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Abstract. In this paper we will deal with two “hidden” real structures
in the theory of models of subspace arrangements. Given a real subspace
arrangement A and its complexification AC, the first structure is a real

De Concini-Procesi model ỸA that can be seen as the manifold Re YAC

of (canonical) real points inside the complex De Concini-Procesi model
YAC . We will study its combinatorial properties by describing it as a
quotient of a real model with corners CYA introduced in [9].

A second structure arises, on the contrary, as an “extension” of CYA,
when A is a Coxeter arrangement. We will “add faces” to CYA and ob-
tain a convex body (or even a polytope); this gives rise to an interesting
new family of ”realized” posets which includes for instance Kapranov’s
permutoassociahedra.

1. Introduction

Let A be a central subspace arrangement in an euclidean vector space
V of dimension n and let us denote its complement by M(A). In [9] some
compactifications for the C∞ manifold M(A)/R+ have been described, as
a generalization of a construction provided by Kontsevich in his paper on
deformation quantization of Poisson manifolds (see [13], and [19] for a related
construction).

These compactifications turn out to be C∞ (non connected) manifolds
with corners whose boundary is fully determined by simple combinatorial
data. The combinatorics involved in this description has been introduced
by De Concini and Procesi in [3] (in which models for complex subspace
arrangements have been constructed from the point of view of algebraic
geometry), and has been studied from an abstract point of view in [6].

In general we can associate to a real subspace arrangement A many dis-
tinct sets (“building sets”) of combinatorial data (see Section 2) which are
subspace arrangements with complement M(A). Given a building set G,
the compactification associated to G is denoted by CYG and is a ”model”
for M(A)/R+ in the following sense:

(1) M(A)/R+ is embedded in CYG as an open dense stratum, and all
the other strata of CYG lie in the boundary;

(2) the codimension 1 strata are in a natural bijective correspondence,
via a blow-up map, with the elements of G;

(3) combinatorial data encoded by G allow us to control intersections of
closures of strata.
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Property (3) above implies that we can fully predict the combinatorics of
the boundary of CYG from the initial data: this can be useful for instance
when one applies Stokes’ theorem, as in Kontsevich’s first example.

In this paper we will single out two real structures which stem from CYG :
the first one is a quotient manifold and coincides with the (canonical) real
points Re YGC of the De Concini - Procesi complex model YGC (GC is the
complexification of G -here and from now on the subscript “C” will stand
for “complexification of”).

The manifold Re M0,n+1, made by the real points of the Mumford -
Deligne moduli space of (n+1)-pointed stable curves of genus zero, provides
us with an interesting example of Re YGC (see Section 6), which has been
recently studied by Goncharov and Manin ([11]), Ceyhan ([2]), Devadoss
([5]) and Kwon ([15]).

In general, given any building arrangement G, we will describe a differ-
entiable map γG which goes from CYG onto Re YGC and has fibers whose
cardinality depends on the codimension of the boundary strata (see Theo-
rem 5.2). This allows us to control the combinatorial properties of Re YGC .

Moreover, the map γG can be seen as a map of CW - complexes (once
CYG is given the natural CW structure arising from the stratification of the
boundary), providing us with an effective method for making homological
computations for Re YGC (see Section 6 ).

A second interesting real structure arises in this picture, not as a quotient,
but as an “extension” of the models with corners, when we focus on the
particular case of a Coxeter arrangement H , i.e., an arrangement in V
made by the hyperplanes whose associated reflections are the reflections of
a (finite) Coxeter group GH.

Let us consider a building set G associated to H and construct the mani-
fold CYG : it has as many connected components as many Coxeter chambers
there are, and we can put a diffeomorphic copy of CYG inside the unit sphere
S(V ).

As we will show in Section 8, we can add to CYG some new faces and
extend it to the boundary of a convex set. The poset “realized” by the faces
of this convex set has a nice combinatorial description (see Section 7.1)
controlled by the Coxeter group GH and by the combinatorial properties of
G and its “nested sets” (see Section 2).

In particular, if H is the arrangement An−1 of type An−1, then GH is
the symmetric group Sn; if we choose the smallest building set associated
to it, we recover Kapranov’s permutoassociahedron KPn (see [12]). This
allows us to say that we are constructing a family of convex bodies which
generalize the combinatorial structure of Kapranov’s permutoassociahedra
to every Coxeter group and to every building set associated to it (although
they are different objects, our posets should be compared with Reiner and
Ziegler “Coxeter associahedra” in [18]).

Let us shortly describe the structure of this paper: Sections 2 and 3 are
devoted to necessary recallings from De Concini-Procesi papers [3], [4] and
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from [9]. The smooth manifolds of real points of De Concini-Procesi complex
models apper in Section 4 and their quotient relation with the models with
corners is investigated in Section 5.

As an application, in Section 6 we compute, via their CW structure, the
Euler characteristic of some manifolds of real points (including Re M0,n+1)
which arise from Coxeter arrangements.

This introduces us to the last two sections, where the new “Coxeter
posets” are defined (Section 7) and realized (Section 8), starting from the
models with corners, as convex bodies in an euclidean space.

Acknowledgments. The author wishes to express his gratitude to Corrado
De Concini for many stimulating conversations.

2. The combinatorics of building sets and nested sets.

Let us recall some definitions from [3]. We start by a (central) subspace
arrangement A in a real or complex vector space V , and denote by A⊥
the arrangement formed by the subspaces orthogonal (with respect to the
standard scalar product) to the subspaces of A:

A⊥ = {B⊥ |B ∈ A}
Then we denote by C⊥A the closure, under the sum, of A⊥, that is to say, the
set of subspaces in V which are sums of subspaces in A⊥.

Definition 2.1. Given a subspace U ∈ C⊥A, a decomposition of U is a col-
lection of non zero subspaces U1, U2, . . . , Uk ∈ C⊥A (k > 1) which satisfy the
following properties:

(1) U = U1 ⊕ U2 ⊕ . . .⊕ Uk

(2) for every subspace A ⊂ U in C⊥A, we have that A∩U1, A∩U2, . . . , A∩
Uk lie in C⊥A and A = (A ∩ U1)⊕ (A ∩ U2)⊕ . . .⊕ (A ∩ Uk)

Definition 2.2. If a subspace in C⊥A does not admit a decomposition, it is
called “irreducible”. The set of all irreducible subspaces is denoted by F⊥

A .

The following proposition essentially says that irreducible subspaces give
a decomposition which has the expected “good” properties:

Proposition 2.1. Every subspace U ∈ C⊥A has a unique decomposition
U = ⊕k

i=1Ui into irreducible subspaces. This is called “the irreducible de-
composition” of U . If A ⊂ U is irreducible, then A ⊂ Ui for exactly one
i.

In the sequel building sets of subspaces will play a crucial role.

Definition 2.3. The collection of subspaces A ⊂ V is called ”building set”
if every element C of C⊥A is the direct sum C = G1 ⊕ G2 ⊕ . . . ⊕ Gk of the
set of the maximal elements G1, G2, . . . , Gk of A⊥ contained in C. We say
in this case that {G1, . . . , Gk} is “the building decomposition of C in A⊥”.
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Remark 2.1. One can easily see that the “building decomposition of C in
A⊥” is a decomposition in the previous sense.

Remark 2.2. The sets CA and FA (according to the notation introduced
above, (C⊥A)⊥ = CA and (F⊥

A )⊥ = FA) are building sets. Furthermore, for
every building set A, we have FA ⊂ A ⊂ CA. Let in fact A⊥ ∈ C⊥A be
irreducible. Now A⊥ can be decomposed in A⊥, but then A⊥ ∈ A⊥ since A⊥

is irreducible. This proves the first inclusion, the second being trivial. Let
now Γ be any subspace arrangement and let B be a building set such that
CB = CΓ. This implies that

FΓ = FB ⊂ B ⊂ CB = CΓ

Therefore in the family of building sets that have the same intersection lattice
as Γ we can always find a minimum and a maximum element with respect
to inclusion.

