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Chapter 0

Introduction

In this thesis we deal with the models of subspace arrangements which De
Concini and Procesi introduced in [4]. In particular we study their integer
cohomology rings, which are torsion free ZZ-modules of which we find ZZ-bases.

When the considered arrangement is the braid hyperplane arrangement,
this leads to the study of the integer cohomology rings of the moduli spaces
M0,n of n-pointed curves of genus 0 and of their Mumford-Deligne compact-
ifications M0,n. In fact we prove that M0,n is isomorphic to a particular De
Concini - Procesi model of the braid arrangement. In these cases, we deal
with the action of the symmetric group on the cohomology rings: we give
explicit formulas for the associated generalized Poincarè series, and provide
recursive formulas for the characters. We also extend part of our results to
the root arrangements of types Bn(= Cn) and Dn. Let us describe more in
detail the content of this thesis.

Models of arrangements and moduli spaces

The first part of this thesis is devoted to recalling some of the definitions
and results established by De Concini and Procesi in [4]. Given a subspace
arrangement G∗ ⊂ C| n, we describe it by considering, in the dual (C| n)∗, the
subset G of the subspaces orthogonal (with respect to the standard pairing
between (C| n) and (C| n)∗ ) to the ones in G∗, and call byMG the complement
of G∗ in C| n. A model for MG is a smooth irreducible variety YG equipped
with a proper map π : YG 7→ C| n which is an isomorphism on the preimage of
MG and such that the complement of this preimage is a divisor with normal
crossings.

Let us sketch the explicit construction of the De Concini-Procesi models.
We start by considering the map

i : MG 7→ C| n ×
∏
D∈G

P(C| n/D⊥)
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where D⊥ is the dual space of D, P(C| n/D⊥) denotes the projective space
of lines in C| n/D⊥ and the map fromMG to P(C| n/D⊥) is the restriction of
the canonical projection C| n −D⊥ 7→ P(C| n/D⊥). Then we form YG as the
closure of the graph of i. It turns out that, when the set G has suitable prop-
erties ( when it is “building”, see Chapter 1, Section 1), YG is a “wonderful
model” in the sense explained by the following theorem.

Theorem 0.0.1 (see [4] and Chapter 1, Section 1)
Let G be a building set of subspaces. Then
(1) YG is a model for MG.
(2) The complement D of MG in YG is the union of smooth irreducible
divisors DG indexed by the elements G ∈ G.
(3) Let G be a minimal (with respect to inclusion) element in G. If we put
G ′ = G −{G}, and denote by G the family in (C| n)∗ /G given by the elements
{A+G/G : A ∈ G ′}, we have that G ′ and G are building and that YG can be
obtained from YG′ by blowing up a subvariety isomorphic to YG.

The blow-up property (3) is the key to understand the geometry of YG: we will
also use it to study the integer cohomology rings of YG and of the subvarieties
DS =

⋂
iDAi

(S = {A1, . . . , Ar} ⊂ G) which are intersection of the divisors
in the boundary. De Concini and Procesi provided a presentation of these
cohomology rings as quotients of polynomial algebras.

Theorem 0.0.2 (see [4] and Chapter 1, Section 3)
The ring H∗(DS,ZZ) is the quotient of ZZ[cA] by an ideal IS, where the

variables cA are indexed by the elements in G and, for A ∈ G, cA is interpreted
as the cohomology class [DA], associated to the divisor DA, restricted to DS

(and therefore it has degree 2). In particular, keeping the above definitions
also in the case S = ∅, we obtain that H∗(YG,ZZ) is a quotient of ZZ[cA].

We note that in [4] arrangements of linear subspaces in P(C| n) have also
been studied. As a result, a theory has been obtained, which gives compact
models and is quite similar to the above described one. In fact, the connection
between the two settings is given by the following assertion.

Theorem 0.0.3 (see [4] and Chapter 1, Section 2)

Let G be a building set containing (C| n)∗ and let ŶG be the compact model
associated to the linear subspace arrangement induced by G in P(C| n). Then

YG is the total space of a line bundle on D(C|
n
)
∗ and ŶG is isomorphic to

D(C|
n
)
∗.

An interesting example of compact model is provided by the moduli space
M0,n+1 of stable curves of genus zero, with n + 1 labeled pairwise distinct
points. It corresponds in our setting to the case of the braid arrangement:
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in fact, in Chapter 2 we will show that M0,n+1 is isomorphic to a particular

De Concini- Procesi model, denoted by ŶFAn−1
, of the projective hyperplane

arrangement induced by a root system of type An−1.

Cohomology bases for the models and Poincarè polyno-
mials

A special case of what we have described above occurs when the building
set G is such that every element of CG is generated by some lines belonging
to G or, in a dual way, when every element of G∗ can be obtained as an
intersection of certain hyperplanes H1, . . . , HN belonging to G∗. We will refer
to such a G as a “refinement” of the hyperplane arrangement {H1, . . . , HN}
(or we will say that G “refines” {H1, . . . , HN}).

In his recent paper [25], Yuzvinsky has found bases for the ZZ-module
H∗(YF ,ZZ), when F is the minimal building set which refines an hyperplane
arrangement (i.e. when F is the building set of irreducibles, even if his
method could be extended to the case of any subspace arrangement, as he
observes in Remark 3.11 of [25]). In Chapter 3 we provide bases for the
ZZ-modules H∗(DS,ZZ) and H∗(YG,ZZ), when G is any subspace arrangement
and S a G-nested set, thus generalizing the mentioned result. The methods
we use in the proof are different from those in [25]: they are based on the
geometric structure of the model, in particular on the blow-up property (part
3 of Theorem 0.0.1) which gives rise to some useful recurrence relations.

Then we provide formulas for the Poincarè polynomials of YF when F is
the building set of irreducibles which refines a root hyperplane arrangement
of type An, Bn (= Cn), Dn. Furthermore, given a building set G, we study a
particular class of subspace arrangements, which we call “ induced by G” since
they are obtained by tensoring the elements of G by C| h. In particular, given
F as above, we study the “induced root arrangements” of types An, Bn (=
Cn), Dn and give formulas for the Poincarè polynomials of the associated
models.

Finally, the last section of Chapter 3 is devoted to finding squarefree bases
for H∗(DS,ZZ) (and for H∗(YG,ZZ)), when G is a building set which refines
a hyperplane arrangement (squarefree bases may not exist in the general
case of subspace arrangements). They are interesting because of their geo-
metrical meaning, since they are in correspondence with irreducible varieties
obtained by intersecting, without multiplicities, the irreducible divisors in YG.

Symmetric group representations: a recursive relation

In the last part (Chapters 4 and 5) of this thesis we specialize all the
above mentioned results to the study of the symmetric group representations
connected with some root hyperplane arrangements and their De Concini -
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Procesi models.
Let us consider the root hyperplane arrangement A∗n−1 ⊂ (C| n) of type

An−1 and its orthogonal arrangement An−1 ⊂ (C| n)∗: we can realize the
symmetric group Sn as the Weyl group generated by reflections in the hyper-
planes orthogonal to the roots; the symmetric group action on C| n−1 restricts
to an Sn-action on the complementMAn−1 = C| n−1 −

⋃
A∈A∗n−1

A.

This action induces on the cohomology ring H∗(MAn−1 ,C| ) a linear Sn action
that has been studied by several authors.
In particular Lehrer (see [17]) and Lehrer-Solomon (see [19]) determined, us-
ing combinatorial techniques, the structure of the Sn-module H∗(MAn−1 ,C| ),
showing that it is, degree by degree, the sum of certain induced representa-
tions. In [19] it has been proved that, as Sn-modules,

H∗(MAn−1 ,C| ) ∼= 2IndSn
<r>(1) (1)

where r is a reflection and 1 is the trivial one dimensional representation.
In Chapter 4 we construct an extension to Sn+1 of the natural Sn action
described above. As a first step we shift the problem for the arrangement
An−1 to the same one for its projectivization which has complement M̂An−1 .

Next we use the fact, proved in Chapter 2, that M̂An−1 is isomorphic to

M0,n+1: as a consequence, we get on M̂An−1 an Sn+1-action that can be
lifted to an Sn+1- representation, compatible with the natural Sn one, on the
cohomology ring H∗(MAn−1 ,C| ).

Then we find an interesting recursive relation which connects the ex-
tended action with the already known one. Let us express it in terms of
characters, introducing the following notation: let χn+1(i, n) be the charac-
ter of the natural Sn+1 action on H i(MAn ,C| ), χn+2(i, n) be the character of
the extended Sn+2 action on H i(MAn ,C| ) and pn+1 be the character of the
standard representation of Sn+1. Then, for n ≥ 2, we have :

χn+1(i, n) = χn+1(i, n− 1) + pn+1χn+1(i− 1, n− 1) (2)

As a first application, we will use relation (2) to obtain a polynomial for-
mula which involves the characters of the Sn+1 action on the homogeneous
components of the graded ring H∗(MAn ,C| ). Secondly, we will provide a
quick proof of the important Lehrer’s result (1). Finally we will compute the
Euler characteristic χ(M0,n/Sj) of the quotient spaces M0,n/Sj (n ≥ 3 and
2 ≤ j ≤ n, that is to say, Sj is identified with a subgroup of Sn). The interest
of this computation lies in the fact that χ(M0,n/Sj) plays a crucial role in the
computation of the Euler characteristic of the moduli spaces M1,n, M2,n of
n-pointed curves of genus 1 and 2 and of their compactifications M1,n, M2,n,
as it is shown in [3].
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Generalized Poincarè polynomials

The last sections of Chapter 4 and most of Chapter 5 are devoted to
studying the Sn+1 action on the cohomology ring of the De Concini - Procesi
model ŶFAn−1

. Since ŶFAn−1
is isomorphic to M0,n+1, the importance of this

action (which we will call the “extended” action) was first pointed out in the
context of moduli spaces. It has been studied by E. Getzler in [13] and it turns
out to be compatible with the Sn action coming from the geometry of An−1

(which we will call the “non extended” or “natural” action). In [13] Getzler
calculates the characteristic of the cyclic S-module Poly which corresponds to
the cohomology of the moduli spaces M0,n. This characteristic takes values
in the ring of symmetric functions and encodes all the information about
the characters of the “extended” action (therefore, a fortiori, of the “non
extended” one).

Assuming the point of view of models of arrangements, we can study in a
new and elementary way these modules. For instance we will give very direct
formulas for the trace of operators in the “non extended”case and we will
explicitly describe the Sn+1-module H2(ŶFAn−1

,ZZ) and its decomposition
into irreducibles. The reason why our approach is elementary lies in the
combinatorial properties of the Yuzvinsky basis of H∗(ŶFAn−1

,ZZ). In fact
it turns out that the elements of this basis are permuted by the symmetric
group Sn (unfortunately, not by Sn+1): this allows us to compute the trace
of operators in a direct combinatorial way.

Our interest is thus devoted to the generalized Poincarè polynomial with
respect to an element w ∈ Sn, i.e. to the polynomial

Pw,An−1(q) =
∑

i

(tr w|H2i(ŶFAn−1
,ZZ)

)qi

(note that the variable q has to be considered of degree 2: in fact the odd-
degree cohomology groups are trivial).

Now we can view w ∈ Sn as an element of Sm for every m > n, by the ob-
vious immersion Sn 7→ Sm; this makes w to act on all the ringsH∗(ŶFAm−1

,ZZ)
for m > n. It turns out that, in order to determine the generalized Poincarè
polynomials Pw,Am−1(q) as m varies, it is convenient to compute directly the
two variables “generalized Poincarè series”

Pw,A(q, t) =
∞∑

m=n

Pw,Am−1(q)
tm

m!

In Section 2 of Chapter 5 we give some formulas for Pw,A(q, t) for any w ∈
Sn. These formulas are particularly explicit when w is a cyclic permutation
(see Theorem 5.2.1); when w is the identity, we recover the well known
formula for the ordinary Poincarè series.
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We then note that a substantial simplification to the equations provided
in Section 2 can be obtained if we consider, instead of the series Pw,A(q, t),

a “universal” graded series H in some formal graded variables Sj and P
(d)
k

(j ≥ 1, k ≥ 1, d ≥ 0). It encodes all the information about the series
Pw,A(q, t), for every w, in the way explained by the following steps:

1. Given w ∈ Sn with decomposition w = c1 · · · cl, where c1, . . . , cl are non
trivial disjoint cycles of length λ1 ≥ . . . ≥ λl > 1 respectively, consider
the polynomial Hl which is the homogeneous component of degree l of
H.

2. Then substitute in Hl the formal variables Sj (and P
(d)
k ) with some

special functions from ZZj (ZZk respectively) to ZZ[[q, t]].

3. Finally put the numbers λ1, . . . , λl as inputs of these special functions
and sum over all the possible permutations of λ1, . . . , λl.

4. The universal series H is constructed in such a way that, after the steps

1,2 and 3, P
(
∑l

i=1 λi)
w,A (q, t) is obtained (here the superscript (n) means

“n-th derivative with respect to t”).

Note that, although the series H and the non cyclic characteristic cht of
the rings H∗(ŶFAn−1

,ZZ) (which can be computed by differentiating Getzler’s

formula for the cyclic characteristic in [13]) encode the same information,
they are different combinatorial objects. Section 3 is devoted to finding a
nice and compact formula for the universal formal series H (see Theorem
5.3.4). This formula is obtained by studying certain sums over rooted trees:
the remarkable combinatorial properties of these sums are summarized by
the Theorems 5.3.2 and 5.3.3 which are of independent interest.

Finally, in Section 4 of Chapter 5, we focus on the complex Coxeter
arrangements Bn of type Bn and on the associated De Concini - Procesi
models of irreducibles: we provide a formal series HB which, by the same
methods as above, gives us the generalized Poincarè series with respect to
the elements of some subgroups (isomorphic to Sn) of the Weyl group of type
Bn.
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Chapter 1

Models of subspace
arrangements

1.1 Construction of the De Concini-Procesi

models

Let us consider a subspace arrangement G∗ in C| n; given K ∈ G∗, we can
construct its orthogonal subspace K⊥ in the dual (C| n)∗ and therefore we
can describe the arrangement G∗ by means of the arrangement G ∈ (C| n)∗,
G = {K⊥ |K ∈ G∗}.

Let now AG ⊂ C| n be the union of the subspaces of G∗:

AG =
⋃

A∈G∗
A =

⋃
B∈G

B⊥

and letMG be the complement of AG in C| n.
By construction, given A ∈ G, the rational map

πA : C| n 7→ C| n/A⊥

is defined outside A⊥ and thus there is a morphism

φG : MG 7→
∏
A∈G

P
(
C| n/A⊥

)
The graph of φG is a closed subset of

MG ×
∏
A∈G

P
(
C| n/A⊥

)
which embeds as open set into

C| n ×
∏
A∈G

P
(
C| n/A⊥

)
11



Finally we have an embedding

φ̂G : MG 7→ C| n ×
∏
A∈G

P
(
C| n/A⊥

)
as a locally closed subset. This construction allows us to give the definition:

Definition 1.1.1 We denote by YG the closure of φ̂G(MG) in

C| n ×
∏
A∈G

P
(
C| n/A⊥

)

The variety YG will be the main object of our study. Its properties essen-
tially depend on the combinatorial properties of G, therefore we will shortly
recall some definitions and facts concerning the combinatorics of a subspace
arrangement.

First, we call by CG the closure, under the sum, of G, that is to say, the
set of subspaces in (C| n)∗ which are sums of subspaces in G.

Definition 1.1.2 Given a subspace U ∈ CG, a decomposition of U is a col-
lection of non zero subspaces U1, U2, . . . , Uk ∈ CG (k > 1) which satisfy the
following properties:

1. U = U1 ⊕ U2 ⊕ . . .⊕ Uk

2. for every subspace A ⊂ U in CG, we have that A∩U1, A∩U2, . . . , A∩Uk

lie in CG and A = (A ∩ U1)⊕ (A ∩ U2)⊕ . . .⊕ (A ∩ Uk)

Definition 1.1.3 If a subspace in CG does not admit a decomposition, it is
called “irreducible”. The set of all irreducible subspaces is denoted FG.

The above mentioned definitions lead immediately to the following expected
proposition:

Proposition 1.1.1 Every subspace U ∈ CG has a unique decomposition
U = ⊕k

i=1Ui into irreducible subspaces. This is called “the irreducible de-
composition” of U . If A ⊂ U is irreducible, then A ⊂ Ui for some i.

In the sequel, we will deal with a further property of the arrangement G:

Definition 1.1.4 A collection of subspaces G ⊂ (C| n)∗ is called ”building
set” if every element C of CG is the direct sum C = G1⊕G2⊕ . . .⊕Gk of the
set of the maximal elements G1, G2, . . . , Gk of G contained in C. We say in
this case that {G1, . . . , Gk} is “the decomposition of C in (the building set)
G”.
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Remarks
1) One can easily see that the “decomposition of C in G” is a decompo-

sition in the previous sense.
2) The sets CG and FG defined above are building sets. Furthermore, for

every building set G, we have FG ⊂ G ⊂ CG. Let in fact A ∈ CG be irreducible.
Then A can be decomposed in G, but then A ∈ G since A is irreducible. This
proves the first inclusion, the second being trivial.

The notion of “building set”, introduced by De Concini and Procesi in
[4], plays a fundamental role in the theory, since it turns out that, in the case
when the arrangement G is building, the variety YG is a “wonderful model”
forMG, in the sense specified by Theorem 0.0.1 in the Introduction.

De Concini and Procesi proved this in [4] by using the explicit description
of an open affine covering of YG. We will give here a sketch of the proof
provided in [4]. As a first step it is worth recalling the construction of the
above mentioned open charts. For this purpose we need to introduce the
notion of “nested set” (see [4]) by means of the following definitions. This
notion is close to the one introduced by Fulton and MacPherson in their
paper [9] on models of configuration spaces.

Definition 1.1.5 A set S of subspaces in (C| n)∗ is called nested if, given
any its subset {U1, . . . , Uk} of pairwise non comparable elements, one has
U = U1 ⊕ · · · ⊕ Uk and U /∈ S.

Definition 1.1.6 Let K be a building set of subspaces in (C| n)∗. A subset
S ⊂ K is called “nested relative to K”, or K-nested, if

1. S is nested

2. given a subset {A1, . . . , Ah} of pairwise non comparable elements in S,
then C = A1 ⊕ · · · ⊕ Ah is the decomposition of C in K.

Let now S be a nested set of subspaces in (C| n)∗. For every set A ⊂ (C| n)∗,
A 6= {0}, the set

SA = {(C| n)∗} ∪ {B ∈ S | A ⊂ B}
is linearly ordered (with respect to inclusion) and non empty. We let pS(A)
to be the minimum of SA. We will write pS(v) instead of pS(C| v) if v is a
vector in (C| n)∗.

Definition 1.1.7 A basis b of (C| n)∗ is called “adapted” to S if, for all A ∈
S, the set

bA := b ∩ A = {v ∈ b|pS(v) ⊂ A}
is a basis of A. A “marking” of a basis b adapted to S is a choice, for all
A ∈ S, of an element xA ∈ b with pS(xA) = A.
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One can easily observe that, given a nested set S, one can always find a
basis b adapted to S and a marking for b.

Consider now a space of functions C| b with coordinates ux indexed by the
elements of b and, given A ∈ S, set uA := uxA

where xA ∈ b is the marked
element associated to A. We can define a map:

ρS : C| b 7→ C| b

by means of the following relation:

v = uv

∏
B⊃A

uB if A = p(v) and v is not marked (1.1)

v =
∏
B⊃A

uB if v = xA (1.2)

where the elements of b have been chosen as coordinates on the target space.
This map is easily seen to be birational and, since b is a basis of (C| n)∗, we
can consider it as a map

ρS : C| b 7→ C| n

Proposition 1.1.2 The map ρS restricts to an isomorphism between the
open set where all the coordinates uA (A ∈ S ) are different from 0 and the
open set where the coordinates xA ∈ b are different from 0 ( A ∈ S), and
maps the hyperplane defined by uA = 0 in the subspace A⊥.

If we now consider the variety

YS ⊂ C| n ×
∏
A∈S

P
(
C| n/A⊥

)
constructed according to Definition 1.1.1, we have that

Proposition 1.1.3 (see [4]) The map ρS lifts to an open embedding of C| b

into YS.

Proof.
This essentially follows from the fact that the composition of ρS with the

rational map
πA : C| n 7→ P

(
C| n/A⊥

)
(A ∈ S)

is given by the formulas (1.1), (1.2), if we choose on P
(
C| n/A⊥

)
the pro-

jective coordinates coming from the basis bA of A. Thus as monomials in
the ux, these coordinates are all divisible by the monomial expressing xA; we
deduce that the map πA ρS is a morphism to the affine part P0

(
C| n/A⊥

)
⊂

P
(
C| n/A⊥

)
where xA = 1. We can then form a morphism (again denoted by

ρS)

ρS : C| n 7→ C| n ×
∏
A∈S

P
(
C| n/A⊥

)
14



the image of which is easily seen to be equal to the intersection between YS

and C| n ×
∏
A∈S

P0
(
C| n/A⊥

)
.

We will denote by U b
S the open set in YS provided by the previous propo-

sition and identify with ρS the restriction to U b
S of the projection from YS to

C| n. Moreover we observe (see [4], page 465), that ρS depends only on the
marked elements of the basis b.

Now, let us describe one possible way to select adapted marked bases for
S. Choose for every B ∈ S a basis b(B) of B made by vectors not contained
in any C ⊂ B, C ∈ S. Choose a vector xB ∈ b(B) for every B ∈ S. Then
these vectors are linearly independent and thus can be completed to a basis
b which is adapted to S and in which they are the marked vectors.

If we fix the bases b(B) (B ∈ S) and perform the above algorithm in all
the possible ways (that is to say, if we choose the marked vectors in all the
possible ways), we get a family Θ of adapted marked bases. Since the open
sets U b

S depend only on the marking of the basis b, this gives rise to a finite
family V = {U b′

S | b′ ∈ Θ} of open sets.

Proposition 1.1.4 (see [4])

1. The variety YS is covered by the open sets U b
S in the family V.

2. Given a minimal element A ∈ S and put S ′ = S − {A}, YS is the
blow-up of YS′ along the proper transform ZA of the subspace A⊥ which
is a smooth subvariety. Furthermore ZA is canonically isomorphic to
YΛ where Λ := {(B + A)/A ∈ (C| n)∗/A |B ∈ S ′}.

3. Consider MS = C| n − ∪A∈SA
⊥ embedded as an open set in YS. Then

YS − MS is a divisor with normal crossing with smooth irreducible
components DS

A parametrized by the elements A ∈ S.

4. All the intersections of the divisors DS
A are irreducible.

Proof.
1),2).
We observe that S ′ is still nested and we want to study the two varieties
YS, YS′ . By their very construction, there is a birational morphism p : YS 7→
YS′ .

Let us consider a basis b adapted to S and marked. Then b is also adapted
to S ′ and, up to forget the marking on the element xA ∈ b, is marked for S ′.
It follows that the map ρS equals the composition of p restricted to U b

S with
ρS′ .

We want to explicit the relations between the coordinate charts U b
S and

U b
S′ ; in order to do this we will denote by uv the coordinates in U b

S and by
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u′v the coordinates in U b
S′ . We observe that we have uv = u′v if pS(v) 6= A or

v = xA and u′v = uvuA if pS(v) = A and v 6= xA.
These are exactly the explicit maps of the blow up of U b

S′ along the sub-
variety u′A = 0, u′v = 0 (pS(v) = A and v 6= xA) in the charts

p : U b
S 7→ U b

S′

In particular, in the case of the claim 2), since A is a minimal element in
S, if we start from an adapted basis b of S and we mark it for S ′ in such a
way that no marked vector belongs to A, we can complete the marking to
S in m = dimA different ways. Let us call bi (i = 1, . . . ,m) the marked
bases we get; the associated charts U bi

S cover the blow up of U b
S′ along the

subspace defined by the equations u′v = 0 (v ∈ A), hence the induced map
∪iU bi

S 7→ U
b
S′ is a proper map.

Now, using the formulas (1.1) and (1.2), we can conclude that the variety
we blow up in U b

S′ is exactly the proper transform of the subspace A⊥. In
fact we have

v = u′v
∏

B)A, B∈S′

u′B

for v ∈ bA and thus the claim follows dividing by∏
B)A, B∈S′

u′B

These observations allow us to prove the claims 1) and 2) by induction on the
cardinality of S. As for the claim concerning ZA, we notice that A⊥ meets
MS′ and

A⊥ ∩MS′ = A⊥ − ∪B∈S′(B
⊥ ∩ A⊥)

But if (B + A)/A = (B′ + A)/A in Λ, then B⊥ ∩ A⊥ = (B′)⊥ ∩ A⊥, so, after
identifying (C| n)∗/A with (A⊥)∗, we can rewrite

A⊥ ∩MS′ = A⊥ − ∪C∈Λ(C)⊥

Finally, under the map

MS′ 7→ C| n ×
∏

B∈S′

P
(
C| n/B⊥)

A⊥ ∩MS′ maps to

A⊥ ×
∏

(B+A)/A∈Λ

P
(
A⊥/B⊥ ∩ A⊥

)
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3), 4).
First we note that for every open set U b

S, p−1(A⊥) ∩ U b
S is the divisor

of equation
∏
B⊃A

uB. Thus, if we set DA equal to the closure of p−1(A⊥ −

∪B)AB
⊥) we obtain a smooth divisor whose intersection with U b

S is the hy-
perplane of equation uA = 0. Furthermore YS−MS = ∪A∈SDA. This proves
3) and 4) except for the irreducibility of DA. Let us prove that DA is ir-
reducible by induction on the cardinality of S. We assume the statement
for S ′ = S − {A} (A minimal) and we consider, by 2), YS as the blow up
of YS′ along ZA. Then DA is the exceptional divisor and its irreducibility
follows from the one of ZA. This also proves the base of the induction (that
is to say, |S| = 1). For B 6= A, DB is the proper transform of the divisor
corresponding to B in YS′ , so it is irreducible by the inductive hypothesis.
At the same way, using the local description, we can prove 4).

Let us now focus on the variety YG in the case when G is any building
set. Let us take a G-nested set S and a marked basis b adapted to it.

Lemma 1.1.5 Given any x ∈ (C| n)∗ − {0}, suppose A = pS(x) ∈ S. Then
x = xAPx(u), where Px(u) is a polynomial depending only on the variables
uv with v such that pS(v) ⊆ A and v 6= xA.

Proof.
Since bA is a basis of A, we have an expression

x =
∑
v∈bA

avv = xA(axA
+

∑
v ∈ bA
v 6= xA

av
v

xA

)

If we substitute for the v’s their expression in terms of the u’s provided by
the relations (1.1), (1.2), we get the requested polynomial Px(u).

Now, given G ∈ G, the previous lemma allows us to define polynomials
PG

x (u), x ∈ G, by the formula x = xAP
G
x (u).

