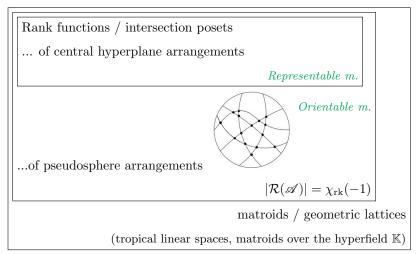


Combinatorics and topology of toric arrangements III. Epilogue

Emanuele Delucchi (SNSF / Université de Fribourg)

> Toblach/Dobbiaco February 24, 2017

FINITE MATROIDS



TORIC ARRANGEMENTS

$$A = [a_1, \dots, a_n] \in M_{d \times n}(\mathbb{Z})$$

$$\mathscr{A} \text{ in } (\mathbb{Z}_q)^d \subseteq (S^1)^d \subseteq (\mathbb{C}^*)^d$$

DISCRETE TORI (ENUMERATION)

 $\{\chi_i\}_{i|\rho}(q) := |(\mathbb{Z}_q)^d \setminus \bigcup \mathscr{A}_q|$ is a quasipolynomial in q, with $\chi_1(t) = (-1)^d T(1-t,0),$

 $\chi_j(t) = ?,$ $\chi_\rho(t) = (-1)^d T_A(1-t,0)$

[Kamiya–Takemura–Terao '08, Lawrence '11, ...]

EHRHART THEORY (OF ZONOTOPES)

The zonotope $Z_A := \sum a_i$ has Ehrhart polynomial

 $E_{Z_A}(t) = (-1)^d T_A(\frac{t+1}{t}, 1)$ (= $|\mathbb{Z}^d \cap tZ_A|$ for $t \in \mathbb{N}$)

[d'Adderio-Moci '13]

TOPOLOGY (IN $(\mathbb{C}^*)^d$)

 $M(\mathscr{A}):=(\mathbb{C}^*)^d\setminus\cup\mathscr{A}$

- Poin $(M(\mathscr{A}), t) = t^d T_A(\frac{2t+1}{t}, 0)$ [Looijenga '95, De Concini-Procesi 2005]
- M(𝒴) minimal; presentation of the ring H^{*}(M(𝒴),ℤ)
 [D.-d'Antonio '13, Callegaro-D. '15]
- Wonderful models [Moci '12, Gaiffi-De Concini '16]

Dissections of $(S^1)^d$

The complement $(S^1)^d \setminus \cup \mathscr{A}$ has $T_A(1,0)$ connected regions. [Lawrence '09 and '11; Ehrenborg-Readdy-Slone '09]

The "Coxeter Case"

[Moci '08, Aguiar-Petersen '14, D.-Girard '16+]

POSET OF LAYERS

$$\mathcal{C}(\mathscr{A})$$
:

MATROID OVER \mathbb{Z} $M(I) := \mathbb{Z}^d / \langle a_i \rangle_I$

Arithmetic matroid $m(I) := |\operatorname{Tor}(M(I))|$

AR. TUTTE POLY. $T_A(x, y)$

Definition 1.19 (Compare Section 2 of [5]). Let $S = (S, C, \mathrm{rk})$ be a locally ranked triple. A molecule of S is any triple (R, F, T) of disjoint sets with $R \cup F \cup T \in C$ and such that, for every A with $R \subseteq A \subseteq R \cup F \cup T$,

$$\operatorname{rk}(A) = \operatorname{rk}(R) + |A \cap F|.$$

Remark 1.20. Once a total ordering of the ground set S is fixed, the notion of basis activities for matroids briefly recapped in Proposition 1.17 above allows us to associate to every basis B a molecule $(B \setminus I(B), I(B), E(B))$.

