Monodromy of projective hypersurfaces

Maria Gioia Cifani j.w.w. A.Cuzzucoli and R.Moschetti

Università degli Studi di Pavia

Dobbiaco, 20 February 2019

We will work over \mathbb{C} .

Let $f : X \to Y$ a finite morphism between irreducible varieties of the same dimension; to f we can associate the Galois group

G = Gal(K/K(Y))

where K is the Galois closure of the extension field K(X)/K(Y) and K(Y) is the field of rational functions on Y.

We can also define the same group in another way.

We will work over \mathbb{C} .

Let $f : X \to Y$ a finite morphism between irreducible varieties of the same dimension; to f we can associate the Galois group

G = Gal(K/K(Y))

where K is the Galois closure of the extension field K(X)/K(Y) and K(Y) is the field of rational functions on Y.

We can also define the same group in another way.

In particular our maps will be the followings:

let X be a irreducible, reduced, projective hypersurface of dimension n and degree d.

Take $p \notin X$ a point and let π_p be the restriction to X of the linear projection from p:

$$\pi_p: X \subset \mathbb{P}^{n+1} \to \mathbb{P}^n$$

that is a finite map of degree d.

Over the open $U=\mathbb{P}^n\setminus B$, where B is the branch of π_p , the map is unramified.

In particular our maps will be the followings:

let X be a irreducible, reduced, projective hypersurface of dimension n and degree d.

Take $p \notin X$ a point and let π_p be the restriction to X of the linear projection from p:

$$\pi_p: X \subset \mathbb{P}^{n+1} \to \mathbb{P}^n$$

that is a finite map of degree d. Over the open $U = \mathbb{P}^n \setminus B$, where B is the branch of π_p , the map is unramified. In the preimage of a general point $y \in U$ there are d distinct points $\Gamma := \{q_1, \ldots, q_d\}$ corresponding to the intersection of the line $\langle p, y \rangle$ with X.

We can associate permutations of the general fiber Γ to loops in U centered in y: e.g. if we fix $\tilde{\gamma}(0) \in \Gamma$ where $\tilde{\gamma}$ is the lift of a loop γ centered in y, we can define a permutation inside Γ sending

 $ilde{\gamma}(\mathsf{0})\mapsto ilde{\gamma}(\mathsf{1})\in\mathsf{F}$

Hence we can define a map

$$\mu:\pi_1(U,y)\to S_d$$

Definition

The monodromy group of $\pi_{
ho}$ is $M(\pi_{
ho}):=\mu(\pi_1(U))\leq S_d.$

Proposition

The monodromy group $M(\pi_p)$ is isomorphic to the Galois group G .

Hence we can define a map

$$\mu:\pi_1(U,y)\to S_d$$

Definition

The monodromy group of π_p is $M(\pi_p) := \mu(\pi_1(U)) \leq S_d$.

Proposition

The monodromy group $M(\pi_p)$ is isomorphic to the Galois group G.

Hence we can define a map

$$\mu:\pi_1(U,y)\to S_d$$

Definition

The monodromy group of
$$\pi_{
ho}$$
 is $M(\pi_{
ho}):=\mu(\pi_1(U))\leq S_d$.

Proposition

The monodromy group $M(\pi_p)$ is isomorphic to the Galois group G.

• $M(\pi_p)$ is a transitive subgroup of S_d

 A map π_p is said decomposable if it admits a non trivial factorization, i.e.

$$X \stackrel{lpha}{\to} X' \stackrel{eta}{\to} \mathbb{P}^n$$

with deg(lpha),deg(eta)>1.

If $M(\pi_p) = S_d$ then π_p is indecomposable. Being indecomposable is equivalent to say that $M(\pi_p)$ is primitive, i.e it does not preserve non trivial blocks.

• Conversely, if π_p is indecomposable and $M(\pi_p)$ containes a trasposition, then it is the whole S_d .

- $M(\pi_p)$ is a transitive subgroup of S_d
- A map π_p is said *decomposable* if it admits a non trivial factorization, i.e.

$$X \stackrel{\alpha}{\to} X' \stackrel{\beta}{\to} \mathbb{P}^n$$

with $deg(\alpha), deg(\beta) > 1$. If $M(\pi_p) = S_d$ then π_p is indecomposable. Being indecomposable is equivalent to say that $M(\pi_p)$ is primitive, i.e. it does not preserve non trivial blocks.

• Conversely, if π_p is indecomposable and $M(\pi_p)$ containes a trasposition, then it is the whole S_d .

- $M(\pi_p)$ is a transitive subgroup of S_d
- A map π_p is said *decomposable* if it admits a non trivial factorization, i.e.

$$X \stackrel{lpha}{
ightarrow} X' \stackrel{eta}{
ightarrow} \mathbb{P}^n$$

with $deg(\alpha), deg(\beta) > 1$. If $M(\pi_p) = S_d$ then π_p is indecomposable. Being indecomposable is equivalent to say that $M(\pi_p)$ is primitive, i.e. it does not preserve non trivial blocks.

• Conversely, if π_p is indecomposable and $M(\pi_p)$ containes a trasposition, then it is the whole S_d .

Definition

We will say that a point $p \notin X$ is uniform if $M(\pi_p) = S_d$; non uniform otherwise.