Let us denote by ZG the subvariety in (C| )b defined by the vanishing of
these polynomials. Then we observe that the map

C| b 7→ C| n 7→ C| n/G⊥

given by the coordinate functions x ∈ G, can be composed in C| b − ZG with
the rational map C| n/G⊥ 7→ P(C| n/G⊥), giving a regular morphism.

Definition 1.1.8 Given a G-nested set S, we define the open set U b
S or U b

S(G)
as the complement in C| b of the union of all the varieties ZG, G ∈ G.
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The open set U b
S has been defined in such a way that all the rational mor-

phisms
U b

S 7→ P(C| n/G⊥)

are well-defined; therefore we obtain an embedding jb
S of U b

S in YG. By

construction, and by the formula xA =
∏
A⊂B

uB, we have that the complement

in U b
S of the divisors uA = 0 ( A ∈ S ), maps to the open setMG injectively,

while the divisor uA = 0 maps to A⊥.
The fact that the maps jb

S are open embeddings (as S, b vary ) easily
follows from the diagram

U b
S

jb
S−−−→ YG

i

y π′

y
(C| )b

ibS−−−→ YS

since ibS is the open embedding of Proposition 1.1.3 and π′ is a birational
map. From now on we will identify U b

S with its image jb
S(U b

S).
We have recalled the construction of the open sets U b

S in YG since they play
in the theory the role of local coordinates. This is assured by the following

Theorem 1.1.6 (for the proof see [4], Theorem 3.1.1)

1. YG = ∪SU b
S. In particular YG is smooth.

2. Set Db
S equal to the divisor in U b

S defined by
∏

A∈S uA = 0. Set D =
∪SD

b
S. Then, considering the projection

π : YG 7→ C| n

we have that π−1(MG) = YG − D and D is a divisor with normal
crossings.

From the geometrical point of view, one of the more interesting property
of the variety YG is that it can be constructed by means of a sequence of
blow-ups along varieties which are of the same kind, that is to say, models
associated to building sets of smaller cardinality.

This explicit construction allows us to study the models YG recursively:
for instance, the proof of Theorem 3.1.1 of the present thesis (see Chapter
3), which provides a ZZ-basis for the cohomology ring of YG, is based on the
geometry of these blow-ups.

Theorem 1.1.7 (1) The complement D of π−1(MG) in YG is the union
of smooth irreducible divisors DG indexed by the elements G ∈ G, where DG

is the unique irreducible component in D such that π(DG) = G⊥.
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(2) Given divisors DA1 , . . . DAn, they have non empty intersection if and
only if the set S = {A1, . . . , An} is nested in G. In this case the intersection

is transversal and we obtain a smooth irreducible variety DS =
⋂
i

DAi
.

(3) Let G be a minimal (with respect to inclusion) element in G. Let us
put G ′ = G − {G}, and let G be the family in (C| n)∗ /G given by the elements
{(A + G)/G : A ∈ G ′}. We have that G ′ and G are building and that
YG can be obtained from YG′ by blowing up the proper transform TG of G⊥.
Furthermore, TG is isomorphic to the variety YG.

Proof.
We proceed by induction on the cardinality of G, the case |G| = 1 being easily
verified. By induction we assume that 1) and 2) hold for G ′ and show 3).

The proper transform TG of G⊥ in YG′ is isomorphic to YG since for any
H ∈ G ′ the restriction to G⊥ of the rational morphism C| n 7→ P(C| n/H⊥)
factors through the rational morphisms

G⊥ 7→ P(G⊥/G⊥ ∩H⊥) = P(G⊥/(G+H)⊥)

Notice that we can identify (C| n)∗/G with G⊥ and ((G+H)/G)⊥ with (G⊥∩
H⊥) = (G+H)⊥.

We have then to check that the subscheme where the rational morphism
is not defined coincides with TG. Consider a maximal nested set T relative to
G ′, a marked basis adapted to T , and take the open set U b

T (G ′) ⊂ YG′ . There
are two possibilities: either T is also maximal in G, or T ∪ {G} is maximal
nested in G.

In the first case the projection map YG → YG′ induces an open embedding
U b

T (G) ⊂ U b
T (G ′). Otherwise we can embed U b

T (G ′) into YT . Then Proposition
1.1.4 implies that on the open set U b

T (G ′) the map YG 7→ YG′ is a blow up
along the intersection with TG.

Having proved 3) under our inductive assumption, we deduce 1) and 2).
Let us set DG to be equal to the exceptional divisor of the blow up

YG 7→ YG′ and let DH (H ∈ G ′) be equal to the proper transform of the
corresponding divisor D′

H in YG′ . The first claim now follows after observing
that the intersection ofD′

H with TG is a smooth irreducible divisor isomorphic
to DH , where H = (H +G)/G in G.

We then note that the divisor DA meets the open chart U b
T if and only if

A ∈ T . Furthermore, if A ∈ T , thenDA∩U b
T is the divisor of equation uA = 0.

Now all the statements in 2) are immediate, except for the irreducibility of
Z = DA1 ∩ . . . ∩DAn in the case when Z is non empty, that is to say, when
the set {A1, . . . , An} is G-nested.

But if G /∈ {A1, . . . , An}, then Z is the proper transform of the corre-
sponding variety in YG′ . If instead G ∈ {A1, . . . , An}, Z is the preimage of
the subvariety DA1

∩ . . . ∩ DAn
in TG which is irreducible by the inductive

hypothesis (here Aj = (Aj +G)/G in G).
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Remark. We note that in [4] a slightly different version of the above Theorem
1.1.7 has been stated (see Theorem 3.2 in [4]), that is to say, the cases in
which G is a minimal element in G − FG and G is a minimal element in
G = FG have been distinguished. We do not stress this distinction in the
present thesis; anyway, the proof essentially doesn’t change.

1.2 Projective arrangements and compact mod-

els

In their paper [4], De Concini and Procesi extend the constructions provided
in Section 1 to the case of a configuration of linear subspaces in P(C| n).

What they get is a family of compact models the geometry of which is
strictly connected with the one of the varieties described until now.

Let us recall the construction of these compact models. Let G be a non
empty family (not necessarily building, at the moment) of non zero sub-
spaces in (C| n)∗ and let P(A⊥) (A ∈ G) be the elements of a configuration of
subspaces in P(C| n).

As before, we set

ÂG =
⋃
A∈G

P(A⊥)

M̂G = P(C| n)− ÂG

We note that the multiplicative group Ĉ| = C| − {0} acts onMG and M̂G =

Ĉ| \MG. The regular morphism

MG 7→
∏
A∈G

P(C| n/A⊥)

is constant on the Ĉ| orbits, therefore we have a morphism

M̂G 7→
∏
A∈G

P(C| n/A⊥)

the graph of which is a closed subset of M̂G ×
∏
A∈G

P(C| n/A⊥) which embeds

as open set into P(C| n)×
∏
A∈G

P(C| n/A⊥).

Finally we obtain an embedding

φ̂G : M̂G 7→ P(C| n)×
∏
A∈G

P(C| n/A⊥)

as a locally closed subset.
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Definition 1.2.1 We let ŶG to be the closure of the image of M̂G under φ̂G.

We can make Ĉ| to act naturally on YG in such a way that the projection
π : YG 7→ C| n is equivariant. This is obtained by observing that the regular
morphism

MG 7→ C| n ×
∏
A∈G

P(C| n/A⊥)

is Ĉ| equivariant if Ĉ| acts onMG and C| n by multiplication and trivially on

the product
∏
A∈G

P(C| n/A⊥).

Let us now study the closure Y 0
G ofMG in the embedding

MG 7→ (C| n − {0})×
∏
A∈G

P(C| n/A⊥).

We observe that this closure is Y 0
G = YG − π−1(0) and it is open in YG and Ĉ|

stable. This leads to the following commutative diagram:

MG
i−−−→ Y 0

G
j−−−→ (C| n − {0})×

∏
A∈G P(C| n/A⊥)y y y

M̂G
î−−−→ ŶG

ĵ−−−→ P(C| n)×
∏

A∈G P(C| n/A⊥)

(1.3)

where i, î are open embeddings and j, ĵ closed embeddings. Furthermore,
since

Ĉ| \

[
(C| n − {0})×

∏
A∈G

P(C| n/A⊥)

]
= P(C| n)×

∏
A∈G

P(C| n/A⊥)

we have that ŶG = Ĉ| \ Y 0
G . As a consequence, since the canonical rational

map to P(C| n) = P
(
C| n/((C| n)∗)⊥

)
is well defined on Y 0

G , we can assume,
without restricting our hypothesis, that (C| n)∗ is an element of G.

If we now call by EC| n the total space of the tautological bundle of P(C| n)
we obtain from the diagram (1.3) a fiber product diagram

YG
j−−−→ EC| ny y

ŶG
ĵ−−−→ P(C| n)

from which it follows that YG is the pullback, under the canonical map ŶG 7→
P(C| n), of the tautological line bundle.

This allows us to deduce the geometric properties of the compact model
ŶG from the properties of the divisors in YG. In fact we have the following
theorem:
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Theorem 1.2.1 (see [4])
Let G be a building set of subspaces in (C| n)∗ which contains (C| n)∗ itself.

Then we have:

1. ŶG is a smooth variety.

2. YG is the total space of a line bundle on π−1(0) = D
(C| n

)∗
and ŶG is

isomorphic to D
(C| n

)∗
.

Proof
The claim follows from the observations above, since ŶG is isomorphic to

the 0 section of a line bundle the total space of which is YG. The smoothness
of this section is assured by Theorems 1.1.6 and 1.1.7.

This implies that ŶG is an irreducible projective variety. Furthermore,
we have that the map π̂ : ŶG 7→ P(C| n) is surjective and restricts to an

isomorphism on M̂G. As in the non projective case, the boundary of ŶG is a
divisor with normal crossings whose irreducible components are smooth and
in bijective correspondence with the elements of G − {(C| n)∗}.

We also note that the intersection D̂S of a collection D̂A1 , . . . D̂An of
irreducible components of the boundary is non empty if and only if S =
{A1, . . . An} is a G-nested set. The corresponding transversal irreducible

variety is identified with
⋂

A∈S∪{(C| n
)∗}

DA in YG.

Remark. All the above mentioned facts are consequences (actually particular
cases) of Theorem 1.1.7.

In [4], De Concini and Procesi pointed out some further deeper facts

about the geometry of the compact model ŶG, namely about the structure
of the subvarieties D̂S which are intersection of irreducible divisors in ŶG.
Before recalling these results, we need to introduce some notation.

Let G be a building set of subspaces ( containing (C| n)∗) and let S be a
G-nested set. Given A ∈ S, consider the (non zero) vector space

WA = A/(
∑
B ∈ S
B ( A

B)

and call by πA : A 7→ WA the canonical projection. Let us put

GS
A := {D ⊂ WA | there existsB ∈ G, B ⊂ A with πA(B) = D}

We note that (CG)
S
A is closed under sum and GS

A ⊂ (CG)
S
A is building.
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Theorem 1.2.2 (see Theorem 4.3 of [4] ) Let G be as before, and S be a G-
nested set such that (C| n)∗ /∈ S. Let D̂S ⊂ ŶG be the subvariety D̂S =

⋂
A∈S

D̂A.

Then we have a natural isomorphism

D̂S
∼=
∏
A∈S

ŶGS
A

where ŶGS
A

is a compact projective De Concini - Procesi model.

1.3 The cohomology

A large part of this thesis is devoted to the study of the integer cohomol-
ogy rings of the varieties YG and of their subvarieties DS (this includes, as
mentioned in the preceding section, the case of compact models).

In [4] a presentation of these cohomology rings as quotients of polynomial
algebras has been provided. Let us recall the results in [4] and give a sketch
of the proof.

Suppose we have fixed a G-nested set S ⊂ G. Let us take a subset H ⊂ G
such that there is an element B ∈ G with the property that A ( B for all
A ∈ H. Set SB = {A ∈ S : A ( B}. As in [4], we define the non negative
integer dS

H,B.

Definition 1.3.1

dS
H,B = dimB − dim

( ∑
A∈H∪SB

A

)
Then we consider the polynomial ring ZZ[cA] where the variables cA are in-
dexed by the elements of G; in ZZ[cA] we can define the following polynomials:

Definition 1.3.2

P S
H,B =

(∏
A∈H

cA

)(∑
B⊂C

cC

)dS
H,B

Let us now call by IS the ideal in ZZ[cA] generated by these polynomials, for
fixed S and varying H, B.

Theorem 1.3.1 (see [4]) The natural map φ : ZZ[cA] 7→ H∗(DS,ZZ), defined
by sending cA to the cohomology class [DA] associated to the divisor DA

(restricted to DS), induces an isomorphism between ZZ[cA]/IS and H∗(DS,ZZ).
Therefore each variable cA has degree 2. In particular, keeping the above
definitions in the case S = ∅, we obtain

ZZ[cA]/I∅ ' H∗(YG,ZZ)
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Remark. A consequence of Theorem 1.2.1 is that the cohomology rings
of YG and ŶG are isomorphic. The description of the cohomology rings
of H∗(DS,ZZ) provided by Theorem 1.3.1 explicitly shows that we have

H∗(YG,ZZ) = H∗(ŶG,ZZ).

Before giving a proof of the theorem, we focus on the following lemma
since it singles out a property of the ideals IS which we will refer to in the
sequel.

Lemma 1.3.2 Let H ⊂ G be such that H ∪ S is not G-nested. Then∏
A∈H

cA ∈ IS

Proof.
First we prove that there is an element C ∈ G which is a sum of a family

of subspaces H′ ∪S ′ (H′ ⊂ H, S ′ ⊂ S) and which properly contains all these
summands.

Let us put L0 = H∪S. Let L1 be the set of non maximal elements in L0

and let recursively Lk be (Lk−1)1. We set < Lj >=
∑

A∈Lj
A, then we call

by < Lj >= Aj
1 ⊕ · · · ⊕ Aj

rj
the decomposition of < Lj > in G.

We immediately observe that since by definition, for every j, the Aj
r

are the maximal elements of G contained in < Lj >, the set T = {Aj
k}

constructed in this way is G-nested.
Given that L0 is not G-nested, there must be an element B ∈ L0 such

that B /∈ T . Let h be the maximal index such that B ⊂< Lh >. Then by
the maximality of the Ah

m’s, we have B ⊂ Ah
s for a certain s.

By construction Ah
s is a sum of subspaces in L0. Now B is maximal among

the subspaces of L0 contained in Ah
s otherwise it would be B ⊂< Lh+1 >.

Furthermore, B 6= Ah
s since B /∈ T , thus Ah

s /∈ L0. Then Ah
s = C has the

requested property, that is to say, we can write C =
∑

D∈H′∪S′ D.
Now, since S is G nested, H′ must be not empty and S ′ ⊂ SC . It follows

that dS
H′,C = 0 and therefore P S

H′,C =
∏

A∈H′
cA. Since

∏
A∈H

cA is divided by

P S
H′,C , it lies in IS.

The preceding lemma allows us to say that IS is generated by the poly-

nomials
∏
A∈H

cA (when H ∪ S is not G-nested) and by the polynomials P S
H,B

( when H ∪ S is G-nested).
Proof of the Theorem.

The proof is by induction on the cardinality of the building set G. The
first step |G| = 0 is trivial. Then we will make use of the blow-up property
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described in Theorem 1.1.7 and of the following lemma stated by Keel in
[16].

Lemma 1.3.3 1. Let Z be a smooth variety and W ⊂ Z a smooth sub-
variety. Assume that the restriction map H∗(Z,ZZ) → H∗(W,ZZ) is
surjective with kernel J . Let Z ′ denote the blow up of Z along W .
Denote by E both the exceptional divisor and its class in H2(Z ′,ZZ).
Then

H∗(Z ′,ZZ) ≡ H∗(Z,ZZ)[E]/(J · E,PZ/W (−E)),

where PZ/W (x) ∈ H∗(Z,ZZ)[x] is any polynomial whose restriction to
H∗(W,ZZ)[x] gives the Chern polynomial of the normal bundle of W in
Z.

2. H∗(E,ZZ) ≡ H∗(W,ZZ)[E]/(PZ/W (−E)), where PZ/W (x) ∈ H∗(W,ZZ)[x]
denotes the Chern polynomial of the normal bundle of W in Z.

Let us assume that the claim is true for building sets of cardinality strictly
lesser than p > 0 and let F be a building set of cardinality p. Furthermore,
let A be a minimal element in F . Then by Theorem 1.1.7 we know that
YF is obtained from YG, where G := F − {A}, by blowing up the proper
transform ZA of A⊥. We take a G-nested set S in F and want to compute
the cohomology of DS. Let us denote by G the building family of subspaces
B = B + A/A ( B ∈ G) which defines the variety ZA = YG. In general, if

H = {H1, . . . , Hr} ⊂ G, we shall set H = {H1, . . . , Hr} ⊂ G.
As a matter of notation, if S ⊂ G we wish to distinguish the variety

DS ⊂ YF by the variety defined by the same set in YG, which we will denote
by D′

S ( similarly for IS and I ′S , P
S
H,B, P

′S
H,B).

Let us now present the cohomology rings of YG and its subvarieties under
consideration as quotients of the polynomial ring ZZ[c′B] for B ∈ G, where the
generators c′B correspond to the cohomology classes of the divisors D′

B.

Remark that, under the blowing up map π, we have

π∗([D′
B]) = [DB]

From the above considerations we have a commutative diagram

ZZ[c′B]B∈G
φ′−−−→ H∗(YG,ZZ)

γ

y π∗

y
ZZ[cB]B∈F

φ−−−→ H∗(YF ,ZZ)

where γ(c′B) = cB.
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Moreover for the inclusion i : ZA = YG → YG we have a commutative
diagram

ZZ[c′B]B∈G
φ′−−−→ H∗(YG,ZZ)

γ

y i∗

y
ZZ[cB]B∈G

φ−−−→ H∗(YG,ZZ)

(1.4)

where γ(c′B) is equal to cB if {B,A} is G-nested and to 0 otherwise. Notice
that in particular, since A is minimal, if H ∪ S ⊂ G, and if B ∈ G properly
contains all the elements in H, we have

P S
H,B = γP ′S

H,B (1.5)

Case 1. S ∪ {A} is not F -nested.
In this case the variety ZA does not meet the varietyD′

S and we haveD′
S =

DS. Also, by Lemma 1.3.2, cA ∈ IS. By the relation 1.5, we immediately
deduce that IS is generated by γ(I ′S) and cA as desired.
Case 2. S does not contain A and S ∪ A is F -nested.

In this case the variety D′
S intersects transversally ZA and DS is the blow

up of D′
S along ZS

A := ZA ∩D′
S.

The divisor D′
C , for {C,A} G-nested, intersects ZA in the divisor DC . We

thus have that ZS
A is the subvariety DS in YG and, by the inductive assump-

tions, the cohomology of ZS
A is generated by the image of the cohomology

of D′
S and we can apply Lemma 1.3.3. As for the normal bundle of ZS

A in
D′

S, we have, by transversality, that it is the restriction to ZS
A of the nor-

mal bundle of ZA in YG. With the notations of Lemma 1.3.3, in this case
PZ/W (−E) = (−

∑
B⊇A[DB])dim(A) since in [4] it is easily shown that the

Chern polynomial of the normal bundle of ZA in YF is

(t−
∑
B)A

[DB])dim(A).

Let IS
A denote the kernel of the map

ZZ[c′B]
φS→ H∗(DS,ZZ)

j∗→ H∗(ZSA,ZZ)

where j is the inclusion. Using the diagram (1.4) and the inductive assump-
tions we immediately deduce that j∗ ◦ φS is surjective and that IS

A coincides
with the kernel of φS ◦ γ.

We must thus show by Lemma 1.3.3 that

IS = ((
∑
B⊇A

cB)dim(A), cAγ(I
S
A), γ(I ′S)) := JS.

Let us first show that IS ⊃ JS. By 1.5 we get that γ(I ′S) ⊂ IS, but we
also have (

∑
B⊇A cB)dim(A) = P S

∅,A ∈ IS.
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Finally we need to show that cAγ(I
S
A) ⊂ IS . Recall that IS

A = γ−1(IS)

and that IS is generated by the polynomials P S
H,B

. Notice that, since ker γ is

generated by the c′B such that {A,B} is not F -nested, clearly cAγ(kerγ) ⊂
IS. So we are reduced to showing that for any polynomial P S

H,B
there is a

representative P ′ ∈ ZZ[c′B] such that cAγ(P
′) ∈ IS.

Write G = G1 ∪ G2, where G1 is the set of elements in G whose preimage
under the quotient homomorphism q : V ∗ → V /A (this preimage is well
defined by the building property) is in G, and G2 = G−G1. We can now define
a unique lifting of G to G as follows. If B ∈ G1 we lift it to q−1(B), otherwise
we note that, for the building property, q−1(B) /∈ G can be expressed as the
direct sum A⊕B′ (with B′ ∈ G) and we lift B to B′.

Now take a polynomial P S
H,B

. Using our lifting to lift H to H and B to B

we can consider the polynomial P ′S
H,B. We easily see that unless H∪SB ⊂ G2

and B ∈ G1 we have γ(P ′S
H,B) = P S

H,B
. If on the other hand H ∪ SB ⊂ G2

and B ∈ G1 then P ′S
H,B is divisible by (

∑
C⊇B cC)dimA and, if we set Q′S

H,B =

P ′S
H,B/(

∑
C⊇B cC)dimA, we obtain that γ(Q′S

H,B) = P S
H,B

.

Now in the first case P ′S
H,B ∈ I ′S so our claim is obvious. In the second

cAγ(Q
′S
H,B) = P S

H∪{A},B ∈ IS.

Then we must show IS ⊂ JS. From the previous analysis γ(P ′S
H,B) = P S

H,B

so we only have to consider the case in which A appears in H or A = B.
Now A = B can occur only when H = ∅ and we have already treated this
case. Let now A ∈ H. We immediately deduce from our previous analysis
that P S

H,B = cAγ(P
′) with P ′ ∈ IS

A.
Case 3. S = S ′ ∪ {A}.

In this case DS is the exceptional divisor in DS′ or, equivalently, the
preimage in YF of ZS

A. Our claim then follows by a completely similar argu-
ment to the above described one, using Lemma 1.3.3.

Remark. This proof is essentially analogous to the one provided in [4]: it is
shorter since it uses Theorem 1.1.7 whose statement is slightly different from
the corresponding one in [4].
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Chapter 2

Root hyperplane arrangements

2.1 De Concini-Procesi models for root ar-

rangements

An important application of the theory exposed in the preceding chapter is
the study of the De Concini -Procesi models of root hyperplane arrangements.

Here for “root hyperplane arrangement” we mean a complexified arrange-
ment A∗Φ ⊂ C| n provided by the hyperplanes orthogonal to the roots of a
complexified irreducible root system Φ of dimension n in (C| n)∗.

In particular, we will deal with the De Concini-Procesi compact models
ŶF , where F is the building set of irreducibles which refines A∗Φ. This means
that F consists of the irreducible subspaces in CAΦ

(note that F in particular
contains all the linear subspaces C| θ, where θ is a root of Φ). The following
proposition gives a characterization of F :

Proposition 2.1.1 A subspace A ⊂ (C| n)∗, spanned by some of the roots in
Φ, belongs to F if and only if ΦA = Φ ∩ A is an irreducible root subsystem
of Φ. In particular, (C| n)∗ belongs to F .

Proof.
Let us consider a subspace A which is spanned by roots and such that

ΦA = Φ ∩ A is an irreducible root subsystem of Φ. We will prove that A
belongs to F (note that the case n = 1 is obvious, hence we suppose dim
A ≥ 2).

If A /∈ F we could find a decomposition (in the sense of Definition 1.1.2)
into irreducibles A1 ⊕ A2 ⊕ · · · ⊕ Ak = A (k > 1). Let us call by ΦAi

the
intersections Φ ∩ Ai (i = 1, . . . , k). Since ΦA is an irreducible root system,
we can find a root α ∈ ΦA1 and a root β ∈ ΦAj

for a certain j such that
(α, β) 6= 0 (here ( , ) is the standard symmetric bilinear form on (C| n)∗).
Therefore, by the elementary properties of root systems (see [15]), α + β (if
(α, β) < 0) or α − β ( if (α, β) > 0) belongs to ΦA. Let us suppose that
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(α + β) ∈ Φ, the other case being analogous; now, α + β does not belong
to Ai for any i = 1, . . . , k since the sum A1 ⊕ A2 ⊕ · · · ⊕ Ak is direct. This
contradicts the fact that A1 ⊕ A2 ⊕ · · · ⊕ Ak = A is a decomposition, given
that C| (α+ β) 6= {0} =

⊕k
i=1 (Ai ∩ C| (α+ β)).

Let us now consider a subspace A ∈ F and prove that ΦA = Φ ∩ A is
an irreducible root system. If this was not the case, we could find some non
empty irreducible pairwise orthogonal root systems Φ1, . . . ,Φs (s > 1) such
that

⋃s
j=1 Φj = ΦA. Now, calling by Bi the span of Φi (i = 1, . . . , s), we

have that B1 ⊕ B2 · · · ⊕ Bs = A. Furthermore, taking a subspace C ⊂ A
spanned by roots and calling by ΦC the intersection Φ∩C, we have that ΦC

is the disjoint union of the pairwise orthogonal subsystems ΦC ∩ Φ1,ΦC ∩
Φ2, . . . ,ΦC ∩ Φs (some of them may be empty). Therefore C is equal to
(C ∩B1)⊕ · · · ⊕ (C ∩B2). This means that B1 ⊕ · · · ⊕Bs is a (non trivial)
decomposition of A, contradicting the assumption A ∈ F .

A remarkable property of the root arrangement A∗Φ is that the De Concini

-Procesi model ŶF can be obtained via an embedding ofMF into a product
of projective lines P1 (= P(C| 2)).

In other words, one does not need to embed MF in the product of the
various P(C| n/A⊥) (A ∈ F), but it suffices to consider only the P(C| n/B⊥)
with B ∈ F and dimB = 2, as it is shown by the following theorem.

Theorem 2.1.2 Let F be the building set of irreducibles which refines a root
hyperplane arrangement A∗Φ. Then the restriction to ŶF of the projection∏

A∈F

P(C| n/A⊥) 7→
∏

A ∈ F
dimA = 2

P(C| n/A⊥)

induces a closed embedding

ζ : ŶF 7→
∏

A ∈ F
dimA = 2

P(C| n/A⊥)

Proof.
We can prove the theorem using local coordinates. Let us first choose a

suitable collection of open charts.

Lemma 2.1.3 We can choose an open covering U of ŶF made by open charts
U b

S of the following kind: S is a maximal F-nested set which contains (C| n)∗;
b is a marked basis, consisting of roots (i.e., b ⊂ Φ), adapted to S.

30



Proof of the Lemma.