We can now recall the notion of “nested set” (see [3]) which generalizes
the one introduced by Fulton and MacPherson in their paper [7] on models
of configuration spaces.

Definition 2.4. Let K be a building set of subspaces in V . A subset S ⊂ K
is called “nested relative to K”, or K-nested, if, given any of its subset
{U1, . . . , Uk}, k ≥ 2, of pairwise non comparable elements, we have that⋂k

i=1 Ui /∈ K (or equivalently,
∑k

i=1 U
⊥
i /∈ K⊥).

3. De Concini - Procesi models and real models with corners

3.1. Definitions. A model for the complement M(G) of a complex sub-
space arrangement G in Cn, from the point of view of algebraic geometry, is
a smooth irreducible variety YG equipped with a proper map π : YG 7→ Cn

which is an isomorphism on the preimage of M(G) and such that the com-
plement of this preimage is a divisor with normal crossings.

In their paper [3], De Concini and Procesi constructed such models, pro-
vided that the set of subspaces G is building, and computed their cohomol-
ogy. They also used them to prove that the rational cohomology ring of
M(G) is completely determined by combinatorial data encoded by G.

In [3] arrangements of linear subspaces in P(Cn) have also been studied:
as a result, a theory has been obtained, which gives compact models and is
based on the following construction. Let G be a building set (we can suppose
that it contains {0}), and let P(M(G)) be the complement in P(Cn) of the
projective subspaces P(A) (A ∈ G). Then one considers the map

i : P(M(G)) 7→ P(Cn)×
∏

D∈G−{0}

P(Cn/D)

where in the first coordinate we have the inclusion and the map from M(G)
to P(Cn/D) is the restriction of the canonical projection Cn −D 7→ P(Cn/D).
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Definition 3.1. The compact model YG is obtained by taking the closure of
the image of i.

De Concini and Procesi proved that the complement D of P(M(G)) in
YG is the union of smooth irreducible divisors DG indexed by the elements
G ∈ G − {0}. More precisely, if we denote by π the projection onto the first
component P(Cn), DG is equal to the closure of

π−1

P(G)−
⋃

A ∈ G
A ∩G ( G

P(A ∩G)


It can also be characterized as the unique irreducible component such that
π(DG) = P(G). A complete characterization of the boundary is provided by
the observation that, if we consider a collection T of subspaces in G − {0},
then

DT ≡
⋂

A∈T
DA

is non empty if and only if T is nested, and in this case DT is a smooth
irreducible subvariety.

From the point of view of differentiable geometry, the interest in the
construction of models of real subspace arrangements has been pointed out
by the compact differentiable models of configuration spaces which appear in
Kontsevich’s paper [13] on deformation quantization of Poisson manifolds.

Kontsevich’s compactifications have been shown in [9] to be particular
cases of the following more general construction which, starting from a real
subspace arrangement A (we can suppose that it contains {0}) in Rn, pro-
duces C∞ manifolds with corners.

Let us denote by S(Rn) the n− 1-th dimensional unit sphere in Rn, and,
for every subspace A ⊂ Rn, let S(A) = A ∩ S(Rn). Then we can consider
the compact manifold

K = S(Rn)×
∏

A∈A−{0}

S(A⊥)

and notice that there is an open embedding

φ : M(A)/R+ −→ K

This is obtained as a composition of the section s : M(A)/R+ 7→ M(A)
provided by

s([p]) =
p

|p|
∈ S(Rn) ∩M(A)

with the map
M(A) 7→ S(Rn)×

∏
A∈A−{0}

S(A⊥)

where on each factor we have a well defined projection.
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Definition 3.2. We define CYA as the closure in K of φ(M(A)/R+).

In [9] it has been proven that, when A is a building set, CYA is a smooth
manifold with corners. It is a differentiable model forM(A)/R+ in the sense
we mentioned in the Introduction: if we denote by cπ the projection onto
the first component S(Rn), then cπ is surjective and it is an isomorphism on
the preimage of M(A)/R+. Furthermore, cπ establishes a bijective corre-
spondence between the codimension 1 open strata in the boundary of CYA
and the elements of A− {0}, as we will see in detail in Section 3.3 .

3.2. The open charts for CYA. In this subsection we will recall from [9]
the construction of a set of open charts, diffeomorphic to open subsets of
(R≥0)n−1, which cover the manifold with corners CYA.

Remark 3.1. From now on “nested set” will mean “A-nested set which
contains {0}”.

Let us start by constructing an open covering ofM(A)/R+ by some charts
which are associated to the A-nested sets.

Definition 3.3. Given a subspace C ⊂ V , we define the following two
(possibly empty) subspace arrangements.

(1) AC = {H ∈ A | C ⊂ H}
(2) AC = {B ∩ C |B ∈ A−AC}

Furthermore, given two subspaces H,C ⊂ V , we will denote by AC
H the

subspace arrangement AC
H = {B ∩ C |B ∈ AH − (AC ∩ AH)}.

Let now S be a nested set in A. We will give a graduation to the elements
of S⊥ ⊂ A⊥. Recall that S⊥ can be represented by a graph, which is an
oriented tree, in the following way. The vertices of the tree are labeled by
the elements of S⊥, and the root is {0}⊥ = Rn; let then A⊥ and B⊥ be two
elements of S⊥ such that B⊥ “covers” A⊥, i.e., A⊥ is maximal (with respect
to inclusion) among the elements of S⊥ strictly included in B⊥: then we
draw an edge which joins the vertices A⊥ and B⊥ and is oriented from B⊥

to A⊥. We say that an element X⊥ of S⊥ has degree n if it is connected to
the root by a n-edges oriented path.

Definition 3.4. Given a nested set S and a vertex A⊥ of degree n in the
graph associated to S⊥, we denote by SA⊥ the (possibly empty) set of the
elements “covered” by A⊥. Furthermore, we denote by SA⊥

∩ the common
intersection of A⊥ and of all the subspaces which are orthogonal to the sub-
spaces in SA⊥ (we put SA⊥

∩ = A⊥ if SA⊥ is empty).

We can now associate to S an open set ÛS . It is constructed as a product
of open sets, according to the following algorithm. We provide an open
manifold in correspondence with every element in S⊥. The open manifold
which corresponds to the root V is :

NV = MSV
∩

(ASV
∩ ) ∩ S(V ).
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Remark 3.2. Here and from now on we use the following notation: if A
is a subspace arrangement whose elements are contained in a subspace F of
V , MF (A) will denote the complement of A in F .

Notice that, if S⊥ = {V }, we have NV = M(A) ∩ S(V ).
Now, given an element A⊥ ∈ S⊥ we construct

NA⊥ = MSA⊥
∩

(AS
A⊥
∩

A ) ∩ S(V )

Then, for any A⊥ in S⊥, we consider a “small” positive real number εA⊥ ,
and we can define ÛS as

ÛS = NV ×
∏

A⊥∈S⊥−{V }

NA⊥ × (0, εA⊥)

Choosing in every space NV or NA⊥ a ball ρ(NV ) or ρ(NA⊥) we obtain
an open subset ÛS(ρ) of ÛS . We can embed ÛS(ρ) in M(A)/R+ as a chart
using the following map τ̂ :

(pV , . . . , pA⊥ , tA⊥ , . . .)
τ̂7→ [pV +the point in (SV

∩ )⊥ such that,∀A⊥ ∈ S⊥−{V } ,

its orthogonal projection toSA⊥
∩ is tT⊥1 tT⊥2 · · · tA⊥pA⊥ ]

where T⊥1 , T
⊥
2 . . . are all the internal vertices in the path which connects V

to A⊥.
The map τ̂ is a well defined embedding provided that the balls ρ(NV ) ,

ρ(NA⊥) and the numbers εA⊥ are sufficiently small. Therefore we have an
open atlas Û =

⋃
S ÛS(ρ) which covers M(A)/R+ (we recall that S ranges

over all the nested sets inA which contain {0} and ρ over all possible suitable
collections of balls ρ(NV ) , ρ(NA⊥) ).