Definition 1.21 (Extending Moci and Brändén [5]). Let $S = (S, C, \mathrm{rk})$ be a finite locally ranked triple and $m : C \to \mathbb{R}$ any function. If (R, F, T) is a molecule, define

$$\rho(R, R \cup F \cup T) := (-1)^{|T|} \sum_{R \subseteq A \subseteq R \cup F \cup T} (-1)^{|R \cup F \cup T| - |A|} m(A).$$

We call the pair (S, m) arithmetic if the following axioms are satisfied: (P) For every molecule (R, F, T),

 $\rho(R, R \cup F \cup T) \ge 0.$

(A1) For all $A \subseteq S$ and $e \in S$ with $A \cup e \in C$: (A.1.1) If $\operatorname{rk}(A \cup \{e\}) = \operatorname{rk}(A)$ then $m(A \cup \{e\})$ divides m(A). (A.1.2) If $\operatorname{rk}(A \cup \{e\}) > \operatorname{rk}(A)$ then m(A) divides $m(A \cup \{e\})$. (A2) For every molecule (R, F, T)

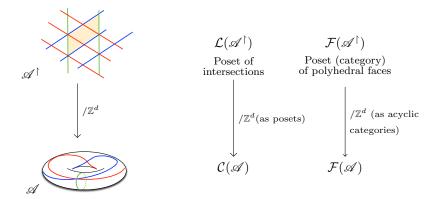
 $m(R)m(R \cup F \cup T) = m(R \cup F)m(R \cup T).$

Following [5] we use the expression *pseudo-arithmetic* to denote the case where m only satisfies (P). An *arithmetic matroid* is an arithmetic pair (S, m) where S is a matroid.

TORIC ARRANGEMENTS

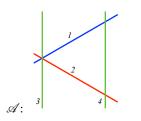
COMBINATORIAL FRAMEWORK

Ansatz: "periodic arrangements"

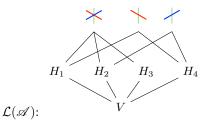


Characterize axiomatically the involved posets and the group actions.

RECALL BY WAY OF EXAMPLE



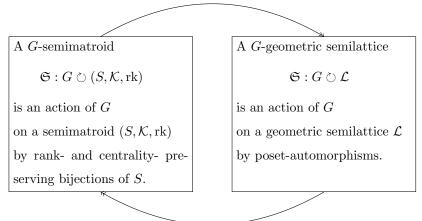
- $$\begin{split} \mathcal{K} &:= \{ I \text{ such that } \cap_{i \in I} H_i \neq \emptyset \\ & \{ \}, \{1\}, \{2\}, \{3\}, \{4\} \\ & \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 4\}, \{2, 4\} \\ & \quad \{1, 2, 3\} \} \\ & \text{These are the central sets.} \end{split}$$
- $\operatorname{rk}: \mathcal{K} \to \mathbb{N}, I \mapsto \operatorname{codim}(\cap_{i \in I} H_i)$



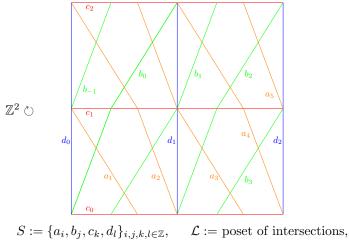
 $(S, \mathcal{K}, \mathrm{rk})$ is a semimatroid. [today: *loopless*] \mathcal{L} is a geometric semilattice

Cryptomorphism

Let G be a group



Cryptomorphism! \checkmark

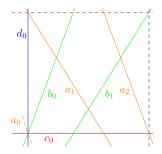


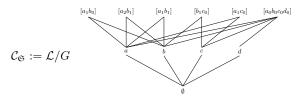
 $S := \{a_i, b_j, c_k, d_l\}_{i,j,k,l \in \mathbb{Z}}, \qquad \mathcal{L} := \text{poset of intersections}$ $\mathcal{K} := \{\emptyset, a_1, b_0, a_1b_0, b_1, a_1b_1, \ldots\} \not\ni a_1b_0c_0$ $\text{for } X \in \mathcal{K}, \operatorname{rk}(X) := \operatorname{codim} \cap X$