We begin by observing that the cardinality of a maximal F -nested set
S is equal to n and that

∑
A∈S A = (C| n)∗ (see Proposition 1.1 (2) in [5]).

Therefore S contains (C| n)∗; otherwise, calling by B1, B2, . . . , Br (r ≥ 2) the
maximal elements in S, we should have B1 ⊕ B2 ⊕ · · · ⊕ Br = (C| n)∗. But
this is impossible since (C| n)∗ ∈ F , S is F -nested and B1 ⊕ B2 ⊕ · · · ⊕ Br is
not the decomposition of (C| n)∗ in F .

Let us now show that we can choose marked bases, made by roots,
adapted to S. First we observe that, since |S| = n, every element of a
basis adapted to S is marked. Then we recall the following algorithm (see
Chapter 1, Section 1) which selects a suitable collection of adapted (marked)
bases for S. Choose for every B ∈ S a basis b(B) of B made by vectors not
contained in any C ( B, C ∈ S. Choose a vector xB ∈ b(B) for every B ∈ S.
Then these vectors are linearly independent and give a basis of (C| n)∗ adapted
to S. If we fix the bases b(B) (B ∈ S) and perform the above algorithm in
all the possible ways (that is to say, if we choose the vectors xB in all the
possible ways), we get a family Θ(S) of adapted (marked) bases. Then the
collection of open charts U b

S, where S ranges over the maximal nested sets in

F and b ranges over Θ(S), is a covering of ŶF . Therefore we have to prove
that, for every element B ∈ S, we can choose a basis of B consisting of roots
which belong to B −

⋃
A∈SB

A, where SB = {C ∈ S | C ( B}.
We will construct such a basis using the following two-steps algorithm.

Let A1, . . . , Ak be the maximal elements in SB. As a preliminary step, we
note that we can find a root α in B−

⊕k
i=1Ai since B is generated by roots.

Step 1. For every 1 ≤ i ≤ k, let us choose a basis ∆i for the irreducible
root system ΦAi

= Φ∩Ai. Then, since ΦB = Φ∩B is irreducible, there exists
at least an i and a root βi of ∆i such that (α, βi) 6= 0. Therefore α + β (if
(α, βi) < 0) or α− β (if (α, βi) > 0) is a root in ΦB ∩

(
B −

⋃
A∈SB

A
)
. Now

let us consider all the other roots of the basis ∆i. If γ ∈ ∆i and (α, γ) 6= 0,
we find, as before, α− γ or α+ γ in ΦB ∩

(
B −

⋃
A∈SB

A
)
. If δ ∈ ∆i is such

that (α, δ) = 0, we can consider the set Γδ of all the roots θ in ∆i such that
(α, θ) 6= 0. Then we can form the subset Γδ′ of Γδ made by all the roots
of Γδ which have minimal distance from δ (where the distance is the graph
distance in the Dynkin diagram). Finally we can choose in a canonical way
a root ε among all the roots of Γδ′ (for example, we can take ε to be the
minimal one with respect to a previously fixed total order in Φ). Now, if
δ, ε1, ε2, . . . , εs, ε are all the roots of ∆i which lie in the path of the Dynkin
diagram of ΦAi

which connects δ to ε, it turns out that δ′ = δ + ε+
∑s

i=1 εi

is a root in ΦAi
. Moreover, we have that (δ′, α) 6= 0 and α− δ′ or α+ δ′ is in

ΦB ∩
(
B −

⋃
A∈SB

A
)
.

Repeating this construction for every root in ∆i we find |∆i|+ 1 linearly
independent elements in ΦB∩

(
B −

⋃
A∈SB

A
)
; one of these elements is α and

the other elements are of type α − νi (i = 1, . . . , |∆i|) where νi are linearly
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independents roots of ΦAi
.

Step 2. Let us consider the root α and search for a j 6= i such that a
root βj of the basis ∆j of ΦAj

satisfies (α, βj) 6= 0. If such a j does not exist
we search again considering α − ν1 instead of α. If we fail again we search
considering α − ν2 instead of α − ν1 and so further. Since Φ is irreducible,
one among the roots α, α− ν1, . . . , α− ν|∆i| (say α− νī ) has non zero scalar
product with a root βj of ∆j for a certain j 6= i, therefore after some steps
our search succeeds.

Conclusion. Then we can repeat the construction of Step 1 with the
root α−νī and the basis ∆j. Thus we find |∆j| linearly independent elements
in ΦB ∩

(
B −

⋃
A∈SB

A
)

which, together with the |∆i| + 1 we found before,
give |∆i|+ |∆j|+1 linearly independent roots in B−

⋃
A∈SB

A. One of these
roots is α and the others are of type α−µ with µ a root in the span of Φi∪Φj.
After k applications of our two-steps algorithm we find a basis of B made by
roots which belong to B −

⋃
A∈SB

A, which is what we were searching for.

In what follows we will use an open covering U with the properties de-
scribed in the lemma. Let us consider U b

S ∈ U : we will prove that ζ restricted
to U b

S is an open embedding by showing that there is a local inverse

ηb
S : ζ(U b

S) 7→ ŶF

For every E ∈ S, let us call by γE the element of b which belongs to E −⋃
C∈SE

C. Moreover, for every D ∈ F , let us call by πD the projection

πD : ŶF 7→ P
(
C| n/D⊥)

Therefore we can define ηb
S by defining, for every D ∈ F , the morphism

πD o η
b
S (note that the case dim D = 2 is obvious).

Let us first consider the case D ∈ S. Reasoning in the same way as in the
proof of the Lemma 2.1.3, we can find a basis γD, γD −µ1, . . . , γD −µdimD−1

of D where the µi and the γD − µi are roots and (γD, µi) 6= 0 for every i =
1, . . . , dimD−1. This means that the two dimensional subspaces < γD, µi >
spanned by γD and µi (i = 1, . . . , dimD − 1) belong to F .

Furthermore, if we take a point p ∈ ζ(U b
S) and denote by [pγD

, pµi
] its

homogeneous coordinates in P
(
C| n/ < γD, µi >

⊥) with respect to the basis
dual to γD, µi, we can consider pγD

= 1 by the definition of U b
S.

Now, given C ∈ SD, we can write

γC =
dimD−1∑

r=1

ar(C)µr

for certain scalars ar(C). Therefore we can define πD o η
b
S(p) giving its pro-

jective coordinates in terms of the basis dual to γD, γC (C ∈ SD): we put

γD

(
πD o η

b
S(p)

)
= 1
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and

γC

(
πD o η

b
S(p)

)
=

dimD−1∑
r=1

ar(C)pµr

Now it remains the case whenD /∈ S. Keeping the notation of Chapter 1, Sec-
tion 1, we call by pS(D) the minimal (with respect to inclusion) subspace in S
which includes D. As before, we find a basis γpS(D), µ1, . . . , µdimpS(D)−1, con-
sisting of roots, of pS(D) such that (γpS(D), µl) 6= 0 for every l = 1, ..,dim pS(D)−
1. After choosing a basis e1, . . . , edimD of D, we can write, for every j =
1, . . . , dimD

ej = a0(j)γpS(D) +

dimpS(D)−1∑
r=1

ar(j)µr

Therefore we can define the projective coordinates of πD o η
b
S(p) (in terms of

the basis dual to e1, . . . , edimD ) in the following way:

ej

(
πD o η

b
S(p)

)
= a0(j) +

dimpS(D)−1∑
r=1

ar(j)pµr

(here [pγpS(D)
, pµr ] are the homogeneous coordinates in P

(
C| n/ < γpS(D), µr >

⊥)
with respect to the basis dual to γpS(D), µr, and we take pγpS(D)

= 1). By con-

struction, the above defined map ηb
S is a morphism and it is the inverse of

ζ restricted to U b
S. It follows that ζ restricted to any U b

S is an isomorphism

with its image; therefore ζ(ŶF) is smooth and ζ is an open embedding unless

it has an exceptional subvariety, i.e. a subvariety Z ⊂ ŶF such that codim
Z = 1 but codim ζ(Z) ≥ 2. But since ŶF is covered by a finite number of
coordinate charts such a subvariety cannot exist.

In this thesis we will deal with the root arrangements in C| n associated
to the root systems of types An, Bn, Dn, which will be denoted respectively
by A∗n, B∗n and D∗n respectively (the root arrangement C∗n associated with
the root system of type Cn will be shown to coincide with B∗n) and with
the associated root systems of irreducibles FAn , FBn , and FDn . In the next
section we will focus on the consequences of Theorem 2.1.2 in the An case,
showing that, for every integer n ≥ 3, ŶFAn−1

and the moduli space M0,n+1

of n+ 1-pointed stable curves of genus 0 are isomorphic.

2.2 The braid arrangement and the moduli

space of pointed curves of genus 0

Let us start from a realization of the moduli space M0,n+1 of n + 1-pointed
curves of genus 0.
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Definition 2.2.1

M0,n+1 = SL(2) \

 (p0, . . . , pn) ∈ P1 × . . .×P1︸ ︷︷ ︸
n+1 times

| pi 6= pj ∀ i 6= j


where SL(2) acts componentwise.

Given an element p ∈M0,n+1, after making SL(2) to act, we can canonically
write

p = [(0, 1), (1, 0), (1, 1), (x1, y1), . . . , (xn−2, yn−2)]

As a matter of notation, here, and everywhere we deal with orbits, the brack-
ets mean:“equivalence class of”.

It follows that M0,n+1 is in bijective correspondence with the set

M̂0,n+1 =

 (q1, . . . , qn−2) ∈ P1 × . . .×P1︸ ︷︷ ︸
n−2 times

| qi 6= qj, qi 6= 1, 0,∞


A relevant point is that we can also give another description of M̂0,n+1, show-

ing that it can be identified with the complement M̂An−1 of the projective
arrangement of type An−1.

In fact, let us consider C| n and the braid arrangement, that is to say, the
hyperplane arrangement given by the hyperplanes zij : xj − xi = 0, where
xi ∈ (C| n)∗ (i = 1, . . . , n) are the coordinate functions. We note that the
intersection of all the hyperplanes is the subspace N = C| (1, . . . , 1︸ ︷︷ ︸

n times

). We

can thus consider the quotient V = C| n/N equipped with the arrangement
A∗n−1 provided by the images of the hyperplanes zij via the quotient map
π : C| n 7→ V . We can immediately see that A∗n−1 is a root arrangement of
type An−1. We will call by thk the functionals in V ∗ the zeroes of which form
the hyperplane π(zhk) in V and such that (thk, thk) = 2 (where ( , ) is the
scalar product in V ∗).

Then {thk | h, k = 1, . . . , n} ∪ {−thk | h, k = 1, . . . , n} is a root system
(which we will denote by ΦAn−1) of type An−1 and we observe that the set
{t12, t23, . . . , t(n−1)n} can be taken as a basis.

Let us now call by ψ the projection map ψ : V 7→ P(V ) and consider

the projectivization of A∗n−1. According to our notation, we call by M̂An−1

the complement in P(V ) of the union of the images ψ(D) (D ∈ A∗n−1).

Theorem 2.2.1 There is a bijective map between M̂An−1 and M̂0,n+1 that

gives rise to an isomorphism between M̂An−1 and M0,n+1.
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Proof.
Let us choose in V the basis {v2, . . . , vn} dual to the basis {t12, t13, . . . , t1n}

of V ∗. We note that a set of representatives for the vj’s can be chosen as
follows: vj = π((0, . . . , 0, 1, 0, . . . , 0)) where the only non zero entry is the
j-th.

Then we can define a map φ : M̂An−1 7→ M̂0,n+1:

φ(γ1, . . . , γn−1) = ((γ1, γ2), (γ1, γ3), . . . , (γ1, γn−1))

Note that if γj = 0 for a certain j, then (γ1, . . . , γn−1) ∈ H1(j+1) and if
γi = γj (i < j) then (γ1, . . . , γn−1) ∈ H(i+1)(j+1). This implies that φ is
well defined. The injectivity is trivial, while the surjectivity is a consequence
of the above remarks, a right inverse being given by the map θ such that
θ((1, r1), . . . , (1, rn−2)) = (1, r1, . . . , rn−2).

The above theorem is the reason of the connections between the theory of
hyperplane arrangements and the theory of moduli spaces of pointed curves
of genus 0. In order to examine closely these connections, let us now focus
on the arrangement A∗n−1, our aim being to describe the De Concini-Procesi

model ŶFAn−1
.

The elements of FAn−1 are the subspaces of V ∗ spanned by the irreducible
root subsystems of ΦAn−1 (see Proposition 2.1.1). These subspaces can be
described by means of a collection of subsets of {1, 2, . . . , n}; in fact, given
a subset ∆ = {i1, . . . , ip} ⊂ {1, . . . , n} with |∆| ≥ 2, the subspace ∆ ⊂ V ∗,
generated by all the functionals tij such that {i, j} ⊂ ∆, is irreducible (a basis
of ∆ ∩ ΦAn−1 is given by ti1i2 , ti2i3 , . . . , tip−1ip). Furthermore, the following
proposition shows that all the elements of FAn−1 can be obtained in this way.

Proposition 2.2.2 The above described correspondence between the elements
of FAn−1 and the subsets of {1, . . . , n} with cardinality greater than or equal
to 2 is bijective.

Proof.
We have to prove that every element of FAn−1 can be determined by

providing a subset of {1, . . . , n}.
We need first to recall a well-known algorithm (see [6]) that, given a root

system Φ, allows us to find the bases of all the root subsystems of Φ, starting
from the bases of Φ.

Let us consider a basis ∆ of Φ, the Dynkin diagram DΦ of Φ and its affine
extension D̂Φ: the latter is obtained by adding to DΦ a vertex representing
the negative of the longest root of Φ. For instance, the diagrams in the An,
Bn and Dn cases are the following ones:

An
s s s s s s s s ss s s s s s s s�������

XXXXXXX
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We can now describe the steps of the algorithm: consider D̂Φ and cancel
a vertex v representing a simple root and the open part of all the edges which
contain v. Then what remains is a Dynkin diagram DΦ1 associated with a
certain root system Φ1. Take a connected part of DΦ1 , consider its affine ex-
tension and continue. The connected parts of the Dynkin diagrams obtained
via this algorithm provide the bases of all the irreducible root subsystems of
Φ.

Let us now return to the root system ΦAn−1 where the roots are given

by the functionals tij. Looking at the Dynkin diagrams DΦAn−1
and D̂ΦAn−1

it follows that an irreducible root subsystem of ΦAn−1 is determined by a
connected Dynkin diagram of type Am whose vertices represent roots of the
following kind: ti1i2 , ti2i3 , . . . , timim+1 . It is now immediate to check that this
root subsystem is made by all the roots tij with {i, j} ⊂ {i1, . . . , im+1}.

As a matter of notation, given an element A ∈ FAn−1 , we will call by A
the associated subset A ⊂ {1, . . . , n}. Note that the dimension of A over C|

is equal to |A| − 1.

Let us now study the nested sets in FAn−1 . First we observe that, since
FAn−1 is the building set of irreducibles, by definition a FAn−1-nested set is
nothing else than a nested set. Therefore one can easily see that a collection
S of subsets of {1, . . . , n} corresponds to a nested set in FAn−1 if and only if,
for every A,B ∈ S, either A ∩B = ∅ or one of these subsets is included into
the other.

We now recall that Yuzvinsky, in his paper [25], associated an oriented
graph to every nested set T ⊂ FAn−1 in the following way. Take as vertices
the elements of T and the numbers 1, . . . , n. Let then A and B be elements
in T such that A is maximal in TB = {C ∈ T | C ( B}: then draw an edge
which joins the vertices A and B and is oriented from B to A.

If, given A ∈ T , the set TA = {C ∈ T |C ( A} is empty, for each number
k ∈ A ⊂ {1, . . . , n}, draw an edge which joins the vertices A and the number
k and is oriented from A to k.

The resulting graph is a forest on n leaves (which are identified with the
vertices 1, . . . , n), the connected components of which are rooted oriented
trees. We will focus on these graphs in the next chapters, given that they
play a crucial role in the study of the cohomology ring H∗(ŶFAn−1

,ZZ).

36



We can now return to the moduli spaces and consider the compactifi-
cation M0,n+1 of M0,n+1, that is to say, the moduli spaces of stable n + 1-
pointed curves of genus 0. What we want to point out is that the isomor-
phism of Theorem 2.2.1 between the open subvarieties M̂An−1 ⊂ ŶFAn−1

and

M0,n+1 ⊂ M0,n+1 can be extended to the boundary, that is to say, we have

an isomorphism between ŶFAn−1
and M0,n+1.

To prove this, we start by giving a description of the elements of M0,n+1

as connected tree-like stable n + 1-pointed curves. This means that we are
considering elements of this kind
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Here each line represents an irreducible curve of genus 0 (i.e, P1 ), ev-
ery double point represents a point of transversal intersection between the
irreducible curves, the other special points, i.e. the punctures, are numbered
from 0 to n and the stability is given by the request that the special points
(punctures or double points) on each irreducible component are at least 3.

It is well known that there is a morphism

µn+1 : M0,n+1 7→M0,n

obtained by forgetting the point labeled with n and, if it is the case, collapsing
some irreducible components. At the same way we can construct the maps
µi which “forget” the point labeled with i (i = 1, . . . , n− 1).

Let us then call M0,ijk (1 ≤ i < j < k ≤ n) the moduli space M0,4 in
which the points are labeled using the numbers i, j, k. A composition of some
of the maps µi gives a morphism

M0,n+1 7→M0,ijk

Now the morphism we are interested in is

ν : M0,n+1 7→
∏

i, j, k ∈ {1, . . . , n}
i < j < k

M0,ijk

which is given by the above described projections to each component.

Proposition 2.2.3 The morphism ν is injective.
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Proof.
First we note that we can reduce ourselves to prove that, for every n, the

map
n∏

i=1

µi : M0,n+1 7→
∏

1≤i≤n

M0,n

is injective. Therefore we have to check that an element p ∈ M0,n+1 is
uniquely determined by its image

∏
i µi(p). For this we notice that if there

is an irreducible component of p which has at least two marked points (say
“i” and “j” ) different from “0” and at least four special points, p can be
determined by knowing µi(p) and µj(p).

Let us now assume that n ≥ 6 and that p has not irreducible components
with the above mentioned properties. Then in every irreducible component
of p there are at most two marked points and thus, being n+1 ≥ 7, there are
at least four irreducible components. In particular there are two irreducible
components c1, c2 of p, which some marked points different from “0” belong
to, and such that c1 ∩ c2 = ∅. Now, if the point “i” belongs to c1 and the
point “j” belongs to c2 (i, j 6= 0), p is determined by µi(p) and µj(p). Then
our claim is proved after a case-by-case check for 3 ≤ n ≤ 5.

Now we note that in the theory of De Concini - Procesi models we came
across a map similar to

∏
i µi, namely the map ζ of Theorem 2.1.2, specialized

to the An−1 case. In fact, given

ζ : ŶFAn−1
7→

∏
A ∈ FAn−1

dimA = 2

P(V/A⊥)

we observe that the irreducible two dimensional subspaces A ∈ FAn−1 can be
parametrized, according to the conventions established above, by the triples
of integers i, j, k with 1 ≤ i < j < k ≤ n. As a matter of notation, we will
call Pijk the projective space P(V/A⊥) when A = {i, j, k} ⊂ {1, . . . , n}.

Then we want to define in a suitable way an isomorphism

γ :
∏

i, j, k ∈ {1, . . . , n}
i < j < k

M0,ijk 7→
∏

i, j, k ∈ {1, . . . , n}
i < j < k

Pijk

Our request is that γ should be compatible with the isomorphism between the
subvarieties ζ(M̂FAn−1

) and M0,n+1 (notice that M̂FAn−1
= M̂An−1 since the

building set FAn−1 refinesA∗n−1). Such a γ can be obtained by identifying Pijk

with M0,ijk in the following way. Let p = [(0, 1), (1, 0), (1, 1), (x3, y3), . . . , (xn, yn)]
be a point of M0,n+1 and let us put, for convenience of notation, (x2, y2) =
(1, 1) and (x1, y1) = (1, 0).
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Then the projection of p toM0,ijk is given by [(0, 1), (xi, yi), (xj, yj), (xk, yk)]
and it can be written in canonical way if we use SL(2) to send (xi, yi) to (1, 0)
and (xj, yj) to (1, 1) (keeping fixed (0, 1)). The matrix of SL(2) we use is
(up to scalar) (

yj

xj
− yi

xi
0

− yi

xi
1

)

(note that, for every i = 1, . . . , n, xi 6= 0).

Thus we obtain
[
(0, 1), (1, 0), (1, 1), (

yj

xj
− yi

xi
,
yk

xk
− yi

xi
)
]
. If we consider the

isomorphism φ of Theorem 2.2.1 between M̂An−1 and M0,n+1, we have that
φ−1(p) = (1, y3

x3
, . . . , yn

xn
).

Let us now study the projection of φ−1(p) to Pijk. We recall that if
A = {i, j, k} ⊂ {1, . . . , n} then A⊥ is the n − 3-dimensional subspace the
elements of which have the i-th, j-th and k-th components equal. This means
that the projection of φ−1(p) to Pijk is (

yj

xj
− yi

xi
, yk

xk
− yi

xi
) in the projective

coordinates given by the vectors vj and vk (note that k > j ≥ 2). As a
consequence, we can identify Pijk with M0,ijk via γ by choosing in Pijk the
projective coordinates given by vj and vk.

Now let us consider the diagram

ŶFAn−1
M0,n+1

ζ

y ν

y∏
i, j, k ∈ {1, . . . , n}

i < j < k

Pijk
≈←−−−
γ

∏
i, j, k ∈ {1, . . . , n}

i < j < k

M0,ijk

Theorem 2.2.4 The above diagram can be completed with an isomorphism
Γ : M0,n+1 7→ ŶFAn−1

.

Proof.

First we note that γ(ν(M0,n+1)) = ζ(M̂FAn−1
) and then, since γ(ν(M0,n+1))

is closed, the closure of ζ(M̂FAn−1
) is included in γ(ν(M0,n+1)). But this

closure is equal to ζ(ŶFAn−1
). Since ζ(ŶFAn−1

) and γ(ν(M0,n+1)) are closed
and contain the same open dense subvariety, they must coincide. Then we
observe that the map ζ−1◦γ◦ν is a well defined birational morphism between
M0,n+1 and ŶFAn−1

which is also bijective, since we have proven that it is onto
and furthermore ν is injective, γ is bijective and ζ is injective. Since the two
varieties are smooth, this implies that ζ−1 ◦ γ ◦ ν is an isomorphism.
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2.3 Divisors in M 0,n+1.

Let us now focus on the map Γ and in particular on the image of the sub-
varieties in the boundary of M0,n+1. Recall that an irreducible divisor D in
the boundary of M0,n+1 can be represented (see [16]) by the picture

D = BA

HHH
HHH

HHH�
�

�
�

�
�

�

where A ⊂ {0, . . . , n} and B = {0, . . . , n} − A satisfy |A| ≥ 2, |B| ≥ 2. The
divisor D is the one which contains as an open set the set of all the elements
δ of M0,n+1 which satisfy the following property: δ has two irreducible com-
ponents such that the labels of the special points of each component are the
elements of A and B respectively.

Now, given the model ŶFAn−1
, let us call by π̂ its projection to P(V ).

Proposition 2.3.1 Given D, A and B as before, let us suppose that 0 ∈ B.
Furthermore, keeping the notation of the preceding section, let us indicate
by A the irreducible subspace in V ∗ associated to A. Then we have that
Γ(D) = DA.

Proof.
Let us consider a chart U b

S in ŶFAn−1
, where S is a FAn−1-nested set not

containing V ∗ and A ∈ S. The intersection between DA and U b
S is given

by the equation uA = 0 (recall that if A /∈ S the intersection is empty).
Therefore, given an element p in DA ∩U b

S, it satisfies the following property:

1. Given any triple (i, j, k) with 1 ≤ i < j < k ≤ n and |{i, j, k}∩A| = 2,
the projection pijk of ζ(p) to Pijk is 1,0,∞ when respectively i /∈ A,
j /∈ A, k /∈ A.

This follows by construction of the chart U b
S; let us consider for example the

case i /∈ A. The projective coordinates on Pijk are the ones provided by the
basis vj, vk of V/B⊥, where B = {i, j, k}. Thus the projection to V/B⊥ of an
element v = x2v2 + · · ·+xnvn in V is given in coordinates by (xj−xi, xk−xi)
(here we put x1 = 0) and the corresponding projective coordinates in Pijk are
[xj − xi, xk − xi]. But tjk ∈ B and its expression in terms of the coordinates
of U b

S is a multiple of uA. Since B /∈ S and DA ∩ U b
S = {uA = 0}, given

a point p ∈ DA ∩ U b
S, the projective coordinates [x2, . . . , xn] of π̂(p) satisfy

tjk((x2, . . . , xn)) = 0, that is to say, xj = xk.
Therefore, since pijk = [xj −xi, xk−xi] 6= [0, 0] by construction of U b

S, we
have pijk = [1, 1]. At the same way we can treat the cases j /∈ A, k /∈ A.
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Let us now consider the points of the divisor

D = B = {0, . . . , n} − AA

HHH
HHH

HHH�
�

�
�

�
�

�

Let q ∈ D and let us take a triple (i, j, k) with 1 ≤ i < j < k ≤ n, i /∈ A
and {j, k} ⊂ A. Then the projection γ o ν(q)ijk of γ o ν(q) to Pijk is provided
by the cross-ratio (p0, pi, pj, pk) of the special points p0, pi, pj, pk where we
have collapsed the points pj, pk to the double point of D. Then this cross
ratio is equal to 1. Reasoning in the same way when j /∈ A and k /∈ A we
can conclude that Γ(q) satisfies the property 1.

Furthermore, looking at the tree like representation of an element z ∈
M0,n+1 and at the cross ratios (p0, pi, pj, pk) we immediately see that Γ(z)
satisfies the property 1 if and only if z ∈ D. Since Γ is an isomorphism this
means that the set of elements in ŶFAn−1

which satisfy property 1 is exactly

Γ(D). Therefore DA ∩ U b
S ⊂ Γ(D) and, since DA and Γ(D) are irreducible

divisors in ŶFAn−1
, it follows that Γ(D) = DA.

