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Galois group

We will work over C.
Let f : X → Y a �nite morphism between irreducible varieties of the same

dimension; to f we can associate the Galois group

G = Gal(K/K (Y ))

where K is the Galois closure of the extension �eld K (X )/K (Y ) and K (Y )
is the �eld of rational functions on Y .

We can also de�ne the same group in another way.
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The monodromy group of linear projections

In particular our maps will be the followings:

let X be a irreducible, reduced, projective hypersurface of dimension n and

degree d .
Take p /∈ X a point and let πp be the restriction to X of the linear

projection from p:
πp : X ⊂ Pn+1 → Pn

that is a �nite map of degree d .
Over the open U = Pn \ B , where B is the branch of πp, the map is

unrami�ed.
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In the preimage of a general point y ∈ U there are d distinct points

Γ := {q1, . . . , qd} corresponding to the intersection of the line < p, y >
with X .

We can associate permutations of the general �ber Γ to loops in U
centered in y : e.g. if we �x γ̃(0) ∈ Γ where γ̃ is the lift of a loop γ
centered in y , we can de�ne a permutation inside Γ sending

γ̃(0) 7→ γ̃(1) ∈ Γ
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Hence we can de�ne a map

µ : π1(U, y)→ Sd

De�nition

The monodromy group of πp is M(πp) := µ(π1(U)) ≤ Sd .

Proposition

The monodromy group M(πp) is isomorphic to the Galois group G .
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Properties

M(πp) is a transitive subgroup of Sd

A map πp is said decomposable if it admits a non trivial factorization,

i.e.

X
α→ X ′

β→ Pn

with deg(α), deg(β) > 1.

If M(πp) = Sd then πp is indecomposable.

Being indecomposable is equivalent to say that M(πp) is primitive, i.e.

it does not preserve non trivial blocks.

Conversely, if πp is indecomposable and M(πp) containes a

trasposition, then it is the whole Sd .
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Non uniform projections

De�nition

We will say that a point p /∈ X is uniform if M(πp) = Sd ; non uniform

otherwise.

We are interested in computing the dimension of the locus inside Pn+1 of

the non uniform points. Indeed:

Proposition

If p is general then it is uniform.
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Main Theorem

Theorem (CCM)

Let X be a irreducible, reduced, smooth, non developable, projective

hypersurface of dimension n and degree d ; let p ∈ Pn+1 \ X be a point and

πp : X → Pn be the projection from p.
Then X admits at most a �nite number of non uniform points.

X is non developable if its Gauss map has maximal rank, i.e. the dual of X
is an hypersurface.

Remark

The smoothness hypotesis can be relaxed.
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Known results

Pirola and Schlesinger showed the result for plane curves. Moreover,

they allow p ∈ X ⊂ P2.

('Monodromy of projective curves'. J. Algebraic Geom, 2005)

Cuzzucoli, Moschetti and Serizawa proved the result for smooth

surfaces in P3.

('Non-uniform projections of surfaces in P3', Le matematiche, 2017)
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Traspositions in the monodromy group

Recall that if M(πp) is primitive and containes a trasposition then

M(πp) = Sd .
We �rst study the existence of traspositions.

Proposition

In the above setting, take a point y ∈ Pn suh that π−1p (y) is made by d − 1

distinct points (i.e. y is a simple branch point). Then there is a

trasposition in M(πp).
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Simple branch points correspond to simple tangent lines to the

hypersurface X ; then we study families of lines tangent to X by means of

the classical theory of focal loci due to Segre.

Lemma

There are at most a �nite number of points p such that there are no

transposition inside M(πp).

Remark

The same holds also for singular hypersurfaces.

Maria Gioia Cifani Monodromy of hypersurfaces Dobbiaco 11 / 16



Simple branch points correspond to simple tangent lines to the

hypersurface X ; then we study families of lines tangent to X by means of

the classical theory of focal loci due to Segre.

Lemma

There are at most a �nite number of points p such that there are no

transposition inside M(πp).

Remark

The same holds also for singular hypersurfaces.

Maria Gioia Cifani Monodromy of hypersurfaces Dobbiaco 11 / 16



Primitive monodromy group

Let W be the closure of the locus of non uniform points in Pn+1. From an

induction argument we know that dim(W ) ≤ 1. Assume dim(W ) = 1.

The general point of W contains a trasposition in its monodromy group,

hence to be non uniform it must be non primitive.

To conclude we have to show that the general point of W has primitive

monodromy group.
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The picture is the following:

take a general point p ∈ Pn+1

and project from it.

Let B be the branch locus of

the projection πp and

C := πp(W ) be the image of

the curve W .
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We have a map

π1(C \ B, t) // π1(Pn \ B, t)

µ

��
M(πp) = Sd

If C and B intersect transversally everywhere than we have

Nori's Lemma

π1(C \ B) � π1(Pn \ B)
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Proof of the main theorem

If we are in the previous situation, we are able to study the monodromy of

πp just looking at

µ : π1(C \ B) −→ Sd

Consider a general �ber over C of our

projection from p; the line will meet

W in a point y .

Note that the d points x1 . . . , xd in

which the line meets X are the same

if we project from p or from y .
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Work in progress

Cukiermann showed that for X ⊂ P2 general curve, W = ∅.
Our �rst aim is to generalize this result for general hypersurfaces in

every dimension.

Estimate the dimension of the locus of non uniform centers of

projections for higher codimension varieties.
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