator. (∂x = total derivative w.r.t. x).
The variational derivative δF

δϕ(x) is defined by

lim
ε→0

1

ε
(F (ϕ+ εψ)− F (ϕ)) =

∫
S

δF

δϕ(x)
ψ(x)dx

for every test function ψ(x) ∈M.
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Exercise 5: Explicit formula for the variational derivative:

δF

δϕ(x)
=
∑
n∈Z+

(−∂x)n
( ∂f

∂ϕ(n)(x)

)

Example: The Gardner-Faddeev-Zakharov (GFZ) local
Poisson-bracket is given by

(5) {F,G}(ϕ) =

∫
S

δG

δϕ(x)
∂x

δF

δϕ(x)

i.e., it has Poisson structure K = ∂x.
Exercise 6: Check that the GFZ local Poisson bracket (5) is a
Lie algebra bracket on F(M).
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The dynamics (=time evolution) of the physical system is
described in terms of the Hamiltonian functional H(ϕ) ∈ F(M),
describing the energy of the system in the state ϕ(x).

It is given by the Hamiltonian equations

dF

dt
= {H,F}

where F (ϕ) is a local functional of ϕ(x).

We can also write an equation for the evolution of the
coordinate variable ϕ(x, t). By the definition of variational
derivative, we have

dF

dt
=

∫
S

δF

δϕ(x)

d

dt
ϕ(x, t) ,

Combining this with the form of the local Poisson bracket, we
get

d

dt
ϕ(x, t) = K(ϕ(x), ϕ′(x), . . . , ϕ(n)(x); ∂x)

δH

δϕ(x)
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Example: The famous Korteveg-de Vries (KdV, 1985) equation

(6)
∂ϕ

∂t
= 3ϕ(x, t)

∂ϕ

∂x
+ c

∂3ϕ

∂x3

describes the evolution of waves in shallow water.

It is the Hamiltonian equation associated to the GFZ Poisson
bracket on M and the Hamiltonian functional

H(ϕ) =

∫
S

(1

2
ϕ(x)3 − c

2
ϕ′(x)2

)
dx

Exercise 7: Check the above statement.
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4. Quantum mechanics

In quantum mechanics the space of states of a system is a
Hilbert space, i.e. a complex vector space V with a positive
definite hermitian inner product 〈· | ·〉.

A state is a normalized vector |v〉 ∈ V , such that 〈v|v〉 = 1.

The physical observables are operators A ∈ End(V ), which are
selfadjoint: A = A†.

The physical meaning is as follows: if the state of the system is
an eigenvector |v〉 ∈ V of A of eigenvalue λ ∈ R, then the result
of the measurement of the observable A is λ.
By the Spectral Theorem, any state |v〉 is linear combination of
orthonormal eigenvectors with real eigenvalues: |v〉 =

∑
i ci|vi〉,

with A|vi〉 = λi|vi〉. Then, the result of a measurement of the
observable A is λi with probability |ci|2.
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The Hamiltonian operator H describes the energy of the system
and defines its dynamics.

There are two alternative ways to introduce the dynamics:

I In the Schroedinger picture, the observables do not evolve,
while the states evolves by the Schroedinger equation

(7)
d

dt
|ψt〉 = H|ψt〉

I In the Heisenberg picture, the the state does not evolve,
while the observables evolve by to the Heisenberg equation:

(8)
d

dt
A(t) = [H,A(t)]

where [H,A] = HA−AH is the commutator.

Note: This is the “quantum version” of the Hamiltonian
equation of classical mechanics.

Exercise 8: Show that the Schroedinger equation (7) and the
Heisenberg equation (8) are equivalent in the following sense:
the evolution of the matrix elements 〈ϕ|A|ψ〉 is the same.
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5. Algebraic structures of classical
and quantum mechanics

From a purely algebraic point of view, when considering a
classical mechanic physical system, we ignore completely the
underlying configuration space M , and we just retain the
algebraic structure of the space of functions C∞(M).