As a consequence of Proposition 2.3.1, if we consider an irreducible sub-
variety T ⊂ M0,n+1 which is intersection of irreducible divisors, we can give
a simple rule which allows us to recover Γ(T ). Recall that, on one hand,
in the language of models, the subvariety Γ(T ) is described by a nested set
S ⊂ FAn−1 − V ∗, that is to say, Γ(T ) = DS =

⋂
A∈S DA (here we are consid-

ering the divisors DA with A 6= V ∗ since DV ∗ = ŶFAn−1
). On the other hand,

T can be described in M0,n+1 by a picture of this kind

ak

a3

a2
a1 ss sss ssss ss

�
�

�
�

�
�

�PPPPPPPPPPPPPP"
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where a1, . . . , ak are the irreducible components and furthermore a parti-
tion {A1, . . . , Ak} of {1, . . . , n} is provided, such that on each component aj

the labels of the points belong to Aj.
We can pass from the tree-like description of T to the nested set S as-

sociated to Γ(T ) using the following algorithm which construct the graph of
S. Before starting the algorithm, as a preliminary step, we find the curve
aj which contains the point labeled with 0 and we delete it except for its
points of intersection with the other curves. Then we label all these points
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by 0. We can now describe recursively the algorithm which we will apply on
each of the remaining connected components of the tree. Let C be one of
this components. Suppose that is made by the curves a1, a2, . . . , as, . . . , aq

and that 0 ∈ As = {0, d1, . . . , dt}. Then draw a vertex vs with as many
outgoing edges as the number of special points (labeled points plus double
points ) lying on as minus 1. These edges satisfy the following properties:
t = |As| − 1 of them connect vs with the leaves labeled by d1, . . . , dt, while
the other edges connect vs with some new vertices vi, for every i such that
ai ∩ as 6= ∅. Finally, delete as except for its points of intersection with the
other curves (if any), label these points by 0, and start again the algorithm
for every remaining connected component (i.e., given ai that intersected as,
we start by considering the already drawn vertex vi and draw as many out-
going vertices from it as the number of special points on ai minus 1.... and
so further). It is easy to check that what we get at the end is the Yuzvinsky
graph (according to the construction described in Section 2) of the nested
set S.

2.4 Combinatorics of the root arrangements

of types Bn, Cn, and Dn.

Let B∗n ⊂ C| n (resp. C∗n ⊂ C| n ) be the root hyperplane arrangement of type
Bn (resp. Cn). We observe that B∗n = C∗n. In fact, we recall that we can
choose an orthonormal basis {ω1, ω2, . . . , ωn} of the euclidean space IRn such
that the roots of type Bn are ±ωi (i = 1, . . . , n), ωi − ωj (i 6= j), ±(ωi + ωj)
(i < j). Therefore they differ only for scalar multiplication from the roots of
type Cn, which are ±2ωi (i = 1, . . . , n), ωi − ωj (i 6= j), ±(ωi + ωj) (i < j).
Thus the hyperplanes orthogonal to the roots coincide in these two cases; as
a consequence, in the sequel we will only refer to the arrangement B∗n ⊂ C| n

made by the hyperplanes of equations xi−xj = 0, xi+xj = 0 (1 ≤ i < j ≤ n)
and xi = 0 (i = 1, . . . , n). Let us call by tij, t

+
ij and ti respectively the roots

in (C| n)∗orthogonal to these hypperplanes and denote by ΦBn ⊂ (C| n)∗ the
associated root system.

As in the case of A∗n, we look for a combinatorial description of the
building set FBn , that is to say, a combinatorial description of the subspaces
in (C| n)∗ that are spanned by the irreducible root subsystems of ΦBn . Let
us describe a collection of subspaces which will be proved to be irreducible;
consider first the subspaces S⊥I orthogonal to the intersections SI of some of
the hyperplanes xi = 0:

SI = {p = (p1, . . . , pn) ∈ C| n | pi = 0 ∀i ∈ I ⊂ {1, . . . , n}}

We can identify S∗I with the subset I ⊂ {1, . . . , n} and we then say that I is
a “strong” subset of {1, . . . , n}.
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Secondly we consider the subspaces L⊥A1,A2
(A1, A2 ⊂ {1, . . . , n}) orthog-

onal to the subspaces LA1,A2 of C| n which are made by the points p =
(p1, . . . , pn) such that pi = pj when (i, j) ∈ A1 × A1 or (i, j) ∈ A2 × A2

and pi = −pk when (i, k) ∈ A1 × A2 or (i, k) ∈ A2 × A1.

The subspaces L⊥A1,A2
can therefore be identified with the unordered pairs

(A1, A2) of disjoint subsets of {1, . . . , n} such that |A1 ∪ A2| ≥ 2. This is
equivalent to saying that the elements L⊥A1,A2

are in bijective correspondence
with the subsets U ⊂ {1, . . . , n} which are equipped with a (possibly trivial)
partition U = U1 ∪ U2 (U1 ∩ U2 = ∅). The above mentioned subsets U will
be called “weak” subsets of {1, . . . , n}.

We note that the dimension of S⊥I is equal to |I| and the dimension of
L⊥A1,A2

is equal to |A1 ∪ A2| − 1.

Proposition 2.4.1 The subspaces S⊥I and L⊥A1,A2
form the building set of

irreducibles FBn.

Proof.

We will refer to the algorithm (and to the pictures of the Dynkin diagrams
of type Bn) described in the proof of Proposition 2.2.2.

In this case, the Dynkin diagrams associated to the irreducible proper
root subsystems can be of the three following types:

1) u u u u u u u u

2) u u u u u u u u�
�

�
u

3) u u u u u u u u
Now, in the first case, the vertices correspond to “long” roots, i.e., to

roots of types tij and t+ij; this means that the associated irreducible subspace

is of type L⊥A1,A2
. As an example, let us consider the graph

u u u u u
t+56−t34 −t+45t+23t12

It determines the subset {1, . . . , 6} ⊂ {1, . . . , n} equipped with the par-
tition {1, 2, 5} ∪ {3, 4, 6}. It is immediate to see that, changing the choices
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of the roots, we can obtain all the irreducibles L⊥A1,A2
; in a completely sim-

ilar (and easy) way we can check that the other two cases provide all the
subspaces of type S⊥I .

Let us now pass to the characterization of the nested sets; following [25],
we observe that the nested sets in FBn can be identified with the collections S
of elements S⊥I and L⊥A1,A2

which satisfy the following two conditions. First,
every two sets in S are either disjoint or one is embedded into the other.
Here the embedding among weak sets is understood as embedding of their
partition also. Second, no two strong sets in S are incomparable, that is to
say, they are totally ordered by inclusion.

We can now associate a graph (namely a forest) to every nested set in
FBn . This can be done as in the An case except that now the vertices of each
tree are divided in two classes, weak vertices and strong vertices (the leaves
will be considered as weak vertices). In each tree, for any strong vertex v, all
the vertices closer to the root than v are strong and the edges among them
form a topological line interval. Furthermore, a forest can have at most one
connected component with strong vertices.

We note that when we associate a weak vertex to a weak subset U of
{1, . . . , n} we “forget” the partition U = U1 ∪ U2. The following lemma will
allow us to take into account this fact in our computations.

Lemma 2.4.2 (see [25]) Let ς be a nested set in FBn, and let τ be the
function which associates forests to the nested sets. Let π be the number
of the nested sets γ such that τ(γ) = τ(ς). Then we have π = 2

∑
rk(v),

where v runs through the closest to the roots weak vertices of τ(ς) (the roots
themselves included, if it is the case), and rk(v) is the rank of the irreducible
subspace associated to v.

Proof
We observe that the closest to the roots weak vertices correspond to the max-
imal weak subsets in ς. Therefore the partitions of these sets will uniquely
define partitions on all the weak sets of ς. Let us then focus on a maximal
weak set S in ς: the number of unordered partitions of S with at most two
parts is 2|S|−1, that is to say, 2rk(vS), where vS is the vertex associated to S.
Multiplying with respect to all the maximal weak sets in S we get the result.

Let us now pass to the complex arrangement D∗n of type Dn: it is defined
in C| n by the hyperplanes xi + xj = 0 and xi − xj = 0 (1 ≤ i < j ≤ n). The
building set of irreducibles FDn can be described in the same way as FBn ,
with the only difference that every strong subset of {1, . . . , n} should have at
least 3 elements. In fact, referring to the picture of the affine Dynkin diagram
of type Dn and to the notation introduced in the Bn case, we note that the

44



diagrams associated to the irreducibles are of types 1) and 2) (there are not
irreducibles with diagrams of type 3)). This means that we can obtain all the
irreducible subspaces of type L⊥A1,A2

(associated to diagrams of type 1)) and
all the irreducibles of type S⊥I which have dimension strictly greater than
2 (associated to the diagrams of type 2) which in fact have at least three
vertices). As an example, consider the strong subset {1, 2}, corresponding to
the orthogonal of the subspace {x1 − x2 = 0} ∩ {x1 + x2 = 0}; in FDn S

⊥
{1,2}

is not irreducible since t12, t
+
12 is a decomposition.

As a consequence, the forests that we associate (see [25]) to the nested
sets in FDn are of the same kind of the forests associated to the nested sets
in FBn , except that any strong vertex should now be connected by directed
paths to at least three leaves.

We will focus again on the combinatorics of the building sets FAn , FBn

and FDn in the next chapters, when we will deal with the cohomology rings
of the corresponding De Concini - Procesi compact models.
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Chapter 3

Cohomology bases for the
models and Poincarè
polynomials

3.1 Bases for cohomology rings

Let G be a building set, and let S ⊂ G be a G-nested set. This section is
devoted to finding a ZZ-basis for the integer cohomology rings H∗(YG,ZZ) and
H∗(DS,ZZ). We note that we can regard YG as a variety DS with S = ∅.

The first step is provided by the following

Definition 3.1.1 Given G and S as above, a function f : G 7→ IN is called
G, S-admissible if it is f = 0 or if f 6= 0, supp f ∪ S is G-nested and, for
every A ∈ supp f ,

f(A) < dS
(supp f)A,A = dimA− dim

 ∑
B∈(supp f)A∪SA

B


where SA = {E ∈ S : E ( A} and (supp f)A = {E ∈ supp f : E ( A}.

Note that, since supp f ∪ S is G-nested, dS
(supp f)A,A > 0 for every A ∈

supp f .
Now, given a G, S-admissible function f , we can construct inH∗(DS,ZZ) '

ZZ[cA]/IS the monomial mf =
∏
A∈G

c
f(A)
A . We will call “G, S-admissible” such

monomials.

Theorem 3.1.1 Let G be a building set and let S ⊂ G be a G-nested set.
Then the set BG,S of G, S-admissible monomials is a ZZ-basis for H∗(DS,ZZ).
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Proof.
First we prove that the elements in BG,S span H∗(DS,ZZ).

Let mg =
∏
A∈G

c
g(A)
A , for a certain function g : G 7→ IN, be a (non zero)

monomial in H∗(DS,ZZ): because of Lemma 1.3.2, supp g ∪ S must be G-
nested. Let us now suppose that g is not G, S-admissible, i.e. there is an A ∈
supp g such that g(A) > dS

(supp g)A,A. We call such an A a “bad component”
for the monomial if it is minimal with this property, and we prove the claim
by reverse induction on the rank of bad components.

In fact if a bad component A of mg is a maximal element in G then the
polynomial P S

(supp g)A,A divides mg, therefore mg = 0 in H∗(DS,ZZ). Other-
wise, given a bad component A, we note that the polynomial ∏

B∈(supp g)A

cB

 (cA)
dS
(supp g)A,A

divides mg so, using the relation provided by P S
(supp g)A,A, (and repeating this

for all the bad components) we can express mg as sum of monomials that
are in BG,S or have bad components strictly greater than the ones of mg.
Therefore we can conclude using the inductive hypothesis.
It remains to prove the linear independence of monomials in BG,S; we will do
it first in the case S = ∅ for simplicity.
Now, given a minimal element G ∈ G and keeping the same notation as in
Theorem 1.1.7, we know that YG can be obtained by blowing up YG′ along a
subvariety isomorphic to YG. This implies that, calling by p the blowing up
map p : YG 7→ YG′ , we have

H∗(YG,ZZ) ∼= p∗H∗(YG′ ,ZZ)⊕
(
H∗(E,ZZ)/p∗H∗(YG,ZZ)

)
The exceptional divisor E is isomorphic to the projectivization of the normal
bundle of YG in YG′ . Then it is well known (see for instance [7] or [14])
that H∗(E,ZZ) is generated, as p∗H∗(YG,ZZ)-algebra, by the Chern class ζ =
c1(T ) of the tautological line bundle T 7→ E. Furthermore the class ζ has
in H∗(E,ZZ) the unique relation provided by the Chern polynomial of the
normal bundle NYG/YG′

. This, if we let χ(YG) denote the Euler-Poincarè
characteristic of YG, allows us to write (recall that the odd degree components
of H∗(YG,ZZ) are zero)

χ(YG) = χ(YG′) + (dimG− 1)χ(YG)

Therefore, in order to see that the elements in BG (here we write BG
instead of BG,∅ for brevity) give a basis, it suffices to show that

|BG| = χ(YG)
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Let us proceed by induction on the cardinality of G, the case |G| = 1 being
obvious.

Given G and G as before, we can divide admissible functions in two sets:
Z1 = {f admissible : f(G) = 0} and Z2 = {f admissible : f(G) > 0}.

We note that there is a bijective correspondence between MZ1 , the set of
monomials associated to admissible functions in Z1, and BG′ , hence we have
|Z1| = |BG′|.

Let us now recall that in Chapter 1 (see Theorem 1.1.7) we denoted
by G the building set {D = (D + G)/G : D ∈ G ′}. If f ∈ Z2 satisfies
f(B) > 0 for B 6= G, we have that either B ∩ G = {0} or G ⊂ B. This
implies that the function f̄ : G 7→ IN, associated to f and constructed by
putting f̄(D̄) = f(D) if f(D) > 0 and 0 otherwise, is G-admissible. We then
observe that the so established correspondence between Z2 and the set of
G-admissible functions is surjective and dimG − 1 to 1, so

|Z2| = |BG|(dimG − 1)

We have then proved that

|BG| = |Z1|+ |Z2| = |BG′|+ |BG|(dimG − 1)

that is to say, |BG| satisfies the same recurrence relation as χ(YG). Thus by
induction the claim (in the case S = ∅) follows.

Let now S 6= ∅ be a G-nested set: as before we can proceed by induction
on the cardinality of G (the case |G| = 1 is obvious) but we have to study
separately three cases (which are essentially the same cases as in the proof
of Theorem 1.3.1).
Case 1. S ∪ {G} is not G-nested

In this case S is G ′ nested and the restriction to DS of the natural pro-
jection p : YG 7→ YG′ is an isomorphism onto its image, which is D′

S, the
variety associated to S in YG′ . The theorem is then true, by induction, for
H∗(D′

S,ZZ), and, since a function f : G 7→ IN is S-admissible if and only if
supp f ⊂ G ′ and f|G′ is S-admissible, it is also true for H∗(DS,ZZ).
Case 2. S ∪ {G} is G-nested but G /∈ S.

In this case S is G ′-nested. Furthermore, we can consider the set S̄ =
{Ā : A ∈ S} ⊂ G which has the same cardinality as S and turns out to be
G-nested.

The geometric picture of Theorem 1.1.7 implies that, if D′
S is the sub-

variety associated to S in YG′ , then DS can be obtained by blowing up D′
S

along a subvariety isomorphic to the subvariety DS̄ in YG.
Now our setting is quite similar to the one of the case S = ∅ and the

proof is analogous. We start by noticing that, since the codimension of DS̄

in D′
S is equal to dim G, we have

χ(DS) = χ(D′
S) + (dimG− 1)χ(DS̄)
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and then it suffices to show that

|BG,S| = χ(DS)

As before, we can divide admissible functions in two sets: Z1,S = {f G, S−
admissible : f(G) = 0} and Z2,S = {f G, S − admissible : f(G) > 0}.

We note that there is a bijective correspondence between MZ1,S
, the set

of monomials associated to admissible functions in Z1,S, and BG′,S; hence
|Z1,S| = |BG′,S|.

Furthermore, if f ∈ Z2,S satisfies f(B) > 0 for B 6= G, we have that
either B ∩ G = {0} or G ⊂ B. This implies that the function f̄ : G 7→ IN,
constructed by putting f̄(D̄) = f(D) if f(D) > 0 ( D̄ = D + G/G) and 0
otherwise, is G, S̄-admissible. We then observe that the so established cor-
respondence between Z2,S and the set of G-admissible functions is surjective
and dimG − 1 to 1, so

|Z2,S| = |BG,S̄|(dimG − 1)

The claim then follows by induction since we have proved that

|BG,S| = |Z1,S|+ |Z2,S| = |BG′,S|+ |BG,S̄|(dimG − 1).

Case 3. G ∈ S.
In this case, let S̃ = S −G. Let also S̃ ⊂ G be the projection of S̃ in G:

it turns out to be G-nested. In this case DS is the exceptional divisor in DS̃,

that is to say, it is the preimage in YG of D
S̃
. Then it is a PdimG−1 bundle

over D
S̃
, so

dimZZH
∗(DS,ZZ) = (dimC| G)(dimZZH

∗(D
S̃
,ZZ))

But now, given an S-admissible function f : G 7→ IN, we see that we can

associate to it the S̃-admissible function f : G 7→ IN defined as follows:

f(D̄) = f(D) ∀ D ∈ G, D 6= G

This map is easily seen to be surjective and (dimG) to 1. Therefore

|BG,S| = (dimG)|BG,S̃
|

and the theorem is proved by induction.

Remark. We point out that the bases BG,∅ coincide, if G = F is the
building set of irreducibles which refines an hyperplane arrangement, with
Yuzvinsky’s bases (see [25]).

In the next sections we will see some remarkable examples and applica-
tions of Theorem 3.1.1.
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3.2 Poincarè polynomials for hyperplane ar-

rangements of type An, Bn, Dn

As a first application of the result of the preceding section we can de-
scribe explicitely, following [25], the integer bases (which will be called “
Yuzvinsky bases” ) for the ZZ-modules H∗(YF ,ZZ) in the case when F =
FAn−1 , FBn , FDn is one of the building set of irreducibles introduced in the
preceding chapter.

A consequence of this explicit description is that we will be able to give, by
means of a simple combinatorial argument (different from Yuzvinsky’s one),

formulas for the Poincarè polynomials of the varieties ŶFAn
, ŶFBn

, ŶFDn
. We

observe that, in view of the remark of Chapter 1, Section 3, these polynomials
will also be the Poincarè polynomials of the varieties YFAn

, YFBn
, YFDn

.

Type An.

Since a monomial mf of the Yuzvinsky basis for H∗(YFAn−1
,ZZ) is non

zero only if supp f is a FAn−1-nested set, we will refer to the bijective corre-
spondence between nested sets in FAn−1 and forests, which was described in
Chapter 2, Section 2.

Therefore the supports supp f of the monomials mf can be represented by
forests, on n leaves, the connected components of which are rooted oriented
trees. Now we can take into account the exponents which appear in mf by
adding labels to the vertices of these forests, i.e., we can associate to each
vertex vA (A ∈ supp f) the label f(A). The leaves remain unlabeled since
they do not correspond to any element in supp f .

We note that, given A ∈ supp f , we have d∅(supp f)A,A = |out vA|− 1, where

|out vA| is equal to the number of outgoing edges from vA.

This means that the label f(A) satisfies 1 ≤ f(A) < |out vA| − 1. Thus
there is a bijective correspondence between the elements of the Yuzvinsky
basis for H∗(YFAn−1

,ZZ) and the forests on n numbered leaves the connected
components of which are rooted, oriented labeled trees which satisfy this
further condition: the label of a certain vertex v (which is not a leaf) is a
positive integer m(v) such that 1 ≤ m(v) < |out(v)− 1|.

Finally we observe that the necessary and sufficient condition for the
existence of such a labeling on a rooted oriented tree T is that |out v| ≥ 3
for every vertex v ∈ T which is not a leaf.

Type Bn.

The elements of the Yuzvinsky basis for H∗(YFBn
,ZZ) can be put, in a

similar way as above, in surjective correspondence with a family of forests (on
n numbered leaves) the connected components of which are rooted, oriented
trees with labeled vertices. If we forget the labels, the involved forests are the
ones that we associated to the nested sets in Chapter 2, Section 4; therefore
we have two classes of vertices: weak and strong. Let then mf be a monomial
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of the Yuzvinsky basis for H∗(YFBn
,ZZ). If A ∈ supp f corresponds to a

“strong” subset of {1, . . . , n}, the associated vertex vA is “strong”. Then
d∅(supp f)A,A = |wout vA|, where |wout vA| is equal to the number of weak

outgoing edges from vA. This implies that the label f(A) of vA satisfies
1 ≤ f(A) < |wout vA|.

If instead B ∈ supp f corresponds to a “weak” subset of {1, . . . , n}, the
associated vertex vB is “weak” and d∅(supp f)B ,B = |out vB| − 1. Thus we have

1 ≤ f(B) < |out vB| − 1.
We then observe that the necessary and sufficient condition for the exis-

tence of such a labeling on the trees with weak and strong vertices is that
for any weak vertex w we have |outw| ≥ 3 and for any strong vertex v we
have |wout v| ≥ 2.

Finally we recall that (see Chapter 2, Section 4) under this surjective

correspondence, the preimage of a forest τ has 2(
∑ rk(v)) elements, where v

runs through the closest to the roots weak vertices (the roots themselves
included, if it is the case) of τ , and

rk(v) = |{leaves connected by a directed path with v}| − 1

Type Dn.
The same as for type Bn with the further condition that any strong ver-

tex v is connected by directed paths to at least three leaves (see Chapter 2,
Section 4).

We are now ready to compute formulas for the Poincarè polynomials of these
reflection arrangements. Our method is different from the one in [25], since
it avoids the use of the ”Feynmann integral” method and it is connected with
the geometric picture of blow-ups of the De Concini-Procesi models.
Type An−1.

The series we want to compute is the following

ΦA(q, t) = Φ(q, t) = t+
∞∑

n=2

PAn−1(q)
tn

n!

where PAn−1(q) is the Poincarè polynomial of the model YFAn−1
(here and

from now on the variable q has degree 2).
Let us call by λA(q, t) = λ(q, t) the contribution provided to Φ(q, t) by

the elements represented by connected graphs (i.e. trees), including the
degenerate graph given by a single leaf. Then we have Φ = eλ − 1 by
elementary combinatorial arguments. We can thus reduce our problem to
that of finding a recurrence formula for λ. As a matter of notation we agree
that from now on the superscript (n) in formulas will mean “n-th derivative
with respect to t”.
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Theorem 3.2.1 Let λ be defined as above, then we have the following re-
currence relation:

λ(1) = 1 +
λ(1)

q − 1
[eqλ − qeλ + q − 1] (3.1)

Proof.
For every n ≥ 2 we will regard the Yuzvinsky basis for H∗(YFAn−1

,ZZ) as
the set of marked forests described above, with the n leaves identified with the
numbers from 1 to n. We will directly search for a relation for the generating
function Φ instead of studying separately the polynomials PAn−1(q).

As a first step, we single out the leaf 1, and divide the elements of the
bases of the various H∗(YFAn−1

,ZZ) (n ≥ 2) in two parts: the ones containing

the leaf 1 as a singleton (called I-elements), and the ones such that an edge
ends in that leaf (called II-elements).

Let us look at the contribution to Φ of I-elements. Let θ be a I-element:
we can associate to it the element θ obtained by cutting out the leaf 1.
This gives a bijective correspondence between I-elements and elements of
Yuzvinsky type whose graphs are constructed on the leaves associated to
numbers greater than or equal to 2. Here we associate the Yuzvinsky element
1 to the degenerate graph given by the leaf 1 alone. Therefore, summing
the contributions provided by the elements θ, we obtain 1 + Φ. By simple
combinatorial arguments, we have

Φ =

∫
(1 + Φ)dt+ contribution of II-elements

Let us now work on II-elements: given a II-element %, let us consider its
associated graph and let us call by E the edge the end of which is the leaf 1.
We will call “singular” the vertex from which E stems.

Therefore, given % as above, we can construct the following two new
Yuzvinsky-type elements, %′ and %′′: the graph of %′ is obtained from the one
of % by collapsing to the singular vertex v, which becomes a leaf, the subtree
ρv that stems out of v. The graph of %′′ is ρv (we note that we are considering
v ∈ ρv).

We observe that a II-element can be uniquely determined by giving its
associated couple (%′ , %′′ ).

Therefore, in order to obtain the contribution to Φ of II-elements, we
must multiply the series originated respectively by elements of type %′ and
%′′. The second one is easily shown to be∑

r≥1

qr − q
q − 1

λr

r!

In fact the number of edges that go out from the singular one is r+ 1, if r is
the number of connected components obtained from the graph of %′′ when we
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cut the (closed) edge E connecting the leaf 1 and the singular vertex. Note
that we are giving the value “t” to every leaf except for leaf 1.

The contribution to the series due to the elements of type %′ is Φ(1). In
this case the first derivative is needed since the elements of type %′ have an
artificial leaf (the singular vertex). Summing up we have:

Φ =

∫
(1 + Φ)dt+

∫
Φ(1)

(∑
r≥1

qr − q
q − 1

λr

r!

)
dt

that is to say:

Φ(1) = (1 + Φ) + Φ(1)

(∑
r≥1

qr − q
q − 1

λr

r!

)

From this formula, since Φ = eλ − 1, we get:

λ(1)eλ = eλ +
λ(1)eλ

q − 1

(
eqλ − qeλ + q − 1

)
λ(1) = 1 +

λ(1)

q − 1

[
eqλ − qeλ + q − 1

]
which is a recurrence relation since the series in brackets satisfies:[

eqλ − qeλ + q − 1
]

= 0 + 0t+ (q2 − q)t2 + · · ·

We note that formula (3.1) is equivalent to the one found by Yuzvinsky
in [25] since it can be obtained from it by differentiating with respect to
t. Furthermore we remark that it was also found, in the context of moduli
spaces, by several authors (see for instance [9], [13], [20]).

Type Bn.

Here the Poincarè series which we are interested in is

ΦB(q, t) = t+
∞∑

n=2

PBn(q)
tn

2n n!

where PBn(q) is the Poincarè polynomial of the model YFBn
and 2n n! is the

order of the Weyl group of type Bn.

Let us call λB and µB the contribution provided to ΦB respectively by
trees with only weak vertices and by trees containing strong vertices. Then

ΦB = eλB(µB + 1)− 1
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and we can reduce ourselves to find formulas for λB and µB. As for λB,
we note that, according to the description of the forests, λB = 1

2
λA = 1

2
λ,

therefore, from Theorem 3.2.1 we deduce the formula

2λ
(1)
B = 1 +

2λ
(1)
B

q − 1
[e2qλB − qe2λB + q − 1]

In order to compute µB, we first observe (see [25]) that, if we call by γB the
contribution to µB provided by trees with only one strong vertex (i.e. with
a strong root) then µB = 1

1−γB
− 1.