If we allow the real numbers εA⊥ to be 0, we have the corresponding new
space

US(ρ) = ρ(NV )×
∏

A⊥∈S⊥−{V }

ρ(NA⊥)× [0, εA⊥)

which is diffeomorphic to an open set of a simplicial cone (R≥0)n−1.

Remark 3.3. In the sequel we will often write ÛS and US instead of ÛS(ρ)
and US(ρ), the choice of a collection of balls ρ(NV ) , ρ(NA⊥) being implicit.

It turns out (see [9]) that the open embedding τ̂ : ÛS 7→ M(A)/R+ can
be extended by continuity to a map τ : US 7→ CYA.

Moreover, we have that the charts US give rise to a C∞ atlas which gives
CYA the structure of a C∞ manifold with corners.

In the sequel we will refer to the following algorithm, which was used in
[9] to show that the charts US cover CYA.

Let us view a point p in the boundary of M(A)/R+ ⊂ K = S(Rn) ×∏
A∈A−{0} S(A⊥) as the limit of a path δ = δ(t) : [0, 1) 7→ M(A)/R+.

We will associate to δ a nested set S such that US contains p. If we look
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at this path in S(V ), we can choose the minimal subspace B in the in-
tersection lattice of A such that δ converges to a point in B. Let B⊥ =
B⊥

1 ⊕ · · · ⊕ B⊥
% be the direct sum of B⊥ in terms of the maximal elements

of A⊥ which are included in B⊥ (this is possible since A is building). Then
B = B1 ∩ · · · ∩ B% and our first step in the construction of S consists in
putting S = {{0}, B1, . . . , B%}. Now, for every 1 ≤ i ≤ % let us consider
the projection δB⊥

i
of δ to S(B⊥

i ) (it is well defined since δ ⊂ M(A)/R+).
Let vi be the limit of the vector δB⊥

i
(t) as t → 1. If vi does not lie in

any subspace of the intersection lattice of ABi , we will not add any ele-
ment to S. Otherwise, let Ci be the minimal subspace in the intersection
lattice of ABi such that vi belongs to Ci. Then we can decompose C⊥i as
C⊥i = C⊥i1 ⊕ · · · ⊕ C⊥iµi

(notice that ABi is building). After doing this for
every i (1 ≤ i ≤ %), our second step in the construction of S is to put
S = {{0}, B1, . . . , B%, . . . , Ci1, . . . , Ciµi , . . .}. We can now project δB⊥

i
to

C⊥ij for every i and j and continue. It turns out that p ∈ US(ρ) with S as
above and obvious ρ; therefore

U =
⋃
S,ρ

US(ρ) = CYA.

3.3. Recalls of results on the boundary of CYA. As we recalled in
Section 3.1, given a building arrangement A (which contains {0}) in Rn, the

boundary CD = cπ−1

( ⋃
A∈A

S(A)

)
of CYA is the union of some codimension

1 manifolds with corners which correspond to the elements of A−{0}. More
precisely, if A ∈ A− {0}, its associated boundary component is

CDA = cπ−1

S(A)−
⋃

B∈AA

S(B)


Let us now state some results from [9] on the combinatorial structure of

the boundary.

Theorem 3.1. The boundary component CDA is equal to the closure in K
of

U =
⋃
ρ

(U{{0},A}(ρ) ∩ {tA⊥ = 0}).

Moreover CDA is a manifold with corners of the following type

CDA
∼= CYAA⊥

A

× CYAA

and its internal points coincide with U .

This theorem can be generalized to a result on the intersection of any
number of boundary components CDA:
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Theorem 3.2. Let T be a subset of A which includes {0}; then

CDT =
⋂

B∈T −{0}

CDB

is non empty if and only if T is nested in A. Moreover we have that CDT
is a manifold with corners whose internal points are described by the local
equations ⋃

ρ

UT (ρ) ∩
⋂

B∈T −{0}

{tB⊥ = 0}

 .

We can also describe CDT as a product of real models since, for A ∈ T , the

sets AT
A⊥
∩

A are building and

CDT ∼=
∏
A∈T

CY
AT

A⊥
∩

A

4. Real points of De Concini -Procesi models

In this section we will deal with complexified arrangements and we will
focus on the manifold provided by the real points of a complex De Concini-
Procesi model.

Let us start by considering the natural embedding of P(Rn) into P(Cn).
Given a subspace A ⊂ Rn, this embedding induces a natural embedding of
P(Rn/A) into P(Cn/AC):

[(a1, a2, . . . , an) +A] 7→ [(a1, a2, . . . , an) +AC]

where the expression inside brackets [(a1, a2, . . . , an)+A] (resp. [(a1, a2, . . . , an)+
AC] ) represents, a basis of Rn being fixed, the projective coordinates of a
point in P(Rn/A) (resp. in P(Cn/AC)).

Therefore, in our hypothesis of a real subspace arrangement A which is
building and contains {0}, we have an embedding

θ : P(Rn)×
∏

D∈A−{0}

P(Rn/D) 7→ P(Cn)×
∏

DC∈AC−{0}

P(Cn/DC)

There is an interesting real De Concini-Procesi model embedded in

P(Rn)×
∏

D∈A−{0}

P(Rn/D)

In fact the De Concini - Procesi construction can be performed also in the
real case (see [3]): one considers the embedding

PR(M(A)) 7→ P(Rn)×
∏

D∈A−{0}

P(Rn/D)

and obtains (by taking the closure) a smooth real manifold ỸA whose bound-
ary is characterized in the same way as in the complex case (see Section 3.1).
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The map θ allows us to compare this real model with the real points
Re YAC of YAC .

We notice that the real points in P(Cn) ×
∏

DC∈AC−{0}P(Cn/DC) are
those points that have in each factor a real representative for their projective
coordinates. In other words, let x be a real point and let us denote by π and
by πDC the projection onto the first factor and onto P(Cn/DC) respectively.
Then we have that, after choosing a C-basis of Cn made by real vectors, a
real point x satisfies π(x) = [(x1, x2, . . . , xn)] with (x1, x2, . . . , xn) ∈ Rn −
{0} and, for every D ∈ A − {0}, πDC(x) = [(a1, a2, . . . , an) + DC] with
(a1, a2, . . . , an) ∈ Rn −D.

This corresponds to considering the natural complex structure in P(Cn)
and in P(Cn/DC) and taking the points which are fixed by complex conju-
gation.

Theorem 4.1. The real points Re YAC of YAC coincide with θ(ỸA).

Proof.
We know that PR(M(A)) is embedded as an open set in ỸA. As a first
step, let us check that θ(PR(M(A))) coincides with the real points in
P(M(AC)) ⊂ YAC . In fact, let x be a real point in P(M(AC)) ⊂ YAC .
This means that, using the notation introduced above, x is completely de-
termined by its projection π(x) to the first factor and that, in a basis given by
real vectors, π(x) can be expressed in projective coordinates as [(x1, . . . , xn)]
with (x1, x2, . . . , xn) ∈M(A) ⊂ Rn.

Now the point (x1, x2, . . . , xn) ∈ M(A) ⊂ Rn projects to a point x′ ∈
PR(M(A)) ⊂ ỸA and, by definition of θ, θ(x′) = x.

Since ỸA is compact, so is θ(ỸA) which in particular is closed. This implies
that, being ỸA = PR(M(A)), we have θ(ỸA) = θ(PR(M(A))).