What we end up with, is the structure of a Poisson algebra for
classical mechanics, and the structure of an associative algebra
for quantum mechanics.
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A) In classical mechanics P= C∞(M) is a Poisson algebra, i.e.
a commutative associative algebra, with a Lie algebra bracket
{· , ·} satisfying the Leibniz rule:

{f, gh} = {f, g}h+ g{f, h}

The Hamiltonian equations df
dt = {H, f}, f,H ∈ P , are entirely

written in terms of the Poisson algebra structure.

Example: Given a Lie algebra g, we have the Poisson algebra
S(g) with the canonical Poisson bracket, obtained by extending
the Lie algebra bracket of g to S(g) by the Leibniz rule.

B) In quantum mechanics, the physical observables are (non
commuting) objects in A= EndV , which is an associative
algebra.

The Hamiltonian equations here become da
dt = [H, a], a,H ∈ A,

and they are written in terms of the commutator of A.
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The procedure of passing from a quantum mechanics to
classical mechanics is known as classical limit.

It can be described in purely algebraic terms as follows:

I We assume that the associative algebra A (associated to
the quantum system) has an increasing filtration

0 = F−1A ⊂ F 0A ⊂ F 1A ⊂ · · · ⊂ A

such that

F iA · F jA ⊂ F i+jA and [F iA,F jA] ⊂ F i+j−1

I Then, the associated graded algebra

grA =
⊕
n≥0

grnA where grnA = FnA/Fn−1A

is naturally a graded Poisson algebra:
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for ā = a+ F i−1A ∈ griA and b̄ = b+ F j−1A ∈ grj A, their
commutative associative product is

āb̄ = ab+ F i+j−1A ∈ gri+j A

and their Poisson bracket is

{ā, b̄} = ab− ba+ F i+j−2A ∈ gri+j−1A

The Poisson algebra grA is graded in the sense that

griA · grj A ⊂ gri+j A and {griA, grj A} ⊂ gri+j−1A

Exercise 9: Check that grA is indeed a graded Poisson
algebra.
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Conversely, given a graded Poisson algebra P , describing a
classical mechanic system, its quantization is, by definition, a
filtered associative algebra A, describing a quantum system,
such that

grA = P

Note: while the procedure of classical limit is uniquely defined,
the quantization is not.

Example: A quantization of the symmetric algebra S(g) is the
universal enveloping algebra U(g) with the usual polynomial
filtration. Indeed, by the PBW Theorem, grU(g) ' S(g).

Question: What are the algebraic structures of classical and
quantum field theory? We will see it in Lecture 2.
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6. Moment map and Hamiltonian reduction

The concept of momentum map is a geometric generalization
of the usual linear and angular momentum.

Example 1: linear momentum.
The space of states of a point particle is M = R6 = {(q, p)}. On
this, we have the action of the translation group G = R3,

G×M →M mapping a ∈ G, (q, p) ∈M 7→ (q + a, p)

The Lie algebra is g = R3, with infin. action on C∞(M):

a ∈ g, f(q, p) ∈ C∞(M) 7→ d

dε
f(q − εa, p)|ε=0 = −∇qf(q, p) · a

The RHS of the above action can be written as

∇qf(q, p) · a = {µ(q, p; a), f(q, p)} where µ(q, p; a) = p · a
We thus say that the action of the translation group on M is
associated to the momentum map µ : M → g∗, given by

µ(q, p) = 〈p| ·〉
which associates to the state (q, p) its linear momentum p. 22 / 29



Example 2: angolar momentum.
On M = R6 acts also the rotation group G = SO3(R),

G×M →M mapping g ∈ G, (q, p) ∈M 7→ (gq, gp)

The Lie algebra is g = so3(R) ' R3, where we identify

A =

 0 −c b
c 0 −a
−b a 0

 ∈ so3(R) 7→ a =

 a
b
c

 ∈ R3

Its infininitesimal action maps A ∈ g, f(q, p) ∈ C∞(M) to

d

dε
f(e−εAq, e−εAp)|ε=0 = −∇qf(q, p) ·Aq −∇pf(q, p) ·Ap

= −{µ(q, p; a), f(q, p)} where µ(q, p; a) = a · (q × p)

Exercise 10: Check the above equation.

Hence, the action of the rotation group on M is associated to
the momentum map µ : M → g∗, given by

µ(q, p) = 〈q × p| ·〉

which associates to the state (q, p) its angular momentum q× p.
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We generalize the above two examples to get the definition of
the momentum map µ.