So we only have to give a formula for γB, which is, because of the above
description of the marked trees:

γB =
∑
r≥2

qr − q
q − 1

λr
B

r!
=
eqλB − qeλB

q − 1
+ 1

At the end, we can write the following formula for ΦB in terms of λB:

ΦB =
eqλB − eλB

qeλB − eqλB

Type Dn.
Simple combinatorial reasons allow us to recover the Poincarè polynomial

PDn(q) from PBn(q) by means of the following formula:

PDn(q) = PBn(q)−
(
n
2

)
qPBn−2(q)

3.3 Induced subspace arrangements

In this section we will deal with a class of interesting subspace arrangements,
namely the “induced subspace arrangements”. They can be constructed
by observing that the tensor product provides us a way to get some new
subspace arrangements G∗h starting from a given arrangement G∗. As an
application of Theorem 3.1.1 we will explicitly describe the bases for the
cohomology rings of the De Concini-Procesi models of G∗h when the starting
arrangement G∗ corresponds to the building set of irreducibles associated
to root arrangements. In these cases we will also provide formulas for the
Poincarè polynomials of the models.

Definition 3.3.1 Let G∗ be a subspace arrangement in C| n such that G is
building. We will call “induced by G∗” the subspace arrangement G∗h in C| n⊗
C| h given by the subspaces A⊗ C| h, as A varies in G∗.
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First we note that, since the subspaces of G∗h are in bijective correspondence
with the subspaces of G∗, we can give a bijective correspondence between Gh,
the set of subspaces in (C| n ⊗ C| h)∗ orthogonal to the ones in G∗h, and G.
This correspondence is given as follows: if B ∈ G, we associate to it B⊗(C| h)∗,
which is included in (C| n⊗C| h)∗ via the isomorphism (C| n)∗⊗ (C| h)∗ ∼= (C| n⊗
C| h)∗ and belongs to Gh. Note that this construction implies that Gh is
building.
Therefore we can express a Gh, ∅-admissible function f̃ : Gh 7→ IN as a
function f : G 7→ IN, which turns out to have G-nested support and that
satisfies the following relation:

0 < f(B) < h d∅(supp f)B ,B = d∅
(supp f̃)

B⊗
(
C| h

)∗ ,B⊗
(
C| h

)∗

if B ∈ supp f .
Let us now consider a building set G and a G-nested set S, and describe

a way to associate an oriented labeled graph to every element of the basis
BG,S (note that the following is the obvious generalization of the Yuzvinsky
graphs that we used in the cases of root arrangements).

Definition 3.3.2 Given a monomial mf ∈ BG,S, we call by Gf the oriented
labeled graph whose vertices are identified with the elements of supp f and that
is constructed in the following way. Let A and B be two elements in supp f
such that A is a maximal element (with respect to inclusion) in (supp f)B;
then we draw an edge which joins the vertices A and B and is oriented from
B to A. Furthermore, if C belongs to supp f , the vertex C is labeled with
f(C).

Then, in terms of the above defined graphs, we have:

Proposition 3.3.1 The graphs which represent the monomial basis for
H∗(YG,ZZ) and H∗(YGh

,ZZ) have the same shape but the upper bounds for the
labels in the Gh case are obtained by multiplying by h the upper bounds in the
G case.

This allows us to provide a generalization of the computations in Section
2 of the present chapter; let us in fact consider the ”induced root arrange-
ments” Fh, where F = FAn , FBn , FDn is as in the preceding sections. Using
Proposition 3.3.1 we will manage to extend to the induced case the formulas
for Poincarè polynomials.
Case An.
Let us call by FAn,h the arrangement induced by FAn and let the series we
want to compute be

ΦA,h = ΦA,h(q, t, h) = t+
∞∑

n=2

PAn−1,h(q)
tn

n!
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where PAn−1,h(q) is the Poincarè polynomial of the model YFAn−1,h
.

As before, we set λA,h to be the contribution to ΦA,h provided by trees,
so eλA,h − 1 = ΦA,h. The same considerations as in Theorem 3.2.1 lead us to
the formula

Φ
(1)
A,h = (1 + ΦA,h) + Φ

(1)
A,h

(∑
r≥1

qhr − q
q − 1

λr
A,h

r!

)
that gives

λ
(1)
A,h = 1 +

λ
(1)
A,h

q − 1
[eqhλA,h − qeλA,h + q − 1]

which is a recurrence relation.
Case Bn.
Let us call by FBn,h the arrangement induced by FBnand let us consider the
series

ΦB,h = ΦB,h(q, t, h) = t+
∞∑

n=2

PBn,h(q)
tn

2n n!

where PBn,h(q) is the Poincarè polynomial of the model YFBn,h
. Let λB,h be

the contribution to ΦB,h provided by trees, and let µB,h, γB,h be respectively
the contributions provided by the trees with strong vertices and by the trees
with only one strong vertex.

As in Section 2, we have ΦB,h = eλB,h(µB,h + 1)− 1, µB,h =
1

1− γB,h

− 1 and

2λB,h = λA,h since all these facts depend on the shape and not on the marking
of graphs.
So, we only need to give a formula for γB,h; the same reasoning as in Section
2 shows that

γB,h =
∑
r≥2

qhr − q
q − 1

λr
B,h

r!
=
eqhλB,h − qeλB,h − (qh − q)λB,h

q − 1

Case Dn.
Here the relation among the graphs associated to the basis in the cases Bn

and Dn gives the following formula for the Poincarè polynomial PDn,h:

PDn,h = PBn,h −
(
n
2

)
q2h − q
q − 1

PBn−2,h

3.4 Geometric bases for hyperplane arrange-

ments

Let G be a building set, S a G-nested set and let us consider the variety DS.
As we have seen, the elements of the basis ofH∗(DS,ZZ) can be represented as
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monomials in a quotient of ZZ[cA] (A ∈ G), where the variables cA correspond
to the basic cohomology classes [DA] restricted to DS (see Theorem 1.3.1).

This implies that there is a natural correspondence between the mono-
mials of the basis of H∗(DS,ZZ) and the varieties which are intersection of
the divisors in the boundary of YG: this correspondence associates to the
monomial mf the irreducible variety Dsupp f .

Since the monomials of the cohomology bases we studied are not neces-
sarily squarefree, the above correspondence is not one-to-one.

In this section, in the case when G refines a hyperplane arrangement, we
will exhibit squarefree bases for H∗(DS,ZZ), that is to say, bases the elements
of which correspond to irreducible subvarieties of DS obtained by intersecting
divisors without multiplicities. We note that if G does not refine a hyperplane
arrangement, squarefree bases may not exist.
Let then G be a refinement of a hyperplane arrangement, and let x1, . . . , xN ∈
(C| n)∗ be representatives for the lines orthogonal to the hyperplanes. Then
x1, . . . , xN belong to G and generate CG. We put X = {x1, . . . , xN}, < X >=∑N

j=1 C| xj and m = dim < X >.
We want to give a suitable total order in G. Actually there are many

possible ways to choose this order, therefore we fix our ideas by choosing
the following one, which we will refer to in the example at the end of this
section. As a first step, we associate to each element G ∈ G the monomial
xj1 · · ·xjk

(j1 < . . . < jk) obtained by selecting in X the elements belonging
to G. Then we order G according to the following rules. Given any two (non
constant) monomials A and B, we put A < B if either of the following cases
occurs:

1. B divides A, or

2. neither A divides B nor B divides A but, setting

A′ =
A

gcd (A,B)
B′ =

B

gcd (A,B)

and writing A = xi1 · · ·xik (i1 < . . . < ik), B = xr1 · · ·xrs (r1 < . . . <
rs), we have i1 < r1.

Now we need the following lemma:

Lemma 3.4.1 Let Γ ⊂ G be a maximal G-nested set.
Then |Γ| = m = dim < X >.

Proof.
The proof is by induction on |G − FG|.
If G = FG, our claim coincides with Proposition 1.1 (2) in [5]. Let now
|G − FG| > 0 and let G be minimal in G − FG. Then G ′ = G −G is building
and is still associated to the hyperplane arrangement X.
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According to Proposition 2.5 in [4], we have that a maximal G-nested set
is either a maximal G ′-nested set or is obtained from a maximal G ′-nested
set replacing one of its elements with G.

In both cases, the cardinality of the maximal G-nested set is the same as
the cardinality of some maximal G ′-nested set, which by induction is m.

In the case of H∗(DS,ZZ), because of the characterization of the supports
of G, S-admissible functions, we are interested in subsets Γ ⊂ G such that
Γ ∪ S is G-nested.

Lemma 3.4.2 Let Ω ⊂ G be a maximal element in M = {Γ ⊂ G : Γ ∪
S is G − nested}. Then |Ω| = m.

Proof.
This immediately follows from the above lemma since Ω must be a max-

imal G nested set containing S.

Let us keep for the monomials in H∗(DS,ZZ) the same notation as in
Section 1. Since a squarefree monomial mf is completely determined by
supp f , we can describe a squarefree basis for H∗(DS,ZZ) by means of subsets
of G. Let us then focus on the following algorithm which produces suitable
subsets of G. Take the support of a G, S-admissible function g; it already
defines a monomial in our squarefree basis. Now suppose that there is an
A ∈ supp g such that h = dS

(supp g)A,A > 2 and let A1, . . . , Ak be all the

maximal elements (if any) in (supp g)A.
There is at least one maximal G-nested set which includes S ∪ supp g.

Since the cardinality of such a set is m, we deduce that there exists at least
one element B ∈ G satisfying the following conditions:

1. {B} ∪ S ∪ supp g is G-nested;

2. B ⊂ A and, for every Aj, either Aj ∩B = {0} or Aj ⊂ B;

3. dimB =dim (
∑

j s.t. Aj⊂B Aj) + 1.

Remark. Note that the above conditions make sense also in the case when
(supp g)A = ∅.

We choose, among all such elements, the minimal one with respect to the
total order in G. We call this element “the exceptional element of g at A”
and denote it by Ae. Then we define the function g̃, taking values 0,1, such
that supp g̃ = supp g ∪ Ae: g̃ defines a monomial in our squarefree basis.

Now, if there are elements C ∈ supp g̃ such that dS
(supp g̃)C ,C > 2, we can

apply again the above algorithm and so further. We call by SBG,S the set of
monomials which can be constructed by means of the above algorithm.
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Theorem 3.4.3 The set SBG,S gives a squarefree basis of H∗(DS,ZZ).

Proof.

We observe that |BG,S| = |SBG,S| by construction, so it is sufficient to
prove that every element in BG,S can be expressed as a ZZ-linear combination
of monomials in SBG,S.

Given a monomial mf ∈ BG,S, we can consider the oriented labeled graph
Gf associated to it (see Definition 3.3.2) and its subgraph G1

f obtained as
follows: consider the leaves of Gf which are labeled with 1 and take all the
paths in Gf that end with one of these leaves and that are made by vertices
labeled with 1.

Since G1
f is a forest (maybe empty), we can consider the roots C1, . . . Cr

of its connected components and give the following definitions.

Definition 3.4.1
The “squarefree rank” of mf is the number sr(f) = dim (

∑r
i=1Ci).

We note that the sum of subspaces in the definition is direct, since supp f ∪S
has to be G-nested.

Definition 3.4.2 Given an oriented marked forest G and a vertex B, we
will call B-subtree of G the tree obtained by considering the subgraph of G
that stems out of B, with the same marking except that the vertex B (i.e. the
root) is considered unmarked.

Now, given a monomialmf ∈ BG,S that is not squarefree, there necessarily
exists at least an element A ∈ supp f such that 1 < f(A) < dS

(supp f)A,A.

Let us take all the minimal (with respect to inclusion) elements M1, . . .Mt

with this property. We will prove the theorem by proving, by reverse induc-
tion on the squarefree rank of monomials in BG,S, the following proposition:
a) Each element mf of BG,S can be expressed as a ZZ-linear combination of
monomials mθ in SBG,S s.t. G1

f is a subgraph of supp θ.
The first step consists in observing that if, for a certain mf ∈ BG,S, sr(f) is
maximal, then mf is squarefree, hence it already belongs to SBG,S.

Let us then take a monomial mg ∈ BG,S that is not squarefree and with
the squarefree rank equal to p. By induction, we assume that proposition a)
is true for each monomial in BG,S with the squarefree rank greater than p.

There must exist an element M1 = A ∈ supp g such that 1 < g(A) <
dS

(supp g)A,A and A is minimal with respect to inclusion.

Keeping the same notation as in the construction of SBG,S, we call by
A1, . . . , Ak the maximal elements (if any) in (supp g)A and consider Ae and
g̃.
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Let Q =
∏

L∈(supp g̃)Ae

cL. We can now apply the following “squarefree algo-

rithm at A” : we use the polynomial

P S
(supp g̃)Ae ,Ae = Q(

∑
Ae⊂E

cE)

which belongs to IS, to substitute in mg the factor cAQ.
We thus get a ZZ-linear combination of monomials that are either zero or

can be of the following three types, which we write in a more general form:

1. monomials obtained by elements mf of BG,S such that A ∈ supp f , G1
f

includes G1
g as a subgraph and the A-subtree of Gf coincides with the

A-subtree of Gg, by substituting cAQ with −cNQ, where A ( N .

2. monomials obtained by elements mf of BG,S such that A ∈ supp f , G1
f

includes G1
g as a subgraph and the A-subtree of Gf coincides with the

A-subtree of Gg, by substituting cAQ with −cTQ, where Ae ( T ( A.

3. monomials obtained by elements mf of BG,S such that A ∈ supp f , G1
f

includes G1
g as a subgraph and the A-subtree of Gf coincides with the

A-subtree of Gg, by substituting cAQ with −cAeQ.

Let us take a monomial mh of type 1. In the proof of the Theorem 3.1.1,
we described an algorithm which allowed us to show that every monomial in
H∗(DS,ZZ) can be expressed as an integer linear combination of monomials
in BG,S. The same algorithm now allows us to express mh as an integer linear
combination of monomials mτ ∈ BG,S such that A ∈ supp τ , G1

τ includes G1
g

as a subgraph and the A-subtree of Gτ coincides with the A-subtree of Gg.
Furthermore, τ(A) = g(A)− 1. If τ(A) = 1, we have that sr(τ) > sr(g),

therefore we treat mτ by induction and we manage to write it as an integer
linear combination of monomials in SBG,S which satisfy the conditions of
proposition a); otherwise we can apply again to mτ the squarefree algorithm
at A, getting elements of type 2,3 or elements mθ of type 1 with θ(A) =
τ(A)− 1. Therefore, after a finite number of steps, we are reduced to study
elements of types 2 and 3.

Given an element mν of type 2 we note that, using the algorithm of The-
orem 3.1.1, it can be written as an integer linear combination of monomials
m% ∈ BG,S s.t. G1

% includes G1
g∪T . We note that the monomials m% belong to

BG,S since it must be dimT > dim(
∑

j s.t. Aj⊂T Aj) + 1 because of the choice
of Ae.

Thus we have sr(%) > sr(g) and we can conclude by induction.
Let now mγ be a monomial of type 3 and let us suppose that mγ does

not belong to SBG,S.
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If γ(A) = 1, then let us consider the monomial mγ̂ =
mγ

cAe

. We note that

mγ̂ is in BG,S and that sr(γ̂) > sr(g). Applying induction, we can write mγ̂

as an integer linear combination of monomials mζ̂ ∈ SBG,S such that their

supports contain G1
g∪A as a subgraph. If we multiply this linear combination

by cAe , we find thatmγ is equal to an integer linear combination of monomials
mζ̂cAe which still belong to SBG,S.

If instead γ(A) > 1, then we can apply again to mζ̂ the “squarefree
algorithm at A”. This means that, calling by Aee the exceptional element of
γ at A and γ̃ the 0,1-valued function such that supp γ̃ = supp γ∪Aee, we use
the polynomial

P S
(supp γ̃)Aee ,Aee

to substitute in mγ the factor cA

∏
L∈(supp γ̃)Aee

cL.

In the same way as before we divide the resulting monomials in three
classes and we call monomials “of type j” the monomials in the j-th class
(j = 1, 2, 3). As before, the monomials of type 1 can be expressed as integer
linear combinations of monomials of types 2 and 3 and of monomials in
SBG,S, while the monomials of type 2 are easily treated by induction.

It there remains to study the monomials of type 3. Let mε be such
a monomial: we have then ε(A) < γ(A) and, if ε(A) = 1, we can apply

induction to
mε

cAee cAe

. Otherwise we can use again the squarefree algorithm

at A and continue. This process of course ends after g(A)− 1 steps, and at
last we will have written mg as an integer linear combination of monomials
in SBG,S which satisfy condition a). This concludes our proof.

Example

Let us consider G = FAn−1 , the building set of irreducibles which refines
the reflection arrangement of type An−1. We keep the notation of Chapter
2, Section 2, so we denote by thk (h, k = 1, . . . , n) the representatives of the
functionals orthogonal to the reflecting hyperplanes.

We can give a total order on the set {thk} by the following rule: tij < thk

if i < h or if i = h and j < k.
This provides us, according to the rules mentioned at the beginning of

this section, a total order on H∗(YFAn−1
,ZZ).

Now let us take a G, ∅-admissible monomial mg and let A, A1, . . . , Ak be
the same as in the definition of the squarefree basis. We will show in this
example how to obtain the exceptional element Ae

1.
First, let us call by Ak+1, . . . , Ar the leaves which are connected by an

edge with A in the Yuzvinsky graph (see Chapter 2, Section 2) of the nested
set (supp g)A. Furthermore, let Γ, Γ1, . . . ,Γk be the subsets of {1, . . . , n}
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associated to A, A1 . . . Ak respectively and, if t > k, let Γt = {at}, where at

is the label of the leaf At.

It is easily seen that the order we have given in H∗(YFAn−1
,ZZ) implies

that Ai < Aj if and only if minΓi < minΓj (i, j ≤ k). We use the above
relation to extend this order also to the leaves Ak+1, . . . , Ar.

We can now reorder (if necessary) the Aj’s in such a way that A1 < A2 <
. . . < Ar. The corresponding graph is
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w w w w w w w waaaaaaaaaaa

b
b

b
b

b
b

b

l
l

l
ll

L
L

L
L

�
�
�
�

�
�

�
�

"
"

"
"

"
""
A

A3 ArA2A1

w

Then the construction of the exceptional element immediately reveals
that Ae

1 is the subspace generated by functionals xi − xj for i, j ∈ Γ1 ∪ Γ2.
This gives rise to the following graph:
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Then we can add a vertex Ae
3 connected by two edges with Ae

2 and A4

and we can go on until we draw the vertex Ae
r−3 connected by two edges to

Ae
r−4 and Ar−2.

3.5 A squarefree basis made by Keel gener-

ators of H∗(M 0,n+1,ZZ).

In this section we want to compare explicitly the description of the cohomol-
ogy ring H∗(ŶFAn−1

,ZZ) (arising from the theory of models of arrangements)
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with the presentation of H∗(M0,n+1,ZZ) due to Keel (see [16]). Let us first
recall Keel’s results and notation. Given a divisor

D = T = {0, . . . , n} − SS

H
HHH

HHH
HH�

�
�

�
�

�
�

in M0,n+1, its fundamental class in H2(M0,n+1,ZZ) is denoted by
[
DS
]
.

Then we have:

Theorem 3.5.1 (see [16])

H∗(M0,n+1,ZZ) = ZZ
[[
DS
]
| S ⊂ {0, . . . , n}, 2 ≤ |S| ≤ n− 1

]
/K

where K is the ideal generated by the following relations:

1.
[
DS
]

=
[
DT
]
, where T = {0, . . . , n} − S.

2. For any four distinct elements i, j, k, l ∈ {0, . . . , n}:∑
i, j ∈ S
k, l /∈ S

[
DS
]

=
∑

i, k ∈ S
j, l /∈ S

[
DS
]

=
∑

i, l ∈ S
j, k /∈ S

[
DS
]

3.
[
DS
] [
DT
]

unless S ∩ T = ∅ or S ∩ T = S or S ∩ T = T .

Since Keel’s presentation is in terms of fundamental classes of divisors, we
can immediately write the explicit isomorphism between the rings ZZ[cA]/I

(∼= H∗(ŶFAn−1
,ZZ)) and ZZ

[[
DS
]]
/K (∼= H∗(M0,n+1,ZZ)). In fact this iso-

morphism is provided by the map Γ∗ : ZZ[cA]/I 7→ ZZ
[[
DS
]]
/K, where

Γ : M0,n+1 7→ ŶFAn−1
is the isomorphism described in Chapter 2, Section

2. Therefore, as a consequence of Proposition 2.3.1, given A ( {1, . . . , n}
and considering the class cA associated in H∗(ŶFAn−1

,ZZ) to the divisor DA,

we have that Γ∗(cA) =
[
DA
]
. In order to describe Γ∗(cU) (where we put

U = {1, . . . , n}) in terms of Keel generators, we can use the relations in

H∗(ŶFAn−1
,ZZ)

rij :
∑

{i,j}⊂A⊂{1,...,n}

cA = 0

(in the notations of Chapter 1, calling by Tij the irreducible associated to
{i, j}, this is equivalent to saying that the polynomial P ∅

∅,Tij
belongs to I∅).
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Hence we can write

Γ∗(cU) = −
∑

{i,j}⊂A({1,...,n}

[
DA
]

for any choice of the subset {i, j} ⊂ {1, . . . , n}.
The isomorphism Γ∗ allows us to provide a ZZ-basis of H∗(M0,n+1,ZZ) in

terms of Keel generators simply by considering the basis BFAn−1
provided by

the Theorem 3.1.1 and taking Γ∗(BFAn−1
,∅). We note that this basis is not

made by monomials because of Γ∗(cU). Anyway monomial bases in terms
of Keel generators can easily be deduced. For example one (which will be
denoted by SBM0,n+1

) is provided by the following construction.
Let us start from the squarefree basis SBFAn−1

,∅ ( which is referred to

the order chosen in the example at the end of Section 4) and consider m ∈
SBFAn−1

,∅. If cU does not divide m, then we take Γ∗(m) as an element of the
basis SBM0,n+1

. If instead cU divides m then we find the exceptional element
U e of m at U (we are using the notations of Section 4) and we take Γ∗(mcUe

cU
)

as an element of SBM0,n+1
.

Proposition 3.5.2 The set SBM0,n+1
is a squarefree monomial ZZ-basis (ex-

pressed in terms of Keel’s generators) of H∗(M0,n+1,ZZ).

Proof.
Let us prove the equivalent claim that (Γ∗)−1(SBM0,n+1

) is a basis for

H∗(ŶFAn−1
,ZZ). Since the cardinality of SBM0,n+1

is equal to the one of
SBFAn−1

,∅ by construction, it suffices to prove that the elements of SBFAn−1
,∅

are integer linear combinations of the elements in (Γ∗)−1(SBM0,n+1
). The only

non trivial case we have to check is provided by the elements µ ∈ SBFAn−1
,∅

that are divided by cU . Now in (Γ∗)−1(SBM0,n+1
) there is the monomial

m = µcUe

cU
. Substituting in m the variable cUe by means of the polyno-

mial P ∅
(supp µ)Ue ,Ue , we can write −m as a sum of d∅(supp µ)U ,Ue − 1 terms all

of which belong to SBFAn−1
,∅. Furthermore we note that one of these terms

is µ itself while all the other terms are not divisible by cU and belong to
(Γ∗)−1(SBM0,n+1

). Then we have found an expression for µ as ZZ-linear com-

bination (the coefficients are equal to −1 ) of monomials in (Γ∗)−1(SBM0,n+1
).

Remark.
At the same way we can find “squarefree monomial ZZ-bases ” (in terms of
Keel’s generators) for the integer cohomology of all the subvarieties of M0,n+1

which are intersection of irreducible boundary divisors. In these cases we
consider the nested set S ⊂ FAn−1−V ∗ which identify such a subvariety and
start the construction from the squarefree basis SBFAn−1

,S of H∗(DS,ZZ).
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Chapter 4

Symmetric group
representations

In this chapter we will deal with the root hyperplane arrangement A∗n of
type An and with two symmetric group actions on the cohomology ring
H∗(MAn ,C| ): the action of the Weyl group Sn+1 and an extended Sn+2

action coming from the isomorphism between YFAn
and M0,n+2. Our main

result consists in proving (see Theorem 4.3.1) a recursive relation between the
characters of these two representations. Furthermore, an explicit description
of the Sn+2 module H∗(ŶFAn−1

,ZZ) is provided.

4.1 Projection maps and cohomology

First we recall some notation: in Chapter 2, Section 2, we introduced the
base {t12, . . . , t1n} of V ∗, and we called by {v2, . . . , vn} its dual base in V . In
what follows we will always consider V equipped with the basis {v2, . . . , vn}.

Let now π be the Hopf bundle projection

π : V − {0} 7→ Pn−2

C|

with fiber C| ∗, which identifies z ∈ V with λz for λ ∈ C| ∗; the restriction
π′ of π to MAn−1 maps MAn−1 onto M̂An−1

∼=MAn−1/C|
∗ and π′ :

MAn−1 7→ M̂An−1 is a trivial bundle. We are interested in finding some
relations between the Sn actions on the cohomology rings of MAn−1 and

M̂An−1 : since in general there are no Sn-equivariant sections of the given
bundle, we are going to study an Sn-equivariant covering map

γ : MAn−1 7→ M̂An−1 × C| ∗

that will provide us an Sn-isomorphism involving cohomology rings.
Let’s define γ in the following way: given p ∈MAn−1 , we put

γ(p) = (π(p) , Q2(p))
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where, if pβ = 0 is the equation of the hyperplane Hβ, Q is the polyno-
mial given by Q =

∏
pβ, (β ∈ Φ+, the set of positive roots). Clearly

deg Q2 = |Φ| = (n− 1)n.

We note that if γ(p) = γ(q), for p, q ∈ MAn−1 , then π(p) = π(q), i.e.
p = zq with z ∈ C| ∗.

Furthermore, since Q2(p) = z|Φ|Q2(q), we have that z ∈ Γ, the cyclic
group of |Φ|-th roots of 1.

It follows that γ provides a |Φ|-sheets covering; this implies that

Γ \MAn−1
∼= M̂An−1 × C| ∗ via γ.

The role that γ plays in cohomology depends on the following well known
fact:

Lemma 4.1.1 Let X be a variety and G a finite group which acts on X.
Then

H∗(G \X, C| ) ∼= (H∗(X, C| ))G

In our case the action of Γ in cohomology is trivial since Γ ⊂ S1 and the action
of a connected continuous group in cohomology is trivial. So we deduce:

Proposition 4.1.2

H∗(MAn−1 ,C| ) ∼= H∗(M̂An−1 ,C| )⊗ (
C| [ε]

ε2
)

as Sn-modules, where the action of Sn on H∗(MAn−1 ,C| ) is the natural one,

the action of Sn on H∗(M̂An−1 ,C| ) is the one obtained from the Sn action

induced on M̂An−1 from MAn−1, deg ε = 1 and wε = ε for every w ∈ Sn.

Proof

This follows from Lemma 4.1.1, the observation above and the fact that γ
is a Sn-spaces map , when we consider Sn acting on the base space M̂An−1

with the action induced fromMAn−1 via π′.