As we have seen, θ(PR(M(A))) = Re P(M(AC)), therefore it only re-
mains to prove that Re YAC = Re P(M(AC)). One inclusion is trivial: in
fact Re YAC is a closed subset of YAC (it is the intersection with the locus of
points fixed by complex conjugation); since it includes Re P(M(AC)) this
implies Re P(M(AC)) ⊂ Re YAC .

Now, if p is a point in Re YAC , then p is the limit of a sequence of points
{pn} ⊂ P(M(AC)). We will show that it is possible to modify {pn} to
obtain a sequence of real points in P(M(AC)) that converges to p.

We start by associating to {pn} a nested set S ⊂ A (S contains {0}), ac-
cording to the algorithm described at the end of Section 3.2 (with straight-
forward modifications since this is the complex case and we are dealing with
a sequence). We observe that, by construction of S, if we know the pro-
jection πBC(p) of p to P(Cn/BC) for every B ∈ S, we know the projection
πAC(p) to P(Cn/AC) for every A ∈ A.

Therefore, it is sufficient to find a sequence {xn} ⊂ Re P(M(AC)) such
that, for every B ∈ S, πBC(xn) → πBC(p).
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Then we can find a basis b = {b1, b2, . . . , bn} of Rn adapted to S, according
to the following definition.

Definition 4.1. We say that a basis b = {b1, b2, . . . , bn} of Rn is adapted to
a nested set S if:
1) Given any B⊥ ∈ S⊥, the elements bi1 , bi2 , . . . bik of b which belong to B⊥

form a basis of B⊥.
2) Let B⊥ ∈ S⊥ and let C⊥1 , . . . , C

⊥
ν be the elements of S⊥ which are covered

by B⊥. Then the elements bi1 , bi2 , . . . bis of b which belong to B⊥ but do not
belong to any C⊥i ’s are orthogonal to the sum

∑ν
i=1C

⊥
i (that is to say, they

belong to
⋂ν

i=1Ci).

Now, let A⊥1 , . . . , A
⊥
s be the smallest (with respect to inclusion) elements

in S⊥: we will start our construction of {xn} by determining the projections
πA1C(xn), . . . , πAsC(xn).

Remark 4.1. Here and in similar expressions where complexification is
involved we may omit a parenthesis, that is to say, we may write πA1C instead
that π(A1)C, AAjC instead that (AAj )C and so on..

For every 1 ≤ j ≤ s we know, by construction of S and by minimality of
A⊥1 , . . . , A

⊥
s , that πAjC(pn) → πAjC(p) and πAjC(p) belongs to the comple-

ment of the arrangement πAjC(AAjC).
Now we can consider in P(Cn/AjC) the real basis of Cn/AjC made by the

projections of the vectors bt in b ∩A⊥j .
With respect to the associated projective coordinates [(a1, . . . , adim A⊥j

)],
we can cover P(Cn/AjC) with the canonical affine charts Ui ≡ {ai = 1}
(i = 1, . . . , dim A⊥j ).

There is a chart, say U1, which πAjC(p) belongs to, and, since p ∈ Re YAC ,
in U1 πAjC(p) has real coordinates. Therefore definitively the projections
πAjC(pn) belong to U1 and in U1 we have that Re πAjC(pn) → πAjC(p).

Then we start our construction of {xn} by requesting that, for every
1 ≤ j ≤ s, πAjC(xn) = Re πAjC(pn).

Remark 4.2. Here we may need to extract a subsequence from pn. In
fact, since we want that {xn} ⊂ P(M(AC)), we ask that the projections
πAjC(xn) = Re πAjC(pn) do not belong to any subspace of the arrangement
πAjC(AAjC). But this condition is definitely satisfied otherwise their limit
πAjC(p) would belong to a subspace of the arrangement πAjC(AAjC), which
contradicts the construction of S.

Now, let us suppose that there is an element D in S such that D⊥ is not
minimal in S⊥, but it would be if we deleted A⊥1 , . . . , A

⊥
s . To fix notations,

let us suppose that A⊥1 , A
⊥
2 . . . , A

⊥
m ⊂ D⊥.

We can use in P(Cn/DC) the projective coordinates associated to the real
basis of Cn/DC made by the projections of the vectors bt in b ∩D⊥.
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We know that, by construction of S, πDC(p) belongs to

P(A1C ∩A2C ∩ · · · ∩AmC/DC)

Therefore, by definition of adapted basis, the projective coordinates of πDC(p)
which are related to the vectors br in

(
A⊥1 +A⊥2 + · · ·+A⊥m

)
∩ b are equal

to 0.
As before we can consider an affine chart of type Ui (one which πDC(p)

belongs to) and focus on the points Re πDC(pn) in Ui.
Then we substitute in Re πDC(pn) the coordinates associated to the vec-

tors in
(
A⊥1 +A⊥2 + · · ·+A⊥m

)
∩ b (which are equal to zero), with the coor-

dinates of a point such that, for every i = 1, . . . ,m, its projection to Cn/AiC
is 1

n ||πAiC(xn)|| (here “|| ||” means that we are considering the real unit
representative for πAiC(xn)) .

These modified points provides us our second step in the construction of
the sequence {xn}: we request that they coincide with πDC(xn) and therefore
by construction πDC(xn) → πDC(p).

Remark 4.3. Also in this second step we may need to extract a subsequence,
to avoid that πDC(xn) ∈ πDC(ADC).

If by absurd it was not possible to extract this subsequence, then there
would be at least a subsequence included in a subspace πDC(LC) of πDC(ADC).
Therefore, also πDC(p) would belong to πDC(LC). But, by construction of S,
this implies that we would have L⊥ ⊂ A⊥m for a certain m.

Therefore πAmC(πDC(xn)) would have a subsequence in πAmC(LC). But, by
construction of πDC(xn), for every n, πAmC(πDC(xn)) is equal to πAmC(xn);
this, in its turn belongs by construction to the complement of πAm(AAmC)
and we have a contradiction.

In this way we can construct, step by step, our sequence {xn} ⊂ ReP(M(AC))
which converges to p.

Corollary 4.2. Let S be a nested set which contains {0} and SC be its com-
plexification. Then, if D̃S and DSC are the boundary components associated
to S in ỸA and YAC respectively, we have Re DSC = θ(D̃S)

5. Combinatorics of a map from CYA to Re YAC

Let us consider as above a real building arrangement A (containing {0})
in Rn. In this section we want to compare the real compact model with
corners CYA with the real points of YAC .

We start by focussing on the combinatorial properties of a surjective map
Γ : CYA 7→ ỸA.

The model CYA is embedded in

K = S(Rn)×
∏

A∈A−{0}

S(A⊥)
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while ỸA is embedded inside

K ′ = P(Rn)×
∏

D∈A−{0}

P(Rn/D)

Now, given any A ∈ A, we can consider the natural isomorphism between
A⊥ and Rn/A given by the projection.

As a consequence of this identification, there is a map Γ′ from K to K ′

which coincides on each factor S(A⊥) with the 2 7→ 1 projection S(A⊥) 7→
P(Rn/A) (in particular this means that on the first factor we are considering
the projection S(Rn) 7→ P(Rn)).

Proposition 5.1. If we restrict Γ′ to CYA we obtain a surjective map

Γ : CYA 7→ ỸA

Proof. This follows immediately from the observation that a point in
M(A)/R+ ⊂ CYA (resp. PR(M(A)) ⊂ ỸA) is completely determined by
its projection to the first factor S(Rn) (resp. P(Rn)). Therefore the map Γ′

is 2 → 1 from M(A)/R+ to PR(M(A)). This implies that Γ(CYA) = ỸA
since CYA is compact and ỸA is the closure of PR(M(A)).