Definition A Hamiltonian action of a Lie group G on a Poisson
manifold M,

G×M →M

has a momentum map µ : M → g∗ such that the corresponding
infinitesimal action

g× C∞(M)→ C∞(M)

is given by

(a · f)(x) :=
d

dε
f(e−εax)|ε=0= {〈µ(x), a〉, f(x)}
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FACT: if G is a group of symmetries for the physical system,
i.e. the system in invariant by the action of G, then the
momentum µ(x) is constant, i.e. it does not vary in time.

This is the content of the famous:

Noether’s Theorem: Suppose that the Hamiltonian
H(x) ∈ C∞(M) is invariant by the Hamiltonian action of the
Lie group G:

H(gx) = H(x) for all g ∈ G
Then the value of the momentum map µ is constant of motion:

µ(xt) = µ(x0) for all times t

Proof: For a ∈ g, we have

d

dt
〈µ(xt), a〉 = {H, 〈µ(xt), a〉}

= −{〈µ(xt), a〉, H} = − d

dε
H(e−εax)|ε=0 = 0

.
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This is used to reduce the # of degrees of freedom of the system.

This process is known as Hamiltonian reduction:

I take a point ξ ∈ g∗ fixed by G: Ad∗ g(ξ) = ξ ∀g ∈ G;

I take the preimage via the moment map µ−1(ξ) ⊂M ;

I and take the space of G-orbits: µ−1(ξ)/G.

We thus get the Hamiltonian reduction of M :

M = Ham.red.(M, ξ,G) = µ−1(ξ)/G

FACT: This is again a Poisson manifold, with Poisson bracket
induced by that of M .

We have the induced Hamiltonian function H on M , defining
the reduced physical system
(# degrees of freedom: dimM = dimM − 2 dimG).

After solving the reduced system on M , it is possible to
reconstruct the original system on M .
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Can describe Hamiltonian reduction in purely algebraic terms:

Geometry Algebra

I Poisson manifold I Poisson algebra
M P = C∞(M)

I moment map I Lie algebra homom.

Exercise 11: Check that, if µ : M → g∗ is a momentum map,
then µ∗ : g→ C∞(M) is a Lie algebra homomorphism.

µ : M → g∗ µ∗ : g→ C∞(M)
or: Poisson algebra homom.
µ∗ : S(g)→ P

I fiber of a point I algebra C∞(µ−1(ξ)) '
µ−1(ξ) ⊂M quotient P/I, where

I =
{
f vanish. on µ−1(ξ)

}
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Exercise 12: Check that

I =
{

funct’s f ∈ C∞(M) vanishing on µ−1(ξ)
}

= Pµ∗{a− 〈ξ, a〉 | a ∈ g} ⊂ P

Check also that, if ξ ∈ g∗ is ad∗ g-invariant, then{
a− 〈ξ, a〉 | a ∈ g

}
⊂ S(g) is invariant by the adjoint action of g.

I space of G-orbits I subalgebra of functions f
µ−1(ξ)/G which are const’s on G-orbits

i.e.: (P/I)adµ∗(g)

Exercise 13: f is constant on the G-orbits if and only if

(adµ∗(a))(f) := {µ∗(a), f} = 0 for all a ∈ g
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In conclusion, we arrive at the following algebraic construction:

I P : a Poisson algebra;

I g: a Lie algebra;

I µ∗ : g→ S(g): a Poisson algebra homomorphism;

I J ⊂ S(g): a subset invariant by the adjoint action of g;

I take the corresponding algebra ideal (NOT PA ideal)
I = Pµ∗(J) ⊂ P .

The corresponding Hamiltonian reduction is:

Ham.red.(P, J, g) = (P/I)adµ∗(g)

=
{
f ∈ P

∣∣ {µ∗(a), f} ∈ I for all a ∈ g
}
/I

Exercise 14:
{
f ∈ P

∣∣ {µ∗(a), f} ∈ I for all a ∈ g
}

is a Poisson
subalgebra of P and I is its ideal. Hence, Ham.red.(P, J, g) is a
Poisson algebra.
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