In fact, if w ∈ Sn and p ∈ MAn−1 , wπ(p) = π(wp) by definition of the
involved actions and Q2(wp) = Q2(p) since w permutes the hyperplanes of
An−1.

We are now ready to extend the Sn action on H∗(MAn−1 ,C| ) to an Sn+1

one, starting from an Sn+1 action on H∗(M̂An−1 ,C| ) that we will introduce
in the next section.
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4.2 The Sn+1 action on M̂An−1 and H∗(MAn−1,C| )

Let us consider, for n ≥ 2, the moduli space M0,n+1 of n + 1-pointed curves
of genus 0. We recall that

M0,n+1 = SL(2) \

 (p0, . . . , pn) ∈ P1 × . . .×P1︸ ︷︷ ︸
n+1 times

| pi 6= pj ∀ i 6= j


and that, via the SL(2) action, we can write every element p ∈M0,n+1 as

p = [(0, 1), (1, 0), (1, 1), (x1, y1), . . . , (xn−2, yn−2)]

In Chapter 2, Section 2, we called by M̂0,n+1 the set of the elements of M0,n+1

written in canonical way:

M̂0,n+1 =

 (q1, . . . , qn−2) ∈ P1 × . . .×P1︸ ︷︷ ︸
n−2 times

| qi 6= qj, qi 6= 1, 0,∞


We defined, in terms of the basis {v2, . . . , vn} of V , the map φ : M̂An−1 7→ M̂0,n+1

as:
φ(γ1, . . . , γn−1) = ((γ1, γ2), (γ1, γ3), . . . , (γ1, γn−1))

and we observed (see Theorem 2.2.1) that φ is an isomorphism between

M̂An−1 and M0,n+1.
Now the main remark is that on M0,n+1 there is a natural Sn+1 action,

given by the permutation of the coordinates, and that, since this action
commutes with the SL(2) action, we can view it as an action on M̂0,n+1.

As a consequence, we can lift this action, via the map φ, to the comple-
ment M̂An−1 .

We want to show a compatibility relation between this lifted action and
the Sn action induced on M̂An−1 via the fiber projection π′.

Theorem 4.2.1 If one identifies Sn ⊂ Sn+1 =< s0, s1, . . . , sn−1 > with the

subgroup generated by < s1, . . . , sn−1 >, then the action of Sn+1 on M̂An−1

via φ−1 and the Sn action induced on M̂An−1 via the fiber projection π′ are
compatible.

Proof
It’s sufficient to check the statement for simple reflections.
Let us take the element (1, γ2, . . . , γn−1) ∈ M̂An−1 and start from the reflec-
tion s1.
On one hand, considering s1 as an element of the Weyl group Sn acting via
π′, we have:

s1 (1, γ2, . . . , γn−1) = (1, 1− γ2, . . . , 1− γn−1)
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On the other hand, thinking of s1 as an element of Sn+1 acting on M0,n+1:

s1 [(0, 1), (1, 0), (1, 1), (1, γ2), . . . , (1, γn−1)] =

= [(0, 1), (1, 1), (1, 0), (1, γ2), . . . , (1, γn−1)]

which, modulo SL(2) acting by

(
1 0
1 −1

)
can be written in canonical form:

= [(0, 1), (1, 0), (1, 1), (1, 1− γ2), . . . , (1, 1− γn−1)]

After translating in M̂An−1 via φ−1 we get the desired result. As for s2, on
one hand we have

s2 (1, γ2, . . . , γn−1) = (γ2, 1, γ3, . . . , γn−1)

On the other hand, thinking of s2 as an element of Sn+1:

s2 [(0, 1), (1, 0), (1, 1), (1, γ2), . . . , (1, γn−1)] =

= [(0, 1), (1, 0), (1, γ2), (1, 1), (1, γ3), . . . , (1, γn−1)]

Via the action of

(
1 0
0 1

γ2

)
we can write:

=

[
(0, 1), (1, 0), (1, 1), (1,

1

γ2

), . . . , (1,
γn−1

γ2

)

]
At the end we get:

s2 (1, γ2, . . . , γn−1) = (γ2, 1, γ3, . . . , γn−1)

Finally, for sj (j ≥ 3) we have

sj (1, γ2, . . . , γn−1) = (1, . . . , γj, γj−1, . . . , γn−1)

therefore the claim follows noticing that

sj [(0, 1), (1, 0), (1, 1), (1, γ2), . . . , (1, γn−1)] =

= [(0, 1), (1, 0), (1, 1), (1, γ2), . . . , (1, γj), (1, γj−1), . . . , (1, γn−1)]
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Let us now focus on cohomology rings. Let S be the symmetric algebra of
V ∗ and let F be the quotient field of S. Let Ω(V ) be the exterior algebra of
the F-vector space F⊗C| V

∗.
We recall the following well known results (see [1], [2], [22], [23]):

Theorem 4.2.2 The cohomology ring H∗(MAn−1 ,C| ) is isomorphic to the

C| algebra R(An−1) ⊂ Ω(V ) generated by 1 and by the forms ωβ =
dpβ

pβ
, where

pβ = 0 is the equation of the hyperplane Hβ (β ∈ Φ+).
The relations involving the ωβ’s are the following ones:

ωβωδ = −ωδωβ β, δ ∈ Φ+ (4.1)

ωβω% = ωβω%−β − ω%ω%−β if %− β is a positive root (4.2)

Theorem 4.2.3 The cohomology ring H∗(M̂An−1 ,C| ) is isomorphic to the

subalgebra R̂(An−1) of R(An−1) generated by 1 and elements θβ = ωβ − ωα1

for β 6= α1.

From now on we will identify the rings H∗(M̂An−1 ,C| ) and H∗(MAn−1 ,C| )

with the algebras R̂(An−1) and R(An−1) respectively. Let us put, for β ∈
Φ+, L(β) = j if j is the greatest index for which aj 6= 0 in the expression
β =

∑n−1
i=1 aiαi. Then the preceding theorem and relations (4.1) and (4.2)

can easily provide us a base of H∗(M̂An−1 ,C| ).

Corollary 4.2.4 A basis of H∗(M̂An−1 ,C| ) is given by the elements of type

θβ1 · · · θβr r = 1, . . . , n− 1

with the property that L(β1) > L(β2) . . . > L(βr).

The action of Sn+1 we have constructed gives rise to a linear representation

of Sn+1 on H∗(M̂An−1 ,C| ); this allows us to state the following theorem:

Theorem 4.2.5 The action of Sn+1 on H∗(M̂An−1 ,C| ) can be extended, via
the isomorphism of Proposition 4.1.2, to an Sn+1 action on H∗(MAn−1 ,C| ).
This action is compatible with the natural Sn action on H∗(MAn−1 ,C| ) if we
identify Sn ⊂ Sn+1 = < s0, s1, . . . , sn−1 > with the subgroup < s1, . . . , sn−1 >.

Proof.
Let

λ : H∗(M̂An−1 ,C| )⊗ (
C| [ε]

ε2
) 7→ H∗(MAn−1 ,C| )

be the Sn-modules isomorphism of Proposition 4.1.2. Since we already have
an s0 action that makes H∗(M̂An−1 ,C| ) an Sn+1-module, it’s sufficient to

let s0 act trivially on
C| [ε]

ε2
(i.e. to put s0 ε = ε) and then to extend to

H∗(MAn−1 ,C| ) via λ.
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4.3 A recursive formula for representations

In the preceding sections we have shown how to construct an action of Sn+2

on H∗(MAn ,C| ) for every n ≥ 1.
Now we can prove a remarkable recursive relation which connects the Sn+1

and Sn+2 actions on the cohomology ring. We express it in terms of char-
acters, introducing the following notation: let χn+1(i, n) be the character of
the natural Sn+1 action on H i(MAn ,C| ), χn+2(i, n) be the character of the
extended Sn+2 action on H i(MAn ,C| ) and let pn+1 be the character of the
standard representation of Sn+1.

Theorem 4.3.1 For n ≥ 2 we have:

χn+1(i, n) = χn+1(i, n− 1) + pn+1χn+1(i− 1, n− 1)

Proof.
Thanks to Theorem 4.2.5, it suffices to prove the analogue of the statement
for the cohomology rings H i(M̂An ,C| ): we will denote by the superscript “ ̂
”the corresponding characters .

Let us now focus on the map η : M̂An 7→ M̂An−1 , given by omitting the
last coordinate, and the correspondent injective map in cohomology

η∗ : H i(M̂An−1 ,C| ) 7→ H i(M̂An ,C| )

It turns out by construction that if we consider the extended actions of
Sn+1 =< s0, s1, . . . , sn−1 > onH i(M̂An−1 ,C| ) and of Sn+2 =< s0, s1, . . . , sn >

on H i(M̂An ,C| ), the map η∗ is < s0, s1, . . . , sn−1 >-equivariant.

Let us call by Ωi
n ⊂ H i(M̂An ,C| ) the image of η∗. Keeping the nota-

tion introduced in Corollary (4.2.4), we note that Ωi
n is the C| -subalgebra

generated by elements θβ with β ∈ Φ+ (β 6= α1) and L(β) < n.
Now we have, by Corollary 4.2.4, that

H i(M̂An ,C| ) = Ωi
n ⊕ (N · Ωi−1

n ) (4.3)

as C| -vector spaces, where N =
n− 1⊕
i = 0

C| θαn+···+αn−i
and“ · ” is the product.

Here Ω−1
n = {0} and Ω0

n = C| . For i = 1, this means that

H1(M̂An ,C| ) = Ω1
n ⊕N.

But we can also write:

H1(M̂An ,C| ) = Ω1
n ⊕ T (4.4)
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where T is a < s0, . . . , sn−1 >-invariant complement of Ω1
n.

Now, if we look at H1(M̂An ,C| ) as < s1, . . . , sn−1 >-module, we see that
N ∼= Pn ⊕ In where we used the following notation: for every n ≥ 2, In is a
one dimensional space affording the trivial representation of Sn and Pn is a
n− 1-dimensional space affording the standard representation of Sn.
It follows that T ∼= Pn⊕ In as < s1, . . . , sn−1 >-module, so, by the branching
rule, we can conclude that T ∼= Pn+1 as < s0, s1, . . . , sn−1 >-module. We
need now the following:

Lemma 4.3.2

H i(M̂An ,C| ) = Ωi
n ⊕ (T · Ωi−1

n )

as < s0, s1, . . . , sn−1 >-modules.

Proof of the Lemma.
Let us show that

H i(M̂An ,C| ) = Ωi
n + (T · Ωi−1

n ) (4.5)

Let z = µi
0 +

∑n−1
j=0 θαn+···+αn−j

µi−1
j be an element of H i(M̂An ,C| ), with

µi
0 ∈ Ωi

n and µi−1
j ∈ Ωi−1

n (here we are using equation (4.3)). Now we can
write θαn+···+αn−j

= γ1j + γj where γ1j ∈ Ω1
n, γj ∈ T , because of (4.4). Then

z = µi
0 +

(
n−1∑
j=0

γ1jµ
i−1
j

)
+

(
n−1∑
j=0

γjµ
i−1
j

)

Since the second term on the right belongs to Ωi
n and the third term is in

T ·Ωi−1
n , this proves (4.5). Then a simple dimension argument shows that the

sum in (4.5) is direct. But the spaces involved are < s0, . . . , sn−1 >-invariant,
so this direct sum is a direct sum of < s0, . . . , sn−1 >-modules.

We note that, since dim(T · Ωi−1
n ) =dim(T ) dim(Ωi−1

n ) by Corollary (4.2.4),
there is an obvious < s0, . . . , sn−1 >-isomorphism between T · Ωi−1

n and T ⊗
Ωi−1

n . Hence it follows, recalling that Ωi
n = η∗(H i(M̂An−1 ,C| )) and denoting

by χ̂n+1,0(i, n) the character of the < s0, . . . , sn−1 > action on H i(M̂An ,C| ),
that:

χ̂n+1,0(i, n) = χ̂n+1(i, n− 1) + pn+1χ̂n+1(i− 1, n− 1)

Since < s0, . . . , sn−1 > is conjugate to < s1, . . . , sn > in Sn+2, then

H i(M̂An ,C| ) viewed as < s0, . . . , sn−1 >-module is isomorphic toH i(M̂An ,C| )
viewed as < s1, . . . , sn >-module, i.e. as natural Sn+1-module. So we get the
desired:

χ̂n+1(i, n) = χ̂n+1(i, n− 1) + pn+1χ̂n+1(i− 1, n− 1)
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As a first corollary we can show a nice relation involving characters.

Corollary 4.3.3 For n ≥ 2 we have:

χn+1(n, n)− pn+1χn+1(n− 1, n) + p2
n+1χn+1(n− 2, n)+

+ · · · (−1)npn
n+1χn+1(0, n) = 0

Proof.
The recursive formula of Theorem 4.3.1 gives, for the top degree n:

χn+1(n, n) = χn+1(n, n− 1) + pn+1χn+1(n− 1, n− 1)

But χn+1(n, n − 1) = 0 being n − 1 the top degree of the graded ring
H i(MAn−1 ,C| ). Thus we get:

χn+1(n, n) = pn+1χn+1(n− 1, n− 1) (4.6)

But we also have, again applying Theorem 4.3.1:

χn+1(n− 1, n) = χn+1(n− 1, n− 1) + pn+1χn+1(n− 2, n− 1) (4.7)

Substituting in (4.6) we obtain:

χn+1(n, n) = pn+1χn+1(n− 1, n)− p2
n+1χn+1(n− 2, n− 1)

and, inductively, we prove our claim since both χn+1(0, n) and χn+1(0, n−
1) are the trivial character.

As another consequence of Theorem 4.3.1 we can give a quick proof of
the following theorem, due to Lehrer and Solomon (see [19]):

Theorem 4.3.4 Let χn be the character of the Sn action on H∗(MAn−1 ,C| ).
Then, for n ≥ 2 we have:

χn = 2 IndSn
S2

(1)

Proof.
Let us prove the claim by induction on n, the case n = 2 being obvious.
First of all we note, applying Theorem 4.3.1, that for n ≥ 3

χn = (1 + pn)χ̃n (4.8)

χ̃n being the character of the extended Sn action on H∗(MAn−2 ,C| ).
Next we need to recall the following (well known) fact:
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Lemma 4.3.5 Let G be a group acting on the C| -vector space M and let
H ⊂ G be a subgroup. We have the G-modules isomorphism:

IndG
H(M ′) ∼= IndG

H(C| )⊗C| M

where M ′ is M considered as H-module and the action on C| is the trivial
one.

Proof of the Lemma.

Let C| [G] and C| [H] be the group algebras of G and H; we can write:

IndG
H(M ′) = C| [G]⊗C| [H]

M ′ ∼= C| [G]⊗C| [H]
(C| ⊗C| M) ∼=

∼= (C| [G]⊗C| [H]
C| )⊗C| M = IndG

H(C| )⊗C| M

The above lemma, applied to the Sn-module H∗(MAn−2 ,C| ) shows that, in
terms of characters:

IndSn
Sn−1

(χn−1) = IndSn
Sn−1

(1) χ̃n (4.9)

But IndSn
Sn−1

(1) = (1+pn), so, comparing (4.8) and (4.9), we get for n ≥ 3

IndSn
Sn−1

(χn−1) = χn

that, by induction, gives:

χn = IndSn
Sn−1

(2 Ind
Sn−1

S2
(1)) = 2 IndSn

S2
(1)

Remark.

These results are also true, with the same proof, when the characteristic of
the coefficient field we are dealing with and |Φ|, the order of the cyclic group
Γ, are coprime.

The key point is Lemma 4.1.1, who fails to be true if the order of the group
G and the characteristic of the coefficient field are not coprime.

We notice that the extended symmetric group action and the recursive rela-
tion of Theorem 4.3.1 have been independently studied by Mathieu in [21],
by different methods.
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4.4 The Euler characteristic of M̂An/Sj
In this section, as an application of the Theorems 4.3.1 and 4.3.4, we will
compute the Euler characteristic χ(M̂An/Sj) of the quotient spaces M̂An/Sj

(1 ≤ j ≤ n + 2, that is to say, Sj is identified with a subgroup of Sn+2 and
we denote by S1 the trivial group made by the identity). The interest of this

computation lies in the fact that χ(M̂An/Sj) (which, by the isomorphism
described in Chapter 2, is equal to χ(M0,n+2/Sj)) plays a crucial role in the
computation of the Euler characteristic of the moduli spaces M1,n, M2,n of
n-pointed curves of genus 1 and 2 and of their compactifications M1,n, M2,n,
as it is shown in [3].

Obviously, we start by recalling the Euler characteristic of M0,n. This is
provided by the following

Theorem 4.4.1 For n ≥ 3

χ(M0,n) = (−1)n−3(n− 3)! (4.10)

Proof.
Consider the fibration π : M0,n+1 → M0,n with fiber P1 − {n points}.

This gives the recursive formula

χ(M0,n+1) = (2− n)χ(M0,n) (4.11)

with initial data χ(M0,3) = 1.

Let us now notice that when n − j ≥ 3 the quotient map q : M0,n →
M0,n/Sj is unramified, since any automorphism of P1 fixing three or more
points is the identity. This implies that

χ(M0,n/Sj) =
χ(M0,n)

j!
=

(−1)n−3(n− 3)!

j!
(4.12)

In the case when n− j < 3 it is convenient to proceed in a different way,
using the results of the preceding section. Generalizing the notation intro-
duced there, let us call by χj(i, n) (resp. χj(n)) the character of the action of
the symmetric group Sj on H i(MAn ,Q| ) (resp. H∗(MAn ,Q| )). Furthermore,
we denote by pn and In respectively the characters of the standard and trivial
representations of Sn, and by ( , )Sj

the inner product in the space of class
functions on Sj (in the sequel we may omit the subscript Sj if it is clear to
which symmetric group we are referring to).

Lemma 4.4.2 For n ≥ 3,

(χn(n− 2), In)Sn = 1 (4.13)

(χn−1(n− 2), In−1)Sn−1 = 1 (4.14)

(χn−2(n− 2), In−2)Sn−2 = n− 2. (4.15)
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Proof.
This is a consequence of Theorem 4.3.4. In fact we can write

(χn−1(n− 2), In−1)Sn−1 = (Ind
Sn−1

S2
(I2), In−1)Sn−1

which, by Frobenius reciprocity law, is equal to

(I2, Res
Sn−1

S2
(In−1))S2 = (I2, I2)S2 = 1

This gives relation (4.14). As for relation (4.13) we note that ResSn
Sn−1

(χn(n−
2)) is equal to χn−1(n− 2) and therefore

1 = (χn−1(n− 2), In−1)Sn−1 =

= (χn(n− 2), IndSn
Sn−1

(In−1))Sn = (χn(n− 2), In + pn)Sn

Since dim H0(M0,n,Q| ) = 1 we know that (χn(n−2), In)Sn ≥ 1. This implies
that (χn(n− 2), In)Sn = 1 and (χn(n− 2), pn)Sn = 0.

It remains to prove the last assertion, which can be formulated as

(Res
Sn−1

Sn−2
(χn−1(n− 2)), In−2)Sn−2 = n− 2.

Then we can write

(Res
Sn−1

Sn−2
(χn−1(n− 2)), In−2)Sn−2 = (χn−1(n− 2), In−1 + pn−1)Sn−1 =

= 1 + (χn−1(n− 2), pn−1)Sn−1

which, applying Theorem 4.3.4, is equal to

1 + (I2, Res
Sn−1

S2
(pn−1))S2 .

The second addendum can be easily computed using the branching rule and
is equal to n− 3. This completes the proof.

We are now ready to compute Euler characteristics.

Theorem 4.4.3 The Euler characteristic of M0,n/Sn and of M0,n/Sn−1 is
equal to 1 for every n ≥ 3.

The Euler characteristic of M0,n/Sn−2 is equal to 0 if n is even and equal
to 1 is n is odd.

Proof.
The assertions concerning M0,n/Sn and M0,n/Sn−1 are immediate con-

sequences of Theorem 4.1.1 and Lemma 4.4.2, since H0(M0,n/Sn,Q| ) and
H0(M0,n/Sn−1,Q| ) are one dimensional spaces which afford the trivial repre-
sentations In and In−1 respectively.

Turning to M0,n/Sn−2, we want to prove by induction on n the following
stronger proposition which implies our claim:
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Proposition 4.4.4 For every n ≥ 3 and 0 ≤ i ≤ n − 3, in the irreducible
decomposition of the Sn−2 module H i(M0,n,Q| ) the trivial representation In−2

occurs exactly with multiplicity 1.

Proof.
The base of induction (n = 3) is obvious. Now, given n > 3, it suffices

to prove that, for every i, the multiplicity of In−2 in the decomposition of
H i(M0,n,Q| ) is at least 1. In fact we then observe that the top cohomology
of M0,n has degree n− 3 and we can apply Lemma 4.4.2.

For i = 0 our assertion is trivial. Let us then suppose i ≥ 1. From the
relation of Theorem 4.3.1 we deduce

χn−2(i, n− 2) = χn−2(i, n− 3) +Res
Sn−1

Sn−2
(pn−1)χn−2(i− 1, n− 3),

that is to say,

χn−2(i, n− 2) = χn−2(i, n− 3) + (pn−2 + In−2)χn−2(i− 1, n− 3) (4.16)

If i = 1, we have χn−2(i − 1, n − 3) = In−2, therefore In−2 appears in the
irreducible decomposition of χn−2(i, n − 2). If i ≥ 2, we observe that, by
the inductive hypothesis, (χn−3(i − 1, n − 3), In−3) = 1. But by Frobenius
reciprocity law

1 = (χn−3(i− 1, n− 3), In−3) = (χn−2(i− 1, n− 3), In−2 + pn−2).

Now (χn−2(i − 1, n − 3), In−2) = 0 since we have already proven that the
only subspace of H∗(M0,n−1,Q| ) which affords the trivial representation In−2

is H0(M0,n−1,Q| ). Then we have

1 = (χn−2(i− 1, n− 3), pn−2).

Therefore, in the equation (4.16) we find the product pn−2pn−2 as an ad-
dendum: its decomposition into irreducibles (see [8] Chap. 4) is equal to
In−2 + pn−2 plus two other irreducible characters.

4.5 The Sn+1 action on ŶFAn−1
and its integer

cohomology ring

In the preceding sections we used the isomorphism between M0,n+1 and

M̂An−1 to obtain an extended action of Sn+1 on M̂An−1 and on its complex

cohomology ring. Now, if we consider the isomorphism Γ : M0,n+1
∼= ŶFAn−1

we can extend to the boundary that reasoning since M0,n+1 has a natural

Sn+1 action; as a consequence we find an Sn+1 action on ŶFAn−1
and on
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H∗(ŶFAn−1
,ZZ), compatible with the natural Sn action which derives from

the linear action of Sn on V as reflection group

The importance of these extended symmetric group representations was
first pointed out in the context of moduli spaces (see [13]): using the theory
of models of arrangements they can be studied in an elementary way since the
elements of the Yuzvinsky basis of H∗(ŶFAn−1

,ZZ) turn out to be permuted

by Sn. In fact, if we represent (as in Chapter 2, Section 2) these elements
by means of forests on n leaves, we see that the Sn action is the one which
permutes the n numbered leaves.

Let us now start by focusing on the Sn+1 action on M0,n+1. We think of
M0,n+1 as the set of tree-like stable pointed curves, according to the descrip-
tion in Chapter 2, Section 2: the symmetric group action is then the one
which permutes the n+ 1 marked points.

It is interesting to study what is the effect of this action on the divisors
in the boundary: since the cohomology ring is generated by the cohomology
classes of these divisors, this will allow us to recover the Sn+1 action on
H∗(ŶFAn−1

,ZZ).

Recall that an irreducible divisor in M0,n+1 can be represented by the
picture

D = BA

HH
HHH

HHHH�
�

�
�

�
�

�

where A ⊂ {0, 1, . . . , n} and B = {0, 1, . . . , n} − A satisfy |A| ≥ 2,
|B| ≥ 2.

Let us now identify Sn+1 with the group of the permutations on the
numbers {0, . . . , n}; using the conventions of Section 3, we can write Sn+1 =<
s0, . . . , sn−1 > where si represents the transposition (i, i + 1). Then, if we
consider σ ∈ Sn+1 and put σA = {σ(y) | y ∈ A}, σB = {σ(z) | z ∈ B}, we
have

σD = σBσA

HH
HHH

HHHH�
�

�
�

�
�

�

But we can also represent D (via the isomorphism Γ of Theorem 2.2.4)

as a divisor in ŶFAn−1
, using the notation of forests on n numbered leaves,

introduced in Chapter 2. With a slight abuse of notation, in what follows
we will indicate for simplicity by the same symbol the subsets of {0, . . . , n}
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and the associated subspaces in V ∗ (i.e. we will omit the superscript “ ”).
In particular we can identify the irreducible divisors with the subsets of
{1, . . . , n} of cardinality greater than or equal to 2 (see Proposition 2.2.2).
The connection between these two representations of the divisors (and thus
of the objects in the boundary) was described in the Proposition 2.3.1 and
it is given by the following rule. Let us consider A ⊂ {0, 1, . . . , n} and
B = {0, 1, . . . , n} − A, |A| ≥ 2, |B| ≥ 2, and suppose that 0 ∈ B. Then we
associate to the divisor

D = BA

HH
HHH

HHHH�
�

�
�

�
�

�

the subset A ⊂ {1, . . . , n}.
We can then transfer the Sn+1 action on the divisors of M0,n+1 to an Sn+1

action on the set

L = {A ∈ P({1, . . . , n}) | |A| ≥ 2, A 6= {1, . . . , n} }

which parametrizes these divisors. We will denote this action by the symbol
“?”, and observe that we have, for σ ∈ Sn+1 and T ∈ L,

σ ? T =

{
σT if 0 /∈ σT
{0, 1, . . . , n} − σT if 0 ∈ σT (4.17)

The cohomological interpretation of this action is immediate, since the
cohomology ring H∗(ŶFAn−1

,ZZ) is generated by the classes cA (A ∈ L ) of

the divisors in the boundary: if σ ∈ Sn+1, we have that σ(cA) = cσ?A. We
then note that this action is compatible with the Sn one, once we identify
Sn ⊂ Sn+1 with the subgroup Sn =< s1, . . . , sn−1 >.

4.6 The representation on H2

Let us now focus on H2(ŶFAn−1
,ZZ). We want to give explicit formulas for

the Sn+1 action in terms of the elements of the Yuzvinsky basis and to de-
termine the associated representation. Recall that the Yuzvinsky basis for
H2(ŶFAn−1

,ZZ) is given by the elements cT with T ⊂ {1, . . . , n} and |T | ≥ 3.