If we compose Γ with the map θ described in the preceding section, we
have a smooth map from CYA to Re YAC , which we will denote by γ. We
can now state our main theorem concerning these maps:

Theorem 5.2. Let S be a nested set which contains 0. Then Γ (resp. γ)
restricted to the internal points of CDS is a 2|S|-sheeted covering of the open
part of the boundary component D̃S in ỸA (resp Re DSC in Re YAC).

Remark 5.1. In particular (considering S = {0}), this statement reduces to
the observation (see Proposition 5.1) that Γ and γ, restricted to M(A)/R+,
are 2-sheeted coverings of PR(M(A)) and Re PC(M(AC)) respectively.

Proof. We will prove the statement for Γ. Let us consider A ∈ A−{0} and
the boundary component CDA. A point p ∈ CDA is the limit of a succession

{pn} in cπ−1

S(A)−
⋃

B∈AA

S(B)

. The points Γ(pn) = p̄n ∈ ỸA belong to

π−1

P(A)−
⋃

B∈AA

P(B)


and the limit of this succession is p̄ = Γ(p) which by definition belongs
to D̃A. Therefore Γ(CDA) ⊂ D̃A. Now a point q ∈ D̃A is the limit of a

sequence {qn} in π−1

P(A)−
⋃

B∈AA

P(B)

. Since Γ is surjective we can

find a sequence {q̌n} in CYA of points such that Γ(q̌n) = qn.
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Let q̌ be the limit in the compact manifold CYA (of a subsequence) of {q̌n}.

Then Γ(q̌) = q and, since, for every n, q̌n ∈ cπ−1

S(A)−
⋃

B∈AA

S(B)

 we

have that q̌ ∈ CDA: therefore Γ(CDA) = D̃A.
Now, according to Theorem 3.1, for every A ∈ A the internal points of

the manifold with corners CDA coincide with

U =
⋃
ρ

(U{{0},A}(ρ) ∩ {tA⊥ = 0}).

Furthermore, since, for every B ∈ A, we have that Γ(CDB) = D̃B, then the
inverse image of the set of all the internal points of D̃A is exactly U .

It remains to compute the cardinality of the fibers of Γ|U . A point p ∈ U is
uniquely determined by its projection to S(Rn) which lies in S(A)∩MA(AA)
and by its projection cπA(p) in S(A⊥) ∩MA⊥(AA⊥

A ). Therefore the point
Γ(p) is determined by its projections to P(Rn) and to P(Rn/A). This implies
that Γ|U is 4 → 1 which is our claim for the codimension 1 open boundary
strata.

The general case of Γ restricted to the internal points of CDS (S nested
set) can be proven in a similar way even if the notation is more compli-
cated: one refers to Theorem 3.2 which states that the internal points we
are interested in coincide with⋃

ρ

UT (ρ) ∩
⋂

B∈T −{0}

{tB⊥ = 0}

 .

As an immediate consequence, we have the following algebraic-topological
corollary, which will be applied in the next section to compute the Euler
characteristic of some real models of Coxeter arrangements.

Corollary 5.3. Let us equip CYA with the CW structure provided by the
connected components of the open boundary strata. Then D̃S (resp. DSC),
with the structure given by the images of these components, is a CW complex
and Γ (resp. γ) is a map of CW complexes.

6. Examples: Coxeter arrangements

A finite Coxeter arrangementH in an euclidean space V is an arrangement
in V made by the hyperplanes whose associated reflections are the reflections
of a finite Coxeter group GH). Let us consider a building set G ⊂ CH
containing H and {0}.

Now we fix a Coxeter chamber W and call by CYG(W ) the component
of CYG which is a compactification of S(V ) ∩W . The following definition
singles out the elements of G which control the boundary of CYG(W ).
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Definition 6.1. We will say that a non zero subspace A ∈ G is (W )-
fundamental if dim (A ∩ W ) = dim A. A (W )-fundamental nested set
is a (G)-nested set which contains {0} and such that the other subspaces in
it are (W )-fundamental subspaces.

We are now going to study in detail the examples of Coxeter groups of
types An, Bn, Dn.

6.1. The braid arrangement.
Let us focus on the essential braid arrangement An−1: it consists of the

hyperplanes {xi = xj} (1 ≤ i < j ≤ n) in V = Rn/R

(
1
1
.
1

)
. These hyper-

planes are orthogonal to the roots of a root system ΦAn−1 of type An−1.
In [12] it is proven that P(M(An−1,C)) is isomorphic to the moduli space
M0,n+1 of complex n + 1- pointed genus 0 curves. The minimal compact
De Concini - Procesi model for P(M(An−1,C)), that is to say, the compact
model YFAn−1,C

associated to the set F⊥
An−1,C

of irreducibles (see Section
2), turns out to be isomorphic to the Mumford- Deligne compactification
M0,n+1 (see [8]).

From the moduli point of view, a stable curve which lives over a point of
Re M0,n+1 is “real” in the following sense: it is equipped with a conjugation
involution fixing all labelled points and all singular points, i.e., each of its
irreducible components has its labelled and singular points lying on a copy
of P(R). The space Re M0,n+1 has been recently studied by Goncharov and
Manin ([11]), Ceyhan ([2]), Devadoss ([5]) and Kwon ([15]).

In this section we will show how the combinatorial properties of γ de-
scribed by Theorem 5.2 allow us to point out the relations betweenReM0,n+1

and some well known polytopes, i.e. Stasheff associahedra and Kapranov
permutoassociahedra. We will recover a tessellation of Re M0,n+1 which
was described by Kapranov (see [12]) and Devadoss (see [5]).

The Stasheff associahedron for n letters Kn was defined (see [20]) as the
poset whose elements are all the possible bracketings of the “product” of
n formal symbols A1A2 · · ·An (the empty bracketing is allowed), with the
following order relation: a bracketing β is said to be greater than another
bracketing β′ if β′ can be obtained from β by adding some new pairs of
brackets.

Thus the empty bracketing is the maximal element ofKn and the complete
bracketings are the minimal elements.

This poset was first realized by Stasheff as a convex body in Rn−2 and
then in [10] and [16] it was given a realization as a convex polytope.

In his paper [12], Kapranov introduced another poset KPn (the permu-
toassociahedron for n letters) whose elements correspond to all bracketed
and permuted products of n formal symbols. This poset was realized as a
convex polytope in Rn−1 by Reiner and Ziegler (see [18]): in particular, they
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embedded a copy of Kn in the intersection of a Weyl chamber W of Rn with
an Sn-invariant hyperplane and obtained KPn as the convex hull of Sn ·Kn.

These polytopes play an important role in several fields of mathemat-
ics: for instance they encode the product rules for commutative (the as-
sociahedron Kn) and general ( the permutoassociahedron KPn) monoidal
categories.

Theorem 6.1. The model CYFAn−1
is diffeomorphic to the disjoint union

of n! copies of the Stasheff associahedron Kn.

Remark 6.1. This implies that γ, via Theorem 5.2, tells how to glue these
n! copies of Kn in order to obtain Re M0,n+1 (compare with [5], [12]).

Proof.
Let us first recall (see [21], [8]) that the elements of F⊥

An−1
are the sub-

spaces of V = Rn/R

(
1
1
.
1

)
spanned by the irreducible root subsystems of

ΦAn−1 . We can thus describe FAn−1 by means of a collection of subsets of
{1, 2, . . . , n}. In fact, given a subset ∆ = {i1, i2, . . . , ip} ⊂ {1, 2, . . . , n} with
|∆| ≥ 2, the subspace ∆ ⊂ V ,

∆ = {xi1 = xi2 = · · · = xip}

is in FAn−1 . This correspondence is also bijective, therefore every subspace
in FAn−1 can be determined by a subset of {1, 2, . . . , n} with at least two
elements.