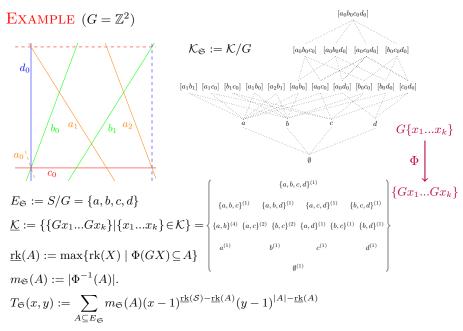
QUOTIENT POSETS Let G be a group G-semimatroid $\mathfrak{S}: G \circlearrowright (S, \mathcal{K}, \mathrm{rk})$ $\mathfrak{S}: G \circlearrowright \mathcal{L}$

 $\mathcal{C}_{\mathfrak{S}} := \mathcal{L}/G, \text{ the set } \{Gx \mid x \in \mathcal{L}\} \text{ ordered by}$ $Gx \leq Gy \text{ iff } x \leq_{\mathcal{L}} gy \text{ for some } g$ (This *is* a poset)

EXAMPLE $(G = \mathbb{Z}^2)$







TRANSLATIVE ACTIONS

 \mathfrak{S} is called *translative* if, for all $x \in S$ and $g \in G$,

 $\{x, g(x)\} \in \mathcal{K} \text{ implies } x = g(x).$

Theorem The function $\underline{\mathbf{rk}}: 2^{E_{\mathfrak{S}}} \to \mathbb{N}$ always defines a semimatroid. It defines a matroid if, and only if, \mathfrak{S} is translative.

In the 'realizable' case, this corresponds to the arrangement \mathscr{A}_0 , (remember?)

Theorem If \mathfrak{S} is translative, the triple $(E_{\mathfrak{S}}, \underline{\mathrm{rk}}, m_{\mathfrak{S}})$ satisfies axiom (P) "pseudo-arithmetic"

TRANSLATIVE ACTIONS

 \mathfrak{S} is called *translative* if, for all $x \in S$ and $g \in G$,

$$\{x, g(x)\} \in \mathcal{K} \text{ implies } x = g(x).$$

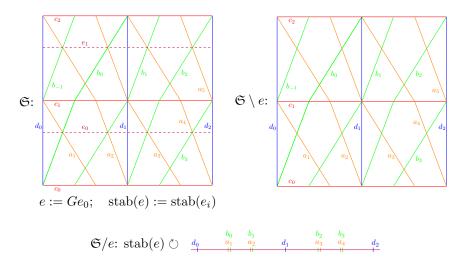
Theorem. If \mathfrak{S} is translative, the *characteristic polynomial* of the poset $\mathcal{C}_{\mathfrak{S}} = \mathcal{L}/G$ is

$$\chi_{\mathcal{C}_{\mathfrak{S}}}(t) = (-1)^r T_{\mathfrak{S}}(1-t,0).$$

Corollary. If \mathfrak{S} arises from a translative \mathbb{Z}^r -action on a rank r oriented semimatroid ("periodic wiggly arrangement"), then the number of regions of the associated toric *pseudoarrangement* is

$$|\mathcal{R}(\mathscr{A})| = (-1)^r T_{\mathfrak{S}}(1,0)$$

DELETION / CONTRACTION



TRANSLATIVE ACTIONS

Theorem If \mathfrak{S} is translative, for all $e \in E_{\mathfrak{S}}$ we have the recursion $T_{\mathfrak{S}}(x,y) = (x-1)T_{\mathfrak{S}\setminus e}(x,y) + (y-1)T_{\mathfrak{S}/e}(x,y),$

according to whether e is a coloop or a loop of $(E_{\mathfrak{S}}, \underline{\mathcal{K}}, \underline{\mathbf{rk}})$, where $\mathfrak{S} \setminus e := G \circlearrowright (S, \mathcal{K}, \mathbf{rk}) \setminus e, \quad \mathfrak{S}/e := \mathrm{stab}(e) \circlearrowright (S, \mathcal{K}, \mathbf{rk})/e.$

Think: "removing an orbit of hyperplanes", resp. considering the stab (H_e) -periodic arrangement induced in H_e

(NRDC)

Towards arithmetic matroids

A translative \mathfrak{S} is called *normal* if, for all $X \in \mathcal{K}$, stab(X) is normal in G.