Since Sn+1 is generated by transpositions and we already know the action
of the subgroup Sn

∼=< s1, . . . , sn−1 >, it is sufficient to give formulas for the
transpositions τj = (0, j) (j = 1, . . . , n).
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Let us first take T ⊂ {1, . . . , n} with 3 ≤ |T | ≤ n − 2 and let us write
TC = {0, . . . , n} − T . Then we have, as a consequence of (4.17),

τj(cT ) = cτj?T =

{
cT if j ∈ TC

c(T C∪{j})−{0} if j ∈ T (4.18)

We note that |(TC ∪ {j})− {0}| ≥ 3 so τj(cT ) is still in any case an element
of the Yuzvinsky basis. If instead |T | = n− 1, then the same computations
hold but |(TC ∪ {j})− {0}| = 2 and therefore we need to use the relations

rij :
∑

{i,j}⊂A⊂{1,...,n}

cA = 0 (4.19)

to rewrite τj(cT ) as a ZZ-linear combination of the elements of the basis.
For example, if n = 4,

τ4(c{1,2,3,4}) = c{3,4} = −c{1,3,4} − c{2,3,4} − c{1,2,3,4}

It then remains to compute τj(c{1,...,n}). This can be done by means of the
relations (4.19); therefore, using for instance r12, we have to give a formula

for τj(−
∑

{1,2}⊂A({1,...,n}

cA).

Proposition 4.6.1 We have

τj(c{1,...,n}) =
∑

{j}(A⊂{1,...,n}

(|A| − 2)cA

Proof. Let us consider B with {j} ( B ⊂ {1, . . . , n} and |B| ≤ n − 1. We
can suppose that 1 /∈ B. Writing τj(c{1,...,n}) = −

∑
{1,j}⊂A({1,...,n} τj(cA) we

have that cB does not appear in the decomposition of the terms −τj(cA)
when |A| < n − 1, unless A = ({1, . . . , n} − B) ∪ {j}: in this case cB
appears with coefficient −1. Furthermore, if |A| = n − 1, −τj(cA) is equal
to −c{j,({1,...,n}−A)} which can be written as

∑
{h}(D⊂{1,...,n} cD, where {h} =

{1, . . . , n} − A. In this expression, cB appears (with multiplicity 1) if and
only if h ∈ B. Since there are |B| − 1 possible choices for the element h
(in fact h can be any element of B except for j), the coefficient of cB in
τj(c{1,...,n}) is |B| − 2. A simplified version of this reasoning proves our claim
in the remaining cases (that is to say, B = {1, . . . , n} and j /∈ B).

Let us now study the representations of Sn and Sn+1 on H2(ŶFAn−1
,ZZ).

Let us call by Dj ⊂ H2(ŶFAn−1
,ZZ) the ZZ-linear subspace spanned by the

Yuzvinsky basis elements cT with |T | = j (j = 3, . . . , n ).
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If 3 ≤ j ≤ n − 2, the relation (4.18) implies that Dj ⊕Dn+1−j is a Sn+1

invariant subspace.

This in particular means that, when j = n+1− j (that is to say, when n
is odd and j = n+1

2
), Dn+1

2
is an invariant subspace. Let us instead suppose

that n is even and n ≥ 6. Given j such that 3 ≤ j < n+1
2

, we want to
determine the representations afforded by the subspaces Dj ⊕Dn+1−j.

We notice that the basis {cT} (T ⊂ {1, . . . , n}, |T | = j or n + 1 − j) of
Dj ⊕Dn+1−j can as well be determined by using as indices only the subsets
of cardinality j. In fact we can write cT C instead of cT when |T | = n+ 1− j
(we observe that this will not generate confusion given that 0 ∈ TC).

Then the Sn+1 action on the basis {cT} (T ⊂ {0, 1, . . . , n}, |T | = j <
n+1

2
) is easily seen to be the permutation action of the symmetric group

on the subsets of {0, 1, . . . , n} of cardinality j. This, by the “Young rule”,
corresponds to the following representation which we will denote by T n+1

j :

⊕⊕
n + 1

1

n

j − 1

n + 2− j

j

n + 1− j

⊕ . . . ⊕T n+1
j =

Let us now focus on Dn−1 and Dn; we can write

H2(ŶFAn−1
,ZZ) =

( ⊕
3≤j≤n−2

Dj

)
⊕Dn−1 ⊕Dn

and also

H2(ŶFAn−1
,ZZ) =

( ⊕
3≤j≤n−2

Dj

)
⊕ T

where T is a Sn+1 invariant complement of the Sn+1 invariant subspace⊕
3≤j≤n−2

Dj. If we consider Dn−1 and Dn = ZZc{1,...,n} as Sn =< s1, . . . , sn−1 >

(invariant) submodules and denote, for every 0 ≤ j ≤ n
2
, by T n

j the Sn

representation

⊕⊕
n

1

n− 1

j − 1

n + 1− j

j

n− j

⊕ . . . ⊕T n
j =

We can observe that, by the Young rule, we have the following Sn modules
isomorphisms:

Dn−1
∼= T n

1 Dn
∼= T n

0
∼= In
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where we denote by In the trivial Sn representation. This means that we can
write

T ∼= T n
1 ⊕ In

as Sn modules. Then one can immediately see that, by the branching rule,
this forces T to satisfy

T ∼= T n+1
1

as Sn+1 modules. Therefore we have

H2(ŶFAn−1
,ZZ) ∼=

 ⊕
3≤j≤n

2

T n+1
j

⊕ T n+1
1

as Sn+1 module.
If instead n is odd and n ≥ 7, we have to take into account that the

submodule Dn+1
2

is Sn+1 invariant. Viewed as Sn module, it is isomorphic to

T n
n−1

2

. Then, by the branching rule, the only possible associated representa-

tions could be

⊕⊕
n + 1

2

n− 1

n−5
2

n+7
2

n−1
2

n+3
2

⊕ . . . ⊕Vn+1 =

⊕⊕
1

n

n−3
2

n+5
2

n+1
2

n+1
2

⊕ . . .Qn+1 =

But one easily sees that the one dimensional subspace of Dn+1
2

spanned

by the element ∑
T ⊂ {1, . . . , n}
|T | = n+1

2

cT

is Sn+1 invariant, so in the decomposition of Dn+1
2

the trivial representation

appears. This implies that the irreducible decomposition Vn+1 is the right
one.

Summarizing, we have that, when n is odd, n ≥ 7,

H2(ŶFAn−1
,ZZ) ∼=

 ⊕
3≤j≤n−1

2

T n+1
j

⊕ Vn+1 ⊕ T n+1
1
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as Sn+1 modules. In order to complete our analysis, it remains to notice that

H2(ŶFA4
,ZZ) = V6 ⊕ T 6

1

H2(ŶFA3
,ZZ) = T 5

1

and H2(ŶFA2
,ZZ) is the trivial S4 module.

Remarks.
1) In the observations above we used the fact that, as Sn modules,

Dj
∼= T n

j if 3 ≤ j ≤ n

2

Dj
∼= T n

n−j if
n

2
≤ j ≤ n

This is an immediate consequence of the Young rule.

2) One should compare these results with Getzler’s formula in [13].

4.7 The Sn+1-equivariant immersion

In this section we will describe an Sn+1-equivariant injective ring homomor-
phism

ν : H i(ŶFAn−1
,ZZ) 7→ H i(ŶFAn

,ZZ)

Here we think of H i(ŶFAn−1
,ZZ) equipped with the extended Sn+1 action,

while on H i(ŶFAn
,ZZ) we consider the Sn+1 =< s0, . . . , sn−1 > action which

comes from the Sn+2 =< s0, . . . , sn > extended action.
We describe first this immersion for i = 2. Let us consider the elements

cT (T ⊂ {1, . . . , n}, 3 ≤ |T | ≤ n) of the Yuzvinsky basis of H2(ŶFAn−1
,ZZ):

we define the map ν by means of the relation

ν(cT ) = cT + cT∪{n+1}

where of course the addenda on the right are Yuzvinsky basis elements in
H2(ŶFAn

,ZZ).

Theorem 4.7.1 Let σ ∈ Sn+1 =< s0, . . . , sn−1 > and cT ∈ H2(ŶFAn−1
,ZZ)

be an element of the Yuzvinsky basis. Then

ν(σ(cT )) = σ(ν(cT ))

where the symmetric group actions on the left and on the right are the ones
described above.
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Proof.
Let us suppose that 3 ≤ |T | ≤ n − 2. Then if 0 /∈ σT we have, (writing

σcT instead of σ(cT ) for shortness)

σcT = cσT

and therefore

ν(cσT ) = cσT + cσT∪{n+1} = σ(cT + cT∪{n+1})

since σ(n+ 1) = n+ 1 . If instead 0 ∈ σT , we have

σcT = c{0,...,n}−σT

and therefore

ν(σcT ) = ν(c{0,...,n}−σT ) = c{0,...,n}−σT + c({0,...,n}−σT )∪{n+1}

But in H2(ŶFAn
,ZZ) we have

σ(cT + cT∪{n+1}) = c{0,...,n,n+1}−σT + c{0,...,n,n+1}−(σT∪{n+1})

Now, since c{0,...,n,n+1}−σT = c({0,...,n}−σT )∪{n+1} and c{0,...,n,n+1}−(σT∪{n+1}) =
c{0,...,n}−σT , the Sn+1 equivariance is proved.

Let us now suppose that |T | = n − 1. Then if 0 /∈ σT we proceed as
before. If instead 0 ∈ σT , we observe that σcT = c{0,1,...,n}−σT is not an
element of the Yuzvinsky basis, since |{0, 1, . . . , n} − σT | = 2. Using the
relations (4.19) we can write

c{0,1,...,n}−σT = −
∑

({0,1,...,n}−σT )(A⊂{1,...,n}

cA

Then

ν(c{0,1,...,n}−σT ) = −
∑

({0,1,...,n}−σT )(A⊂{1,...,n}

(cA + cA∪{n+1}) (4.20)

On the other hand, as we observed before, in H2(ŶFAn
,ZZ) we have

σcT + σcT∪{n+1} = c{0,...,n,n+1}−σT + c{0,...,n,n+1}−(σT∪{n+1})

But since |{0, . . . , n, n + 1} − (σT ∪ {n + 1})| = 2 we can use the relations

(4.19) adapted to the ZZ-module H2(ŶFAn
,ZZ):

σcT + σcT∪{n+1} = c{0,...,n,n+1}−σT −
∑

{0,1,...,n,n+1}−(σT∪{n+1})(A⊂{1,...,n,n+1}

cA
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which is easily seen to be equal to (4.20).
It remains to study the case when |T | = n, that is to say, the case

of the element c{1,...,n}. If σ{1, . . . , n} = {1, . . . , n} the invariance follows
immediately. Otherwise, we see that it is sufficient to check the statement
for a transposition τj = (0, j) ∈ Sn+1. Then, by the Proposition 4.6.1,

τjc{1,...,n} =
∑

{j}(A⊂{1,...,n}

(|A| − 2)cA

and consequently

ν(τjc{1,...,n}) =
∑

{j}(A⊂{1,...,n}

(|A| − 2)(cA + cA∪{n+1})

On the other hand, in H2(ŶFAn
,ZZ),

τjc{1,...,n} + τjc{1,...,n,n+1} = c{j,n+1} +
∑

{j}(B⊂{1,...,n,n+1}

(|B| − 2)cB

which, using the relations (4.19), can be rewritten as

= −
∑

{j,n+1}(D⊂{1,...,n,n+1}

cD +
∑

{j}(B⊂{1,...,n,n+1}

(|B| − 2)cB =

=
∑

{j}(B⊂{1,...,n}

(|B| − 2)(cB + cB∪{n+1})

This concludes the proof.

The result of the preceding theorem can be extended to the entire co-
homology rings H∗(ŶFAn−1

,ZZ) (n ≥ 3) since they are generated by their
components of degree 2.

Theorem 4.7.2 The map ν extends to an injective ring homomorphism

ν : H∗(ŶFAn−1
,ZZ) 7→ H∗(ŶFAn

,ZZ)

which is Sn+1-invariant, where on the left we consider the Sn+1 extended
action, while on the right we consider the Sn+1 =< s0, . . . , sn−1 > action
which comes from the Sn+2 =< s0, . . . , sn > extended action.

Proof.
We will give an explicit description of the extended map ν. For this we

use the squarefree basis introduced in Chapter 3, Section 4, and studied in
particular in the example at the end of that section.

Recall that, for every n, the order we chose on FAn−1 can be expressed
by the following rule. Given A,B ⊂ {1, . . . , n}, then A < B if either of the
following cases occurs:
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1. B ⊂ A, or

2. neither A ⊂ B nor B ⊂ A but min (A− A ∩B) < min (B − A ∩B)

Since the map ν is defined on the elements cA (A ∈ G), which generate

H∗(ŶFAn−1
,ZZ) as a ring, it can be extended to H∗(ŶFAn−1

,ZZ) in a natural

way. Let us call by I
(n−1)
∅ and I

(n)
∅ the ideals such that

H∗(ŶFAn−1
,ZZ) ∼= ZZ[cA]/I

(n−1)
∅ (A ∈ FAn−1)

H∗(ŶFAn
,ZZ) ∼= ZZ[cA]/I

(n)
∅ (A ∈ FAn)

It is immediate to check that, for every generator P ∅
H,B, we have ν(P ∅

H,B) ∈
I

(n)
∅ , that is to say, ν(I

(n−1)
∅ ) ⊂ I

(n)
∅ . Then ν is a ring homomorphism.

As for the injectivity, let us consider a monomial mf = cA1 · · · cAr of the

squarefree basis of H i(ŶFAn−1
,ZZ) (i = 2r). We have

ν(mf ) = ν(cA1) · · · ν(cAr) = (cA1 + cA1∪{n+1}) · · · (cAr + cAr∪{n+1})

which gives a sum of monomials which are either zero or belong to the square-
free basis of H i(ŶFAn

,ZZ).
In fact we have

ν(mf ) =
∑

J⊂{1,...,r}

(∏
i∈J

cAi

) ∏
j∈{1,...r}−J

cAj∪{n+1}


Then the addenda on the right either have non nested support or are mono-
mials mg with the following property: if Aj ∪{n+1} belongs to supp g then,
for every k such that Aj ⊂ Ak, we have Ak ∪ {n+ 1} ∈ supp g.

Because of the choice of the order in FAn , the monomials mg which sat-
isfy the above mentioned condition are elements of the squarefree basis of
H i(ŶFAn

,ZZ). This explicit description immediately proves the injectivity of
ν, while the Sn+1-equivariance follows by construction and by the Theorem
4.7.1.

The Sn+1-equivariant immersion we constructed is interesting both in
view of the study of the structure of the rings H∗(ŶFAn

,ZZ) and in view
of their representation theory. As for the representation theory, we note
that in fact the map ν has properties similar to the ones of the map η∗ we
studied in Section 3 of the present chapter (see Theorem 4.3.1). Hopefully
it could be used in a similar way as η∗, that is to say, it could be the key to
study some recursive relations between the symmetric group representations
of H∗(ŶFAn

,ZZ) and H∗(ŶFAn−1
,ZZ).
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Chapter 5

Generalized Poincarè series

5.1 The aim of this chapter

In this last chapter we will focus on the natural (i.e., non extended) ac-

tion of the symmetric group Sn on H∗(ŶFAn−1
,ZZ). In Chapter 4, Section

5, we determined the irreducible decomposition of this representation (and

of the “extended” Sn+1 representation) restricted to H2(ŶFAn−1
,ZZ); our aim

now is, given any element w ∈ Sn, to provide formulas for the trace of the
corresponding operator.

As we pointed out in the Introduction, in [13] Getzler found a formula
for the Legendre transform of the cyclic characteristic series of the rings
H∗(ŶFAn−1

,ZZ). Differentiating this formula we can find the “non cyclic”

characteristic series of the rings H∗(ŶFAn−1
,ZZ) which encodes all the infor-

mation concerning the non extended symmetric group action. In this paper
we will deal with a different combinatorial object (the series H which will
be defined later) which encodes the same information of the non cyclic char-
acteristic. We start by considering the generalized Poincarè polynomial of
ŶAn−1 with respect to w:

Definition 5.1.1 Given w ∈ Sn, we call by Pw,An−1(q) the “generalized
Poincarè polynomial”

Pw,An−1(q) :=
∑

i

(tr w|H2i(ŶFAn−1
,ZZ)

)qi

Now we can view w ∈ Sn as an element of Sm for every m > n, by the obvious
immersion Sn 7→ Sm; this makes w to act on all the rings H∗(ŶAm−1 ,ZZ) for
m > n. It turns out that, in order to determine the generalized Poincarè
polynomials Pw,Am−1(q) as m varies, it is convenient to compute directly the
two variables “generalized Poincarè series”

Pw,A(q, t) =
∞∑

m=n

Pw,Am−1(q)
tm

m!
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We give in Section 2 some formulas for Pw,A(q, t) for any w ∈ Sn. The
method we apply is a generalization of the combinatorial blow-up method
used in the proof of Theorem 3.2.1. In fact, in particular, when w is the
identity, we recover the formula for the ordinary Poincarè series.

We then note that a substantial simplification to the equations provided
in Section 2 can be obtained if we consider, instead of the series Pw,A(q, t),

a universal graded series H in some formal graded variables Sj and P
(d)
k

(j ≥ 1, k ≥ 1, d ≥ 0) that is connected to the generalized Poincarè series in
the way explained by the following steps:

1. Given w ∈ Sn with decomposition w = c1 · · · cl, where c1, . . . , cl are non
trivial disjoint cycles of length λ1 ≥ . . . ≥ λl > 1 respectively, consider
the polynomial Hl which is the homogeneous component of degree l of
H.

2. Then substitute in Hl the formal variables Sj (and P
(d)
k ) with some

special functions from ZZj (ZZk respectively) to ZZ[[q, t]].

3. Finally put the numbers λ1, . . . , λl as inputs of these special functions
and sum over all the possible permutations of λ1, . . . , λl.

4. The universal series H is constructed in such a way that, after the steps

1,2 and 3, P
(
∑l

i=1 λi)
w,A (q, t) is obtained (here the superscript (n) means

“n-th derivative with respect to t”).

The third section of this chapter is devoted to finding a nice formula
for the formal series H (see Theorem 5.3.4), which is obtained by purely
combinatorial methods. In particular, as a by-product of our analysis, we
prove some theorems on certain remarkable sums of functions defined on
rooted trees (see Theorems 5.3.2 and 5.3.3).

Finally, in Section 4, we deal with the complex root arrangements B∗n of

type Bn and on their De Concini - Procesi models of irreducibles ŶFBn
: we

provide a formal seriesHB which, by the same methods as above, gives us the
generalized Poincarè series with respect to the elements of some subgroups
(isomorphic to Sn) of the Weyl group of type Bn.

Remark. We recall that, in view of the isomorphism H∗(ŶG,ZZ) ∼= H∗(YG,ZZ),
the reasonings and results of the present chapter are the same in the compact
and non compact case.
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5.2 The generalized Poincarè series

5.2.1 The generalized Poincarè series with respect to
a cycle

We will compute the generalized Poincarè series by applying a technique
similar to the splitting technique used in the proof of Theorem 3.2.1.

Let us first study the Poincarè series Pc,A(q, t), where c ∈ Sn is a cycle.
We may assume, taking a conjugate, that c = (1, 2, . . . , r). Let us then focus

on an element θ, of the Yuzvinsky basis for H∗(ŶAr−1 ,ZZ), that is fixed by c.
Thus the graph associated to θ is a forest T ′ whose connected components
are s (s ≥ 1 ) identical copies of a symmetric rooted tree T .

In fact, if there is a vertex v1 connected by an edge to some leaves (say
a1, . . . , at), it is easily seen that it must be t|r and a1, . . . , at are all the
representatives, among {1, . . . , r}, of a certain congruence class (say the class

of 1) modulo
r

t
.

Furthermore, there must be vertices v2, . . . , v r
t

which play the same role
as v1 with respect to the other congruence classes.

Then we have c(v1) = v2 . . . c(v2) = v3 . . . c(v r
t
) = v1, therefore we can

apply again the same considerations and so on.
This allows us to describe the shape of T in the following way. We will say

that a vertex of T belongs to the t-th class if the oriented path that connects
it with the root is made by t edges. Then in T there are d1 outgoing edges
from the root, d2 outgoing edges from each one of the d1 vertices which belong
to the first class, d3 outgoing edges from each one of the d1d2 vertices which
belong to the second class, and so on, until we reach the last class of vertices,
say the k-th.

Note that it must be s
∏k

j=1 dj = r and dj > 2 ∀ j.
We will indicate by F (T ) the collection of elements of the Yuzvinsky basis

whose graphs have the shape described above. The following functions are
strictly related with the contribution that the elements of F (T ) give to the
Poincarè series:

Definition 5.2.1 Given the positive natural numbers d and m, with d > 1,
d|m, d 6= m, we define the function

T (d,m) =
∑

(d1, . . . , dk)

s.t.
∏k

j=1 dj = d

dj > 1 ∀ j

(
k∏

j=1

(
q

dj−1
j − qj
qj − 1

))

where qj = q
m

dj ···dk . Furthermore, if d = 1 and m > 1 we put

T (1,m) = 1
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Definition 5.2.2 Given a positive natural number r, we put:

S(r) =
∑
d|r
d 6= r

T (d, r)

We now call by Yc the set of the elements of the Yuzvinsky bases of H∗(ŶFAn−1
,ZZ)

(n ≥ 3, n ≥ r > 1) that are fixed by c. Looking at the graphs of the elements
in Yc, we want to single out, if it exists, a “singular” vertex.

Definition 5.2.3 Let us consider the graph Γ of an element γ ∈ Yc. A
vertex v of Γ is called “singular” if it satisfies the following conditions:

1. The subtree that stems from v has among its leaves the leaves 1, 2, . . . , r.

2. The condition 1 is not satisfied by the vertices which follow v in the
orientation.

Theorem 5.2.1 We have the following formula for the generalized Poincarè
series Pc,A(q, t):

P
(r)
c,A(q, t) = S(r)(1 + Φ) + Φ(1)

∑
j ≥ 0
m|r
m 6= r

T (m, r)
qj+ r

m
−1 − q

q − 1

λj

j!

Proof
The definition of singular vertex of a graph in Yc makes the proof similar

to that of Theorem 3.2.1.
For every n ≥ 2 we will regard the Yuzvinsky basis for H∗(ŶFAn−1

,ZZ) as
the set of marked forests described above, with the n leaves identified with
the numbers from 1 to n.

We can now split Yc in two parts: the subset made by I-elements and the
subset made by II-elements, where I-elements are the elements the graphs of
which have not a singular vertex, II-elements are the elements the graphs of
which have a singular vertex.

Let us then compute the contribution of I-elements to Pc,A(q, t). Let γ be
a I-element: then the part of the graph of γ that covers the leaves 1,2,. . ., r
is a forest of type T ′ (with s > 1 since γ is a I-element), while the other part
is the graph of a Yuzvinsky-type element constructed on the leaves labeled
by the numbers greater than or equal to r + 1. This gives the relation:

P
(r)
c,A(q, t) =

∑
d|r
d 6= r

T (d, r)(1 + Φ) + contribution of II-elements
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Let us now work on II-elements: given a II-element %, we can construct
two new Yuzvinsky-type elements: %′ and %′′. The graph of %′ is obtained
from the one of % by collapsing to the singular vertex v, which becomes a
leaf, the subtree ρv that stems out of v. The graph of %′′ is ρv (we note that
we are considering v ∈ ρv).

We observe that a II-element can be uniquely determined by giving its
associated couple (%′ , %′′ ). Therefore, in order to obtain the contribution
to Pc,A of II-elements, we can multiply the series originated respectively by
elements of type %′ and %′′. The second one is easily shown to be

∑
j ≥ 0
m|r
m 6= r

T (m, r)
qj+ r

m
−1 − q

q − 1

λj

j!

The contribution to the series due to the elements of type %′ is Φ(1). In
this case the first derivative is needed since the elements of type %′ have an
artificial leaf (the singular vertex). Summing up we have:

contribution of II-elements = Φ(1)
∑
j ≥ 0
m|r
m 6= r

T (m, r)
qj+ r

m
−1 − q

q − 1

λj

j!

and this proves the theorem.

5.2.2 Extracted graphs and the general case

Now our purpose is to study the general case of an element w ∈ Sn with
disjoint cycle decomposition w = c1c2 · · · cl, where cj is a cycle of length

λj > 1. We can assume, up to conjugation, that w permutes the first
∑l

j=1 λj

leaves and therefore we can take n =
∑l

j=1 λj. It is convenient to introduce
the following notation:

Definition 5.2.4 For every j, we indicate by Lj the set of the λj leaves that
are permuted by cj.

Our next step is to state the new appropriate definition of singular vertex:

Definition 5.2.5 Let the graph A be associated to an element α of the
Yuzvinsky basis of H∗(ŶFAm

,ZZ) (m ≥ n) and let α be fixed by w. A ver-
tex v of A is called “singular” if the following conditions are satisfied:
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1. The subtree that stems from v has among its leaves some of the sets
Lj.

2. Some of the sets, say Li1 , . . . , Lip (p ≥ 1), are not leaves of the subtrees
stemming from any other vertices that follow v in the orientation.

The sets Li1 , . . . , Lip are called then “adjacent to v”.

Now we note that we can extract from A two new marked graphs in this way:

Definition 5.2.6 The graph Ã is called “extracted from A” if it is con-
structed according to the following rules:

1. Take as vertices all the singular vertices of A.

2. Connect two of them by an oriented edge if they are connected by an
oriented path in A.

3. Associate to each vertex a label corresponding to the number of sets Lj

adjacent to it.

Definition 5.2.7 The graph
˜̃
A is called “fully extracted from A” if it has

the same vertices, edges and orientation as Ã, but the following different
marking: if Li1 , Li2 , . . . , Lip are the sets adjacent to a singular vertex v of A,

the mark of v in
˜̃
A is the set {Li1 , Li2 , . . . , Lip }.

Extracted and fully extracted graphs will play an important role in the
sequel. As a first example, we will use fully extracted graphs in the com-
putation of the generalized Poincarè series Pw,A(q, t), given that they allow
us to generalize the splitting in I-elements and II-elements that we used in
the case Pc,A(q, t) of Theorem 5.2.1. In fact we will sum separately the con-
tributions coming from the elements such that their graphs give rise to the
same fully extracted graph. Before starting to compute Pw,A(q, t) we need to
define some special functions and to introduce the notion of “contraction” of
a list of integers.

Let us consider a list of positive integers (λ1, λ2, . . . , λp) (maybe with
repetitions) and let us construct some new lists (γ1, γ2, . . . , γk) according to
the following rules: choose a partition of {1, . . . , p} in k sets J1, . . . , Jk such
that

1. min {x |x ∈ J1} < min {x |x ∈ J2} < . . . < min {x |x ∈ Jk} ;

2. for every j (1 ≤ j ≤ k), either |Jj| = 1 or, if |Jj| > 1 then we have
MCDj = MCD{λi | i ∈ Jj} > 1.