The following algorithm constructs a nested set S in FAn−1 :
a) choose an ordering a1 > a2 > · · · > an of the numbers {1, 2, . . . , n} and
form the “product” a1a2 · · · an;
b) consider a (partial) parenthesization of a1a2 · · · an;
c) consider a couple of parentheses (ai, ai+1, . . . , aj) which is minimal (that
is to say, there are not parentheses inside (ai, ai+1, . . . , aj)), and add to S
the subspace ∆ associated to ∆ = {ai, ai+1, . . . , aj};
d) delete these parentheses and continue. At the end add {0} to S.

Choosing all the possible orderings of {1, 2, . . . , n} and all the possible
parenthesizations we obtain all the nested sets containing {0}.

Now, the manifold with corners CYFAn−1
is made by n! connected com-

ponents, which are compactifications of the n! connected components of
M(An−1) ∩ S(V ). We notice that the Weyl chambers are in bijective cor-
respondence with the orderings of {1, 2, . . . , n}: given a ordering a1 > a2 >
· · · > an we associate to it the Weyl chamber W (a1 > a2 > · · · > an)
made by the points of V whose representatives in Rn have coordinates
xa1 > xa2 > · · · > xan . Thus, given a Weyl chamber W (a1 > a2 > · · · > an),
we will denote by CYFAn−1

(W (a1 > a2 > · · · > an)) the associated con-
nected component of CYFAn−1

.
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We also notice that, once a ordering a1 > a2 > · · · > an of {1, 2, . . . , n} is
fixed, the collection C(a1 > a2 > · · · > an) of FAn−1 - nested sets obtained
according to the algorithm is exactly the collection of W (a1 > a2 > · · · >
an)-fundamental nested sets and is in bijective correspondence with the el-
ements of Kn. Moreover, if we order the elements of C(a1 > a2 > · · · > an)
by reverse inclusion, we have that C(a1 > a2 > · · · > an) is isomorphic to
Kn as a poset.

Thus the description of the boundary of CYFAn−1
(see Theorem 3.2) im-

plies that CYFAn−1
(W (a1 > a2 > · · · > an)) is a realization of the poset

C(a1 > a2 > · · · > an) ∼= Kn as a connected (n − 2)-dimensional manifold
with corners and is therefore diffeomorphic to the convex (n−2)-dimensional
polytope Kn.

One can show that all the information concerning the face lattice of KPn

is encoded by CYFAn−1
and by its projection cπ : CYFAn−1

→ S(V ).
Now, the preceding theorem establishes a diffeomorphism ψ : CYFAn−1

→
Sn · Kn (here we are referring to the construction of Reiner and Ziegler
in [18]); therefore we can also express the combinatorial relation between
CYFAn−1

and KPn in the following way:

Corollary 6.2. The manifold CYFAn−1
has a diffeomorphic copy in Rn−1

whose convex hull is a polytope which realizes Kapranov’s permutoassocia-
hedron KPn.

From a topological point of view, Corollary 5.3 allows us to compute the
Euler characteristic of Re YFAn−1,C = Re M0,n+1, in accordance with [5].

Theorem 6.3. We have that

χ
(
Re M0,n+1

)
=

n−2∑
k=0

(−1)n−2−k n!
2k+1

[
1

k + 1

(
n− 2
k

)(
n+ k
k

)]
Remark 6.2. We notice that, for compactness,

χ
(
Re M0,2r

)
= 0 ∀ r

The first even dimensional cases are: χ
(
Re M0,3

)
= 1, χ

(
Re M0,5

)
= −3,

χ
(
Re M0,7

)
= 45, χ

(
Re M0,9

)
= −1575, χ

(
Re M0,11

)
= 99225.

Proof.
Since Re M0,n+1 is a (n− 2)- dimensional CW -complex, the addendum

(−1)n−2−k n!
2k+1

[
1

k + 1

(
n− 2
k

)(
n+ k
k

)]
in the above formula represents the contribution to the Euler characteristic
of the codimension k cells.

Their number has been computed using Theorem 6.1: the expression
inside brackets gives the number of codimension k cells in a copy of Kn. This
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computation goes back to Cayley (see [1]), since this number coincides with
the number of possible distinct k-parenthesizations (i.e., parenthesizations
obtained with k couples of parentheses) of a product of n variables, which
in its turn coincides with all the possible partitions of a (n+ 1)-gon with k
non intersecting diagonals.

Then we take into account that in CYFAn−1
there are n! copies of Kn and

that, by Theorem 5.2, the map γ restricted to codimension k cells is 2k+1

to 1.

Remark 6.3. The CW-complex structure described in Corollary 5.3 could
be used to compute the integer cohomology of Re M0,n+1. Anyway it in-
volves computations on large matrices; for instance, in the case of Re M0,5

one has 12 two-dimensional faces, 30 edges and 15 vertices. For the ho-
mology we obtain: H0(Re M0,5,Z) = Z, H1(Re M0,5,Z) = Z4 × Z/2Z,
H2(Re M0,5,Z) = 0 (we point out that 2-torsion appears).

6.2. The Coxeter arrangement Bn. Let us consider the Coxeter arrange-
ment Bn of type Bn (n ≥ 2), i.e., the arrangement provided in Rn by the
hyperplanes {xi−xj = 0}, {xi +xj = 0} and {xr = 0} (i, j, r ∈ {1, 2, . . . , n}
, i < j), and let us fix a Weyl chamber W . For instance we can suppose
that W is the chamber described by x1 > x2 > · · · > xn > 0.

As for all root arrangements (see [21], [8]), if A belongs to the minimum
building set FBn , then A⊥ is spanned by an irreducible root subsystem.

Therefore a W - fundamental subspace is provided in this case by a (non
zero) subspace of type

A = {xi = xi+1 = xi+2 = · · · = xi+k}
where k > 1, i+ k ≤ n, or of type

B = {xs = xs+1 = · · · = xn = 0}
with s ≤ n.

Proposition 6.4. The poset of W -fundamental nested sets (containing 0),
ordered by reverse inclusion, is isomorphic to the Stasheff associahedron
Kn+1.

Proof.
The following algorithm provides us with a bijective correspondence be-

tween these two sets.
Let us consider a (partial) parenthesization of the product a1a2a3 · · · anan+1.
We will associate to it a nested set S:
a) Let (aiai+1 · · · ai+j) be a minimal couple of parentheses (that is to say,
there aren’t any other parentheses inside (aiai+1 · · · ai+j)), and add to S the
subspace

{xi = xi+1 = xi+2 = · · · = xi+j}
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if i+ j < n+ 1. Otherwise, if i+ j = n+ 1, we add the subspace

{xi = xi+1 = xi+2 = · · · = xi+j−1 = 0}

b) delete these parentheses and continue. At the end add {0} to S.

It is easy to check that this correspondence is in fact a poset isomorphism.

In view of the above proposition we can compute the Euler characteristic
of the manifold Re YFBn,C applying the same method used for the braid
arrangement.

Theorem 6.5. We have that

χ
(
Re YFBn,C

)
=

n−1∑
k=0

(−1)n−1−k n! 2n

2k+1

[
1

k + 1

(
n− 1
k

)(
n+ k + 1

k

)]
=

=
2n

n+ 1
χ
(
Re M0,n+2

)
Remark 6.4. We notice that, for compactness,

χ
(
Re YFB2r

)
= 0 ∀ r

Proof.
Since Re YFBn,C is a (n− 1)- dimensional CW -complex, the addendum

(−1)n−1−k n! 2n

2k+1

[
1

k + 1

(
n− 1
k

)(
n+ k + 1

k

)]
in the above formula represents the contribution to the Euler characteristic
of the codimension k cells. The expression inside brackets gives the number
of codimension k cells in a copy of Kn+1 and has been obtained using the
same Cayley’s formula as in the case of the braid arrangement.

Then we consider that in CYFBn
there are 2nn! copies of Kn+1 and, by

Theorem 5.2, the map γ restricted to codimension k cells is 2k+1 to 1.