We are interested in computing the dimension of the locus inside \mathbb{P}^{n+1} of the non-uniform points. Indeed:

Proposition

If p is general then it is uniform.

Definition

We will say that a point $p \notin X$ is uniform if $M(\pi_p) = S_d$; non uniform otherwise.

We are interested in computing the dimension of the locus inside \mathbb{P}^{n+1} of the non uniform points. Indeed:

Proposition

If p is general then it is uniform.

Definition

We will say that a point $p \notin X$ is uniform if $M(\pi_p) = S_d$; non uniform otherwise.

We are interested in computing the dimension of the locus inside \mathbb{P}^{n+1} of the non uniform points. Indeed:

Proposition

If p is general then it is uniform.

Theorem (CCM)

Let X be a irreducible, reduced, smooth, non developable, projective hypersurface of dimension n and degree d; let $p \in \mathbb{P}^{n+1} \setminus X$ be a point and $\pi_p : X \to \mathbb{P}^n$ be the projection from p. Then X admits at most a finite number of non uniform points.

X is non developable if its Gauss map has maximal rank, i.e. the dual of X is an hypersurface.

Remark

The smoothness hypotesis can be relaxed.

Theorem (CCM)

Let X be a irreducible, reduced, smooth, non developable, projective hypersurface of dimension n and degree d; let $p \in \mathbb{P}^{n+1} \setminus X$ be a point and $\pi_p : X \to \mathbb{P}^n$ be the projection from p. Then X admits at most a finite number of non uniform points.

X is non developable if its Gauss map has maximal rank, i.e. the dual of X is an hypersurface.

Remark

The smoothness hypotesis can be relaxed.

- Pirola and Schlesinger showed the result for plane curves. Moreover, they allow p ∈ X ⊂ P².
 ('Monodromy of projective curves'. J. Algebraic Geom, 2005)
- Cuzzucoli, Moschetti and Serizawa proved the result for smooth surfaces in P³.
 ('Non-uniform projections of surfaces in P³', Le matematiche, 2017)

Recall that if $M(\pi_p)$ is primitive and containes a trasposition then $M(\pi_p) = S_d$.

We first study the existence of traspositions.

Proposition

In the above setting, take a point $y \in \mathbb{P}^n$ suh that $\pi_p^{-1}(y)$ is made by d-1 distinct points (i.e. y is a simple branch point). Then there is a trasposition in $M(\pi_p)$.

Recall that if $M(\pi_p)$ is primitive and containes a trasposition then $M(\pi_p) = S_d$. We first study the existence of traspositions.

Proposition

In the above setting, take a point $y \in \mathbb{P}^n$ sub that $\pi_p^{-1}(y)$ is made by d-1 distinct points (i.e. y is a simple branch point). Then there is a trasposition in $M(\pi_p)$.

Simple branch points correspond to simple tangent lines to the hypersurface X; then we study families of lines tangent to X by means of the classical theory of focal loci due to Segre.

Lemma

There are at most a finite number of points p such that there are no transposition inside $M(\pi_p)$.

Remark

The same holds also for singular hypersurfaces.

Simple branch points correspond to simple tangent lines to the hypersurface X; then we study families of lines tangent to X by means of the classical theory of focal loci due to Segre.

Lemma

There are at most a finite number of points p such that there are no transposition inside $M(\pi_p)$.

Remark

The same holds also for singular hypersurfaces.

Let W be the closure of the locus of non uniform points in \mathbb{P}^{n+1} . From an induction argument we know that dim $(W) \leq 1$. Assume dim(W) = 1.

The general point of W contains a trasposition in its monodromy group, hence to be non uniform it must be non primitive. To conclude we have to show that the general point of W has primitive

monodromy group.

The picture is the following:

take a general point $p \in \mathbb{P}^{n+1}$ and project from it. Let *B* be the branch locus of the projection π_p and $C := \pi_p(W)$ be the image of the curve *W*. We have a map

$$\pi_1(C \setminus B, t) \longrightarrow \pi_1(\mathbb{P}^n \setminus B, t)$$

$$\downarrow^{\mu}$$

$$M(\pi_p) = S_d$$

If C and B intersect transversally everywhere than we have

Nori's Lemma	
$\pi_1({\mathcal C}\setminus B)\twoheadrightarrow\pi_1({\mathbb P}^n\setminus B)$	

Proof of the main theorem

If we are in the previous situation, we are able to study the monodromy of $\pi_{\rm P}$ just looking at

 $\mu: \pi_1(C \setminus B) \longrightarrow S_d$

Consider a general fiber over C of our projection from p; the line will meet W in a point y.

Note that the *d* points $x_1 \ldots, x_d$ in which the line meets *X* are the same if we project from *p* or from *y*.

- Cukiermann showed that for X ⊂ P² general curve, W = Ø.
 Our first aim is to generalize this result for general hypersurfaces in every dimension.
- Estimate the dimension of the locus of non uniform centers of projections for higher codimension varieties.

- Cukiermann showed that for X ⊂ P² general curve, W = Ø.
 Our first aim is to generalize this result for general hypersurfaces in every dimension.
- Estimate the dimension of the locus of non uniform centers of projections for higher codimension varieties.