94



Then, for every j such that |Jj| > 1, choose a number γj > 1 which
divides MCDj; if Jj = {r} (1 ≤ r ≤ p), then take γj = λr; finally form the
list (γ1, γ2, . . . , γk).

We say that (γ1, γ2, . . . , γk) is “contracted from” (λ1, λ2, . . . , λp), and we
denote by

(λ1, λ2, . . . , λp)
J1,...,Jk−→ (γ1, γ2, . . . , γk)

the process of “contraction” described above.

We note that if the chosen partition is J1 = {1}, J2 = {2}, Jp = {p}, the
associated contraction is the trivial one

(λ1, λ2, . . . , λp)
J1,...,Jp−→ (λ1, λ2, . . . , λp)

Furthermore, two contractions

(λ1, λ2, . . . , λp)
D1,...,Dt−→ (δ1, δ2, . . . , δt)

(λ1, λ2, . . . , λp)
J1,...,Jk−→ (γ1, γ2, . . . , γk)

will be considered equal if and only if k = t , Js = Ds ∀s and γr = δr ∀r.

Definition 5.2.8 Let us put, for every list (λ1, λ2, . . . , λp) of natural num-
bers strictly greater than 1

Sp(λ1, λ2, . . . , λp) =

p∏
s=1

S(λs)

We observe that the functions Sp are symmetric. Then we can define, in
a recursive way, the symmetric functions Sp, for all positive integers p.

Definition 5.2.9 Let (λ1, λ2, . . . , λp) be as before; we define recursively

Sp(λ1, λ2, . . . , λp) = Sp(λ1, λ2, . . . , λp)+

∑
(λ1,λ2,...,λp)

J1,...,Jk
−→ (γ1,γ2,...,γk)

Sk(γ1, γ2, . . . , γk)
k∏

t=1

(
q−γt+

∑
h∈Jt

λh − qγt

qγt − 1

)

where the sum ranges over all the possible different non trivial contractions.

Note that, if p = 1, S1(λ1) = S(λ1).

We also need to introduce the following special functions:
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Definition 5.2.10 Let us put, for every list (λ1, λ2, . . . , λp) of natural num-
bers strictly greater than 1

P p(λ1, λ2, . . . , λp) =


∑

j ≥ 0
d1|λ1, d1 6= λ1

. . .
dp|λp, dp 6= λp

T (d1, λ1) · · ·T (dp, λp)
q

j−1+
∑

s
λs
ds − q

q − 1

λj

j!



and, in a recursive way,

Definition 5.2.11 Let (λ1, λ2, . . . , λp) be as before; we define recursively

Pp(λ1, λ2, . . . , λp) = P p(λ1, λ2, . . . , λp)+∑
(λ1,λ2,...,λp)

J1,...,Jk
−→ (γ1,γ2,...,γk)

Pk(γ1, γ2, . . . , γk)
k∏

t=1

(
q−γt+

∑
h∈Jt

λh − qγt

qγt − 1

)

where the sum ranges over all the possible different non trivial contractions.

Remark
In the above formulas, the recursion ends when the list (λ1, λ2, . . . , λp) is
composed by numbers that are pairwise coprime or when p = 1 (in both
cases the only possible contraction is the trivial one).

The motivation for all the definitions we have given stems from the following
construction. Let us call by Yw the set of all the elements of the Yuzvinsky

bases which are fixed by w. Then let us take a fully extracted graph
˜̃
A and

look at a certain vertex v, marked by {Li1 , Li2 , . . . , Lip}. Furthermore, let ν

be the number of outgoing edges in
˜̃
A at v.

We want to compute the “contribution of v” to P
(
∑l

j=1 λj)

w,A (q, t). This
means that we have to consider all the elements in Yw which have fully ex-

tracted graph
˜̃
A, and sum, over all these elements, the contributions of the

subtrees that stem from v. In doing this, we collapse to a single “artifi-
cial” leaf the subtrees that stem from a singular vertex h if h follows v in

the orientation of
˜̃
A. What we get at the end are exactly the functions

Pp(λi1 , λi2 , . . . , λip)
(ν), where the ν-th derivative depends on the fact that we

are counting ν artificial leaves in correspondence with the singular vertices
that follow v in the orientation.
Furthermore, we note that if, in the graph of an element of Yw, the sets
Li1 , Li2 , . . . , Lip are not adjacent to any singular vertex, their contribution to

P
(
∑l

j=1 λj)

w,A (q, t) is Sp(λi1 , λi2 , . . . , λip).
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Remark
1) It is clear from the definitions that the complexity of the computation of
the functions Pm and Sm sensibly grows if m grows and the numbers λj are
not pairwise coprime.
2) From now on, if L = {Li1 , Li2 , . . . , Lip}, we will also write P (L) and
S(L) for Pp(λi1 , λi2 , . . . , λip) and Sp(λi1 , λi2 , . . . , λip) (recall that Pm and Sm

are symmetric functions).

We are almost ready to give the formula for P
(
∑l

j=1 λj)

w,A (q, t): to express it
in compact form, we need to introduce this further definition.

Definition 5.2.12 Given a fully extracted graph
˜̃
A, we associate to it the

series P(
˜̃
A) which is a product of series that contains a factor for each vertex

of
˜̃
A: if v is a vertex marked by {Li1 , Li2 , . . . , Lip } and it has ν outgoing

edges, the corresponding factor is Pp(λi1 , λi2 , . . . , λip)
(ν).

Given a subset J = {Li1 , Li2 , . . . , Lir } of the set L = {L1, L2, . . . , Ll }, we
call by JC its complement. Let now ΓJC be the family of automorphism
classes of fully extracted graphs characterized by the following property: an
automorphism class E belongs to ΓJC if, taken a representative η of E, the
marks of η (which are subsets of JC ) give a partition of JC . Of course, if
J = L, then ΓJC = ∅.

Furthermore, given any graph A, we indicate by comp(A) the number of
its connected components. We put comp(∅)= 0.

We can finally state the theorem which provides a formula for the gener-
alized Poincarè series; the proof of the theorem essentially follows the same
ideas of the proof of Theorem 5.2.1, using the new definitions and observa-
tions introduced in the present subsection.

Theorem 5.2.2

P
(
∑l

j=1 λj)

w,A (q, t) = S(L)(1 + Φ) +
∑

J⊂L, J 6=L

S(J)

 ∑
[B]∈Γ

JC

Φ(comp(B))P(B)


(5.1)

Unfortunately, formula (5.1 ) is not easy to be computed as far as the number
l of distinct cycles of w grows, mostly because ΓJC becomes quite a compli-
cated object to study. In the next paragraph we are going to show how to
overcome this difficulty.

5.3 The formal series H and sums over trees

We note that in the formula (5.1) the numbers λj appear as inputs of the

functions P
(d)
j and Sm. Let us look at the right side of (5.1): given an
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addendum of this sum we can view it as a monomial µ in P
(d)
j and Sm; we

observe then that there are other monomials which differ from µ only for a
permutation of the inputs λj.

It turns out that if we take into account the associated symmetric group
action, we can simplify (and we can study in a deeper way) our formulas for
the generalized Poincarè series. In fact we can shift the problem to that of
searching for a “universal” series H in certain formal graded variables Sm,
P

(d)
j (m, j ≥ 1 , d ≥ 0), which represent respectively the functions Sm, Pj and

the derivatives P
(d)
j defined in the preceding section.

The formal series H, as mentioned in the introduction, should be con-
structed so that it satisfies what follows:

1. The graduation is obtained by giving degree m to the variables Sm and
degree j to the variables P

(d)
j .

2. Let w ∈ Sn be an element with disjoint cycle decomposition w =
c1c2 · · · cl, where cj is a cycle of length λj > 1. We consider the number
l of its cycles, and take Hl, that is to say, the homogeneous component
of degree l of H.

3. Then we create the polynomial Hl(λ1, . . . , λl), by transforming, in each
term ofHl, the formal variables Sm, Pj and derivatives in their concrete
representative, and by making the symmetric group Sl to act.

For example, we transform the term S2P1(P
(2)
1 )2P2 of degree 7 into∑

ς∈S7

S2(λς(1), λς(2))P1(λς(3))P
(2)
1 (λς(4))P

(2)
1 (λς(5))P2(λς(6), λς(7))

4. Our request is that this must be equal to the Poincarè series

P
(
∑l

j=1 λj)

w,A (q, t)

Let us then construct the series H having in mind the formula (5.1).
First of all, we should change the sum on automorphism classes of fully

extracted graphs
˜̃
A in a sum on automorphism classes of extracted graphs

Ã (this means that we are “forgetting” the difference among the various sets

Lj), by associating to an extracted graph Ã the polynomial Q(Ã), in the

variables P
(d)
j , constructed in the following way:

Definition 5.3.1 Given any oriented labeled forest B, the polynomial Q(B)
is a product of monomials that contains a factor for each vertex of B: if
v is a vertex of B labeled by the number s and with ν outgoing edges, the

corresponding factor is
P

(ν)
s

s!
. Furthermore we put Q(∅) = 1.
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Given an oriented labeled forest Ã, we can construct the rooted tree Â
that equals Ã if Ã is connected, and otherwise is obtained by adding to Ã
a new root vertex u which is connected by an edge to all the roots of the
connected components of Ã.

Then we note that the cardinality Aut(Ã) of the automorphism group

of the graph Ã is equal to the product
∏

v

γsym,v where v ranges over the

vertices of Â and γsym,v is determined in this way: delete v and consider the

connected components of the subgraph of Â that stems from v. Suppose
that they can be partitioned in k automorphism classes with the following
cardinalities: a1, a2, . . . , ak. Then γsym,v = a1!a2! · · · ak!. We observe that
Aut(∅) = 1.

We are now ready, having in mind formula (5.1), to define H:

Definition 5.3.2

H =

(∑
r≥0

Sr

r!

)∑
[Ã]

(1 + Φ)(comp(Ã)) Q(Ã)

Aut(Ã)

 (5.2)

where [Ã] ranges over all automorphism classes of oriented labeled forests (∅
included) and S0 = 1.

We note that the motivation for the coefficients 1
r!

and 1

Aut(Ã)
is provided by

our intention to make the symmetric group to act on H.
From the definition we immediately deduce the following statement, which

we aimed at:

Proposition 5.3.1 With the same notation as above, we have:

P
(
∑l

j=1 λj)

w,A (q, t) = Hl(λ1, . . . , λl)

Our next goal is to show a remarkable simplification of formula (5.2), which
we will obtain by studying in a deeper way the combinatorics of the sum

∑
[Ã]

(1 + Φ)(comp(Ã)) Q(Ã)

Aut(Ã)
(5.3)

We note that the expression (5.3) can be rearranged in the following way:

∑
[Ã]

(1 + Φ)(comp(Ã)) Q(Ã)

Aut(Ã)
=
∑
n≥0

(1 + Φ)(n) Γ
n

n!
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where

Γ =
∑
[Ã]

Ã connected

Q(Ã)

Aut(Ã)

and the sum ranges over all the automorphism classes of oriented, labeled,
rooted trees (this time, ∅ excluded).
Thus the problem can be reduced to the one of finding a “nice” formula for
Γ. This is provided by

Theorem 5.3.2

Γ =
∑
n≥1

1

n!

[(∑
j≥1

Pj

j!

)n](n−1)

(5.4)

where the derivation of a product of formal variables is performed according
to the Leibniz rule.

Proof
We begin by stressing the case when there is only one variable, i.e. only

P1 is involved. This case leads to the following interesting relation which we
state as an independent theorem:

Theorem 5.3.3 ∑
[B]
B tree

all labels=1

Q(B)

Aut(B)
=
∑
n≥1

1

n!
[(P1)

n]
(n−1)

(5.5)

where [B] ranges over all the automorphism classes of oriented labeled rooted
trees, with all the labels equal to 1.

Proof.
We think of P n

1 as P1P1 · · ·P1︸ ︷︷ ︸
n terms

, and we associate to each P1 a label which

determines its position. The process of differentiating n−1 times by applying
the Leibniz rule will give, if we do not associate terms, nn−1 monomials in
P1 and its derivatives.

We observe that, if µ is such a monomial, it has been obtained in this
way: starting from P1P1 · · ·P1︸ ︷︷ ︸

n terms

, first we have differentiated the P1 which

lies in the a1-th position, then the one in the a2-th position, and so on.
Thus we can determine µ by renaming it µ(a1, . . . , an−1). To µ(a1, . . . , an−1)
we can associate the oriented rooted tree G(µ(a1, . . . , an−1)) according to
the following rules. In correspondence with a1 we take a vertex v1 and an
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outgoing edge. Then, if a2 6= a1, we draw, on the other end of the edge,
another vertex v2 and another outgoing edge and so on. If we come across
aj = ak with j > k, instead of drawing a vertex and an edge on the free end
of the edge stemming from vj−1, we draw another edge which starts from
vertex vk and we continue. At the end we add a vertex to all the remaining
free ends of edges. Note that we are constructing G(µ(a1, . . . , an−1)) branch
by branch (here we call branch a directed path from v1 to a leaf), and that
the tree G(µ(a1, . . . , an−1)) satisfies by construction the relation

Q(G(µ(a1, . . . , an−1))) = µ(a1, . . . , an−1)

We also observe that monomials that are determined by different sequences
may give the same tree. In fact, what is really determinant to draw the graph,
is not the sequence (a1, . . . , an−1) but the “symbolic” sequence obtained from
it by substituting the number a1 and all the aj equal to a1 with the symbol
x1, a2 and all the ak equal to a2 with the symbol x2, and so on.

This provides us a method for counting the number of monomials
µ(a1, . . . , an−1) that give (up to automorphism) the same tree with n vertices
A. Let τ be the number of branches of A: then we note that there are τ !

AutA

different symbolic sequences giving (up to automorphism) the tree A.
Furthermore, we see that each one of these symbolic sequences involves

n− τ different symbols, given that the repetitions of symbols are in bijective
correspondence with the branches. Therefore, each symbolic sequence corre-
sponds to n!

τ !
possible different sequences (a1, . . . , an−1), since the aj’s belong

to {1, 2, . . . , n}.
Now, considering formula (5.5), we see that, given an equivalence class of

oriented trees [A], the coefficient of Q(A) on the left side is 1
AutA

. But if we
look on the other side at the number of monomials that give, according to the
previous construction, a tree automorphic to A (therefore in particular these

monomials are equal to Q(A)) we find

(
τ !

AutA

n!

τ !

)
. This, after dividing by

n! , gives the thesis.

Let us go back to the theorem 5.3.2: it is sufficient to prove the theorem
when the number of variables is finite, and we will write here the proof for
the two variable case. In fact the notation is simpler and the proof in the
other cases is completely analogous. As before, looking at the right side of
(5.4), we use an algorithm that associates a rooted tree to the monomials
obtained by differentiating according to the Leibniz rule.

Let us consider the monomial P r
1P

s
2 on the right side of (5.4). Observe

that we can “forget” the coefficient 1
2!

associated to the variable P2: in fact
it is associated to the variable P2 also on the left side of (5.4), because of the
definition of Q. Let us fix a canonical way to put the variables in a list, for
example P1P1 · · ·P1︸ ︷︷ ︸

r terms

·P2P2 · · ·P2︸ ︷︷ ︸
s terms

and let us take the r+ s− 1-th derivative; we
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can determine each one of the resulting monomials µ by writing as before:
µ = µ(a1, . . . , ar+s−1).

We want now to associate a marked forest G(µ) to µ; this can be done
as before, with the further conditions that the vertex we draw when we are
differentiating a variable P2 is labeled with 2 and that we put all the labels
of the leaves equal to 1.

Let us fix a monomial δ = δ(a1, . . . , ar+s−1) which is obtained by differ-
entiating P1P1 · · ·P1︸ ︷︷ ︸

r terms

·P2P2 · · ·P2︸ ︷︷ ︸
s terms

and let A be the tree obtained by applying

our algorithm to δ. Furthermore, let us suppose that, in δ, P1 appears with
exponent g1 and P2 with exponent g2.

Our aim is to count the number of monomials µ, obtained from
P1P1 · · ·P1︸ ︷︷ ︸

r terms

·P2P2 · · ·P2︸ ︷︷ ︸
s terms

, that give rise to a graph automorphic to A.

Then, reasoning as in the proof of Theorem 5.3.3, we immediately see
that this number is

(g1 + g2)!

AutA

r!

g1!

s!

g2!

Taking into account that on the right side of (5.4) the coefficient of P r
1P

s
2

(up to the coefficient 1
2

associated to P2 ) is

(
r + s
r

)
, we find

(
g1 + g2

g1

)
1

AutA
(r + s)!

monomials that, according to our algorithm, give rise to a graph equivalent
to A.
We have to show that this number, up to multiply by 1

(r+s)!
, is equal to∑

[A]∼[B]

1
Aut(B)

, where [A] ∼ [B] means that Q(B) = δ and that [B] may

differ from [A] only in the marking of the leaves (so that Aut(A) may be
different from Aut(B)).

Now, given a certain [B] such that [A] ∼ [B], we observe that the number

aB which satisfies Aut(B) = Aut(A)
aB

coincides with the number of possible
different ways to obtain from A a tree automorphic to B by substituting g2

times in A a leaf labeled with 1 with a leaf labeled with 2. This leads us to
the following equalities:∑

[A]∼[B]

1

Aut(B)
=
∑

[A]∼[B]

aB

Aut(A)
=

1

AutA

∑
[A]∼[B]

aB

But we have ∑
[A]∼[B]

aB =

(
g1 + g2

g1

)
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since the sum on the left counts all the possible ways to substitute g2 leaves
labeled with 1 with leaves labeled with 2.

In conclusion we can write∑
[A]∼[B]

1

Aut(B)
=

(
g1 + g2

g1

)
1

Aut(A)

and this concludes the proof.

To sum up, we have obtained the following compact formula for H:

Theorem 5.3.4

H =

(∑
r≥0

Sr

r!

)(∑
n≥0

(1 + Φ)(n) Γ
n

n!

)

where Γ is as in Theorem 5.3.2.

Remark.
The above formula for H is direct and easy to be computed. Thus the com-
plexity of the problem lies in the computability of the functions Pm and Sm. If
for example we limit ourselves to study elements w ∈ Sn the cycles of which

have length pairwise coprime, we observe that Sp(λ1, . . . , λp) =

p∏
k=1

S(λk);

therefore we do not need to introduce the formal variables Sr for r > 1 and
in this case we can write

H = eS1

(∑
n≥0

(1 + Φ)(n) Γ
n

n!

)

5.4 Some results for Bn arrangements

Let us now focus on a Coxeter arrangement Bn, of type Bn, in C| n. The asso-
ciated Weyl group WBn may be viewed as the group of all the permutations
and sign changes on the n coordinates in C| n.

Let us consider the associated De Concini-Procesi compact model of irre-
ducibles ŶFBn

and its cohomology ring H∗(ŶFBn
,ZZ). The standard Poincarè

series for H∗(ŶFBn
,ZZ) has already been computed in Chapter 3, Section 2.

In this section we are going to find the generalized Poincarè series Pw,B(q, t)
with respect to any element w of the subgroups Γn ⊂ WBn (for n ≥ 2) made
by permutations. We observe that Γn ' Sn and that we will automatically
find the Poincarè series with respect to the elements of all the subgroups
which are conjugate to Γn.
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Let us then consider w ∈ Γn, and let us suppose in addition that the
permutation w has no fixed points (i.e. n is the minimum integer such that
Γn contains w). The definition of Pw,B(q, t) is

Pw,B(q, t) =
∞∑

m=n

Pw,Bm(q)
tm

m!

where Pw,Bm(q) (m ≥ n) is the Poincarè polynomial of ŶFBn
with respect to

w. As before, it turns out that it is particularly convenient to search for a
“universal” formal graded series HB.

Therefore our steps will be the following ones: first we will modify the
functions Sm(λ1, . . . , λm) and Pr(λ1, . . . , λr) defined in Section 2; then we
will compute the series HB which, in the same way as the graded series H
studied in Section 3, after choosing an appropriate homogeneous component
and making some symmetric group to act, will provide us the requested
generalized Poincarè series.

5.4.1 The symmetric functions Sp,B, Pp,B

In what follows we will refer to the properties of the Yuzvinsky bases for
H∗(ŶFBn

,ZZ) which have been described in Chapter 2, Section 3.

Let us consider an element w ∈ Γn ⊂ WBn and let w = c1 · · · cl be its
decomposition in disjoint cycles of lengths λ1, . . . , λl respectively. We can
assume, up to conjugation, that w permutes the first

∑l
j=1 λj leaves and

therefore we can take n =
∑l

j=1 λj. Let Lj be, as in Section 2 of the present
chapter, the set of leaves which are permuted by cj (j = 1, . . . , l).

Given a w-invariant element θ and considered its graph, we can extend
without changes the definition of singular vertex introduced in Section 2,
without distinguishing if such a vertex if weak of strong.

Now, a new situation to be studied is when we have a singular strong ver-
tex v with adjacent sets Li1 , . . . , Lip . We want to compute, in the spirit of Sec-

tion 2, the contribution of v to the generalized Poincarè series P
(
∑l

j=1 λj)

w,B (q, t).

We will call by Ŝp,B(λi1 , λi2 , . . . , λip) such a contribution, while if, in the
graph of θ, the sets Li1 , Li2 , . . . , Lip are not adjacent to any singular vertex,

their contribution to P
(
∑l

j=1 λj)

w,B (q, t) will be denoted by Sp,B(λi1 , λi2 , . . . , λip).

We observe that, given a contraction C

C = (λ1, λ2, . . . , λp)
J1,...,Jk−→ (γ1, γ2, . . . , γk)

if some (more than 1) of the sets Jr have cardinality strictly greater than 1,
we can find a sequence of consecutive non trivial contractions C1, . . . , Ct (if

104



t = 1, then C = C1) such that their composition gives C. We will denote
this sequence by

C : C1 → . . .→ Ct

Furthermore, given a contraction K equal to

(β1, β2, . . . , βp)
D1,...,Ds−→ (δ1, δ2, . . . , δs)

we call by N(K) the polynomial defined by

N(K) =
s∏

t=1

(
q−δt+

∑
h∈Dt

βh − qδt

qδt − 1

)

This notation allows us to the give the following definition.

Definition 5.4.1

Ŝp,B(λ1, λ2, . . . , λp) =

∑
C=(λ1,λ2,...,λp)

J1,...,Jk−→ (γ1,γ2,...,γk)

∑
C: C1 →...→Ct




k∏

m=1


∑

d|γm
d 6= γm

q
γm

d T (d, γm)
∏

u∈Jm

2
π( λu

γm
d)




t∏

j=1

N(Cj)



Sp,B(λ1, λ2, . . . , λp) =

∑
C=(λ1,λ2,...,λp)

J1,...,Jk−→ (γ1,γ2,...,γk)

∑
C: C1 →...→Ct




k∏

m=1


∑

d|γm

d 6= γm

T (d, γm)
∏

u∈Jm

2
π( λu

γm
d)




t∏

j=1

N(Cj)


where the involved sums range over all the possible different contractions,
π(n) = 0 if n is odd, π(n) = 1 if n is even, and the function T (d,m) is the
one defined in Section 2.

We also have to define the functions Pp,B

Definition 5.4.2

Pp,B(λ1, λ2, . . . , λp) = 2p

(
p∏

j=1

2π(λj)

)
Pp(λ1, λ2, . . . , λp)

where Pp is the function defined in Section 2 and π(n) = 0 if n is odd,
π(n) = 1 if n is even.

We note that the function π allows us to take into account all the possible
different w-invariant partitions of the leaves of a weak vertex.
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5.4.2 The formal series HB

We can now define and compute the formal graded series HB with respect to
the group Γn: it is in the formal variables Sm,B, Ŝr,B P

(d)
j,B (j, r,m ≥ 1 d ≥ 0)

and it will be constructed so that it satisfies what follows:

1. The graduation is obtained by giving degree m to the variables Sm,B

and Ŝm,B and degree j to the variables P
(d)
j,B.

2. Given w ∈ Γn, and put w = c1 · · · cl its decomposition in cycles of
lengths λ1, . . . , λl respectively, we take Hl,B, that is to say, the homo-
geneous component of degree l of HB.

3. Then we create the polynomial Hl,B(λ1, . . . , λl), by transforming, in

each term of Hl,B, the formal variables Sm,B, Ŝr,B P
(d)
j,B in their concrete

representative, and by making the symmetric group Sl to act.

4. This must give the requested Poincarè series P
(
∑l

j=1 λj)

w,B (q, t) multiplied

by 2
∑l

j=1 λj .

Let us call by Hweak
B the contribution provided to HB by the elements the

graph of which contains only weak vertices. Reasoning in a similar way as in
the preceding sections, we see that Hweak

B must be put equal to

(∑
r≥0

Sr,B

r!

)∑
k≥0

1

k!

∑
[Ã]

(
λ

2
)(comp(Ã)) Q(Ã)

Aut(Ã)

k

where [Ã] ranges over all the automorphism classes of oriented labeled
forests (∅ included), S0,B = 1 and the function λ is the one of Section 2.

Now we can substitute the expression in brackets with

Λ =
∑
n≥0

λ(n)

2

Γn

n!

where Γ is defined as in Section 3, using Pp,B instead of Pp. Then we can
write in compact form

Hweak
B =

(∑
r≥0

Sr,B

r!

)
eΛ

Let us now study how to construct Hstrong
B , which represents the contribution

provided toHB by trees with a strong root. First we note that, by elementary
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combinatorial arguments, if H1 strong
B represents the contribution provided by

trees with a single strong vertex (i.e. the root) we have

Hstrong
B =

(
1

1−H1 strong
B

− 1

)
Therefore we need to define a suitable H1 strong

B : the same considerations as
above suggest to us to put

H1 strong
B =

(∑
r≥0

Ŝr,B

r!

)∑
k≥2

(qΛ)k

k!
+

(∑
r≥1

Ŝr,B

r!

)
(qΛ + 1)

where we put Ŝ0,B = 1.
At the end, in order to find the formal seriesHB, the various contributions

that we have described above must be summed according to the following
relation:

HB = Hweak
B +

(
1

1−H1 strong
B

− 1

)
Thus our considerations can be summarized by the following statement.

Theorem 5.4.1 We have the following formula for the formal graded series
HB:

HB =

(∑
r≥0

Sr,B

r!

)
eΛ +

 1

1−
[∑

k≥2
(qΛ)k

k!
+ eqΛ

∑
r≥1

Ŝr,B

r!

] − 1



Acknowledgments.
I would like to thank Professor Corrado De Concini for the patience and the
interest with which he guided my work, for his encouragement and for the
valuable suggestions he gave me.

107



108



Bibliography

[1] V.I.Arnold, The cohomology ring of the coloured braid group.
Mat.Zametki 5, 227-231 (1969); Math. Notes 5, 138-140 (1969).

[2] E.Brieskorn, Sur les groupes de tresses. In: Séminaire Bourbaki
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