6.3. The Coxeter arrangement Dn. The arrangement is in this case of
type Dn and is provided in Rn by the hyperplanes {xi − xj = 0} and {xi +
xj = 0} (i, j ∈ {1, 2, . . . , n} , i < j).

As a Weyl chamber W we can choose the one described by x1 > x2 >
· · · > |xn|. We know that the minimum building set FDn is formed by the
orthogonals to the subspaces spanned by irreducible root subsystems.

This implies that a W - fundamental subspace is provided by a (non zero)
subspace of type

A = {xi = xi+1 = xi+2 = · · · = xi+k}
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where k > 1, i+ k ≤ n, or of type

B = {xs = xs+1 = · · · = xs+r = 0}
where it is important to note that s+ r = n and r ≥ 2, or of type

C = {xi = xi+1 = xi+2 = · · · = xn−1 = −xn}
with n− i ≥ 1.

The Euler characteristic can be expressed by a recursive formula in which
the already computed Euler characteristics for cases Ar and Bj also appear.

Theorem 6.6. We have that, for n ≥ 4,

χ
(
Re YFDn,C

)
= −3

2
2n−1χ

(
Re YFAn−1,C

)
− 1

4
2n−1nχ

(
Re YFAn−2,C

)
+

−1
8
2n−1n(n− 1)χ

(
Re YFAn−3,C

)
+

+

n−2∑
l=2

(−1)
l+1

2
l−2 n!

(n− l + 1)!

l−2∑
r=0

(−1)r

2r

[
1

r + 1

(
l− 1

r

) (
l + r + 1

r

)]
χ

(
Re YFDn−l+1,C

)

Remark 6.5. As before we notice that, for compactness,

χ
(
Re YFD2r

)
= 0 ∀ r

7. An extended real structure for Coxeter arrangements

Let us consider a finite Coxeter arrangement H, with group GH, in an
euclidean space V , and a building set G ⊂ LH containing H and {0}.

Starting from these data we are going to define a new family of posets (the
“Coxeter posets”) which includes Kapranov’s permutoassociahedra. The
combinatorial properties of a poset Cox (H,G) of the family will turn out
to be controlled by GH and G.

In the next section we will extend CYG to a convex body C(H,G) in V
such that the poset determined by its boundary is Cox(H,G): therefore
the combinatorics of Cox(H,G) points out a further real structure which is
implicit (“hidden”) in the real model CYG .

7.1. Definition of Coxeter posets. Let us fix a Coxeter chamber W .
The elements of Cox (H,G) are all the couples (wH,S) where
• S is a W -fundamental nested set (containing {0}) with labels at-

tached to maximal elements: if an element A in S is maximal then
it is labelled either by the subgroup GA of GH which stabilizes A or
by the trivial subgroup {e};

• H is the subgroup of GH given by the product of all the labels in S;
• w is an element in GH.

The order relation is the following: given two elements (w′H ′,S ′) and (wH,S)
then

(w′H ′,S ′) < (wH,S)
if and only if
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(1) w′H ′ ⊂ wH
(2) S ′ is obtained by S by a composition of the following moves:

• adding a non maximal element;
• adding a maximal element labelled by {e} if the other maximal

elements remain maximal after this move;
• adding a maximal element B labelled by GB, when B contains

a maximal element A ∈ S labelled by GA. After adding B, A
is no more maximal and loses its label;

• changing a label GA of a maximal element A to the label {e}.
A motivation for the definition we provided above is that, when we spe-

cialize to the case of the braid arrangement An−1, if we choose, among
all the possible building sets, the minimal one, i.e. FAn−1 , we find that
Cox (An−1,FAn−1) is the poset of Kapranov’s permutoassociahedron KPn,
as the following section explains.

7.2. Example: Kapranov’s permutoassociahedron. Let us assume the
realization of KPn in [18] and describe KPn as a poset by describing all the
faces of its realization. We can restrict to describe the faces which intersect
W , since all the others are obtained by the Sn action.

Let us take a nested set S and suppose that it has r non maximal elements
and k maximal elements A1, A2, . . .Ak. Then we consider the vertices of
Kn ⊂ W whose bracketing is associated to a nested set which contains S.
They determine a face FS ofKn of dimension n−r−k−1. As a specialization
of the notation introduced for Coxeter groups, let SA be the subgroup of
Sn which stabilizes a subspace A. Then, according to Reiner and Ziegler
realization, if we let the group SAi1

×· · ·×SAil
act on FS and take the convex

hull of the image we obtain a face of KPn of dimension n− r − k + l − 1.
In this way we obtain all the faces of KPn. This points out that the

faces of KPn which intersect W are determined by two data: the nested set
S and the subset of its maximal elements whose stabilizers act on FS . It
turns out that these faces form a subposet of KPn which is isomorphic to
the subposet of Cox (An−1,FAn−1) given by couples (eH,S) (where e is the
identity). Taking into account the action of Sn we obtain an isomorphism
between KPn and Cox (An−1,FAn−1).

8. Geometric construction of Coxeter posets

Let us consider, as in the preceding section, a Coxeter arrangement H in
an euclidean space V of dimension n, a building set G ⊂ LH which contains
H ∪ {0} and the “Coxeter poset” Cox(H,G) associated to these data.

We will construct a convex body C(H,G) in V such that the poset deter-
mined by its boundary is Cox(H,G).

The basis of our construction is provided by the real model CYG . The
number of its connected components is equal to the number of Coxeter cham-
bers, i.e., to the cardinality of GH. Let us choose a chamber W ; we already
noticed in the examples of the preceding section that, as a consequence of
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Theorem 3.2, the set of all the boundary components of CYG(W ) is in bijec-
tion with the set of all (W )-fundamental nested sets (in particular, vertices
of CYG(W ) are determined by the maximal (W )-fundamental nested sets).

Our firt step consists in embedding a diffeomorphic copy of CYG(W ) inside
S(V ) ∩W .

This can be obtained by referring to a different construction of CYG as
a result of a series of real blowups (see [9]). It turns out that a diffeomor-
phic copy of CYG is the complement in W ∩ S(V ) to a union of tubolar
neighbouroods of fundamental subspaces. Let us state this more in detail:

Definition 8.1. Given a fundamental subspace A and a positive real number
γA, we denote by TγA(A) the open tubolar neighbourood of A in S(V ) which
is given by all the points whose distance from A is lesser then γA.

We will say that a choice of the numbers γA (for every A W -fundamental)
is “admissible” if the numbers are small ( say lesser then 10−n) and if,
whenever dim A > dim B, then γB/γA > 10dim A−dim B.

It turns out (it can also be proven directly by using the explicit charts
for CYG(W ) described in Section 3.2) that CYG(W ) is diffeomorphic to the
complement in W ∩ S(V ) to the union⋃

A fundamental

TγA(A)

Theorem 8.1. The manifold with corners CYG(W ) has a diffeomorphic
copy in W ∩S(V ) which can be extended to a convex set C(H,G) whose face
lattice is a realization of the poset Cox(H,G).
If (wH,S) is an element of Cox(H,G), the dimension of the face associated
to it is n− |S|+ k, where k is the number of non trivial labels in S.

Proof.
Let us first construct a diffeomorphic copy of CYG(W ) by fixing an ad-
missible choice of numbers γA (for every A W -fundamental in G) with the
further stronger condition that, whenever dim A > dim B, then γB/γA >

10n(dim A−dim B).
Then we can consider the Coxeter group action GH ·CYG(W ) and obtain

a copy of CYG(W ) in every chamber.
We want that GH · CYG(W ) ⊂ C(H,G); this means that we have already

constructed part of the boundary of C(H,G).
Our next step consists of adding to GH · CYG(W ) some 1-dimensional

faces. If vτ is a vertex of CYG(W ) (τ is a maximal fundamental nested set)
and A ∈ τ is maximal (i.e. (n − 1)-dimensional), we connect with a linear
edge vτ with the other element in SA ·vτ (i.e., with its reflection with respect
to A).

Then we obtain all the other edges in C(H,G) which are not in GH ·
CYG(W ) by considering theGH action on the above constructed linear edges.

Now let us consider an element (eH,S) of Cox(H,G), where S is a W -
fundamental labelled nested set with k non trivial labels SR1 , . . . , SRk

. Let
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DS be the boundary component of CYG(W ) associated to S. Then the
elements in VS = {SR1 × SR2 × · · · × SRk

· vτ | vτ ∈ DS} will determine a
face of dimension n− |S|+ k.

Lemma 8.2. If A⊥ and B⊥ are two non comparable (with respect to inclu-
sion) elements in S⊥, then we have A⊥ ⊥ B⊥.

Proof of the Lemma.
Since S is nested, A⊥ and B⊥ are in direct sum and their sum C⊥ is not

in G⊥. Moreover, C⊥ = A⊥ ⊕B⊥ is the “building decomposition” of C⊥ in
G⊥.

Now, A⊥ and B⊥ are generated by some subsets of roots of the Coxeter
root system. We claim that if α is a root which belongs to A⊥ and β is a
root that belongs to B⊥, then α ⊥ β (this will imply our thesis).

In fact in [8] it has been proven that the elements of F⊥
H = F⊥

G are all the
subspaces spanned by the irreducible root subsystems of the Coxeter root
system. Remark 2.2 implies that F⊥

H ⊂ G⊥.
Now, if α is not orthogonal to β, we can consider the two dimensional

root subsystem generated by α and β. It contains a root of type α+aβ with
a 6= 0. But α + aβ does not belong to A⊥ or to B⊥, otherwise they don’t
give a direct sum, and spans an irreducible one dimensional subspace. This
contradicts the fact that C⊥ = A⊥⊕B⊥ is the “building decomposition” of
C⊥ in G⊥, i.e. that A⊥ and B⊥ are the maximal elements of G⊥ contained
in C⊥.

Proposition 8.3. Let A ∈ S, and let us consider the orthogonal projections
πSA⊥

∩
(vτ ) of vτ ∈ DS to SA⊥

∩ . These projections determine on a sphere of

SA⊥
∩ a copy of the manifold CY

GS
A⊥
∩

A

.

Proof of the Proposition.
Let B⊥

1 , . . . , B
⊥
r be the elements in S⊥ which are covered by A⊥. The

sphere we are dealing with has then, by the above lemma, radius equal to√√√√γ2
A −

r∑
i=1

γ2
Bi

On this sphere we have a picture which is again a complement of tubolar
neighbouroods yielding a copy of CY

GS
A⊥
∩

A

. In fact, let us soppose that S∪B

is still nested, where B ⊃ A, and no one of the Bi’s is included in B; the
distance of the boundary component DB from B is γB, and the distance of
πSA⊥

∩
(DS ∩ DB) from B ∩ SA⊥

∩ is√
γ2

B −
∑

i s.t. B(Bi

γ2
Bi
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Because of our special choice of admissible numbers γD we then have that
the image via πSA⊥

∩
of the boundary component DS ⊂ CYG is the comple-

ment of the tubolar neighbouroods Tγ′C
(C) (C ∈ GS

A⊥
∩

A ) where the numbers
γ′C are still admissible. This implies that πSA⊥

∩
(DS) is a diffeomorphic copy

of CY
GS

A⊥
∩

A

.

Now we let the group SR1 × · · · × SRk
act on the vertices vτ in DS and

we obtain VS , which is a subset of the manifold

D̂S = DS +R⊥1 +R⊥2 + · · ·+R⊥k

Since π
SR⊥

j
(DS) is a codimension 1 manifold in R⊥j we have that D̂S has

dimension equal to (dim DS) + k, i.e. n− |S|+ k.
A portion of D̂S = e · D̂S will give us a face of C(H,G). The portion we

are interested in is cut on D̂S by the submanifolds w · D̂S′ of codimension 1,
where S ′ is obtained by S using the “moves” described in Section 7.1 and
w belongs to the product of the labels of S.

Let for instance S ′ = S ∪K where K is maximal with trivial label and
the products of labels of S and S ′ coincide.

Then the manifold e · D̂S′ is determined by the subset

VS′ = {SR1 × SR2 × · · · × SRk
· vτ | vτ ∈ DS′}

It can also be seen as the subset of VS made by the elements which satisfy
the following extra condition: let B⊥ be the element in S⊥ which covers
K⊥; then, when we project the points of VS to SB⊥

∩ , the points in VS′
are the ones whose projections lie at a minimal distance from K. This is
therefore a “boundary” condition and all the possible boundary conditions
are expressed by the moves of Section 7.1.

If we now denote by F (e,DS) the face of C(H,G) that is cut in e · D̂S
by the above mentioned submanifolds, we have that the set of all faces of
C(H,G) is given by

{F (w,DS) ' w · F (e,DS) | w ∈ GH}

It remains to prove that C(H,G) is convex. In fact C(H,G) can be viewed
as the intersection of convex spaces.

One is the sphere S(V ). The others are associated to the facets of C(H,G)
which are not in GH ·CYG(W ). We note that these facets are the F (w,DS)
where S satisfies the following properties:

(1) it has only one unlabelled element (i.e., {0} is the only non maximal
element);

(2) all the labels are non trivial.
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Let S = {{0}, A1, A2, . . . , Ak} be as above, and let w = e for simplicity.
Then we associate to F (e,DS) the codimension 1 submanifold of V

Γ(S) +A⊥1 +A⊥2 + · · ·+A⊥k

where Γ(S) is the intersection of a closed ball of radius

√√√√1−
k∑

i=1

γ2
Ai

with

A1 ∩ · · · ∩Ak.
Let Conv(H,G) be the common intersection of all these convex spaces.

The inclusion C(H,G) ⊂ Conv(H,G) is provided by the observation that
every point c ∈ C(H,G), when projected to SV

∩ , lies inside the ball of radius√√√√1−
k∑

i=1

γ2
Ai

.

In fact, on one hand, if S = {{0}, A1, A2, . . . , Ak} (k > 0) and c ∈
F (w,DS) (w ∈ SA1 × SA2 × · · · × SAk

), then its projection belongs exactly

to the sphere of radius

√√√√1−
k∑

i=1

γ2
Ai

.

On the other hand, when S = {{0}} and c ∈ F (w,DS) (w ∈ GH) the pro-

jection of c lies inside the ball of radius

√√√√1−
k∑

i=1

γ2
Ai

since, by the construc-

tion via tubolar neighbouroods, the distance of c from Aj (j = 1, 2, . . . , k)
is greater then γAj .

Let now x ∈ Conv(H,G). A scalar multiple λx of x (λ > 0) belongs to
C(H,G) (which by construction contains a neighbourood of the origin). Let
λ be the maximum value such that λx ∈ C(H,G). If λ ≥ 1, then x ∈ C(H,G)
since C(H,G) is a star with respect to the origin.

Let us suppose λ < 1. Now, λx belongs to at least one of the closed facets
of C(H,G).

If this facet is determined by a nested set S = {{0}, A1, A2, . . . , Ar} (r ≥
1, all the labels are non trivial), then we have that πSV

∩
(λx) lies on a sphere

of radius

√√√√1−
r∑

i=1

γ2
Ai

. This implies that πSV
∩

(x) has norm strictly greater

then

√√√√1−
r∑

i=1

γ2
Ai

, which contradicts x ∈ Conv(H,G).

If instead λx belongs to a facet determined by S = {{0}}, this means
that |λx| = 1, and therefore |x| > 1 which again gives a contradiction.
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