This allows, given $X \in \mathcal{K}$, to consider the group

$$\Gamma^X := \prod_{x \in X} G/\operatorname{stab}(x)$$

Theorem. If \mathfrak{S} is translative and normal, $(E_{\mathfrak{S}}, \underline{\mathrm{rk}}, m_{\mathfrak{S}})$ satisfies (P), (A.1.2) and (A.2).

For the "initiated": moreover, $T_{\mathfrak{S}}(x, y)$ satisfies an "activity decomposition theorem" à la Crapo.

Towards arithmetic matroids

A translative \mathfrak{S} is called *normal* if, for all $X \in \mathcal{K}$, stab(X) is normal in G.

This allows, given $X \in \mathcal{K}$, to consider $\Gamma^X := \prod_{x \in X} G/\operatorname{stab}(x)$, and

$$W(X) := \{ (g_x)_{x \in X} \in \Gamma^X \mid \{g_x x\}_{x \in X} \in \mathcal{K} \}$$

 \mathfrak{S} is called *arithmetic* if, for all $X \in \mathcal{K}$, W(X) is a subgroup of Γ^X .

Theorem: If \mathfrak{S} is arithmetic, then $(E_{\mathfrak{S}}, \underline{\mathrm{rk}}, m_{\mathfrak{S}})$ is an arithmetic matroid.

Remark 1. There are translative and not normal, and normal but not arithmetic \mathfrak{S} 's. In general, it seems *very* restrictive to require arithmeticity.

Towards arithmetic matroids

A translative \mathfrak{S} is called *normal* if, for all $X \in \mathcal{K}$, stab(X) is normal in G.

This allows, given $X \in \mathcal{K}$, to consider $\Gamma^X := \prod_{x \in X} G/\operatorname{stab}(x)$, and

$$W(X) := \{ (g_x)_{x \in X} \in \Gamma^X \mid \{g_x x\}_{x \in X} \in \mathcal{K} \}$$

 \mathfrak{S} is called *arithmetic* if, for all $X \in \mathcal{K}$, W(X) is a subgroup of Γ^X .

Theorem: If \mathfrak{S} is arithmetic, then $(E_{\mathfrak{S}}, \underline{\mathrm{rk}}, m_{\mathfrak{S}})$ is an arithmetic matroid.

Remark 2. W(X) parametrizes all elements of $\Phi^{-1}(\Phi(GX))$. In the case of periodic arrangements, this induces a group structure on the set of connected components of the intersection of the "subtori" in $\Phi(GX) \subseteq E_{\mathfrak{S}}$.

Representable cases

Call \mathfrak{S} representable if it arises as an action by translations on an affine rank d arrangement \mathscr{A} of hyperplanes. In this case, $(E_{\mathfrak{S}}, \underline{\mathrm{rk}}, m_{\mathfrak{S}})$ is an arithmetic matroid and

$$\mathcal{C}_{\mathfrak{S}} \simeq \mathcal{C}(\mathscr{A}).$$

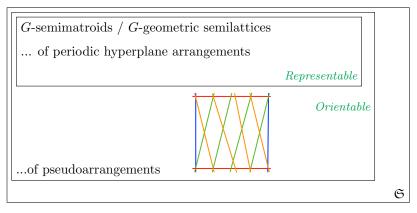
 $G = {id} \rightarrow (Central) arrangements of hyperplanes,$

 $G = \mathbb{Z}^d \longrightarrow (Centered) \text{ toric arrangements}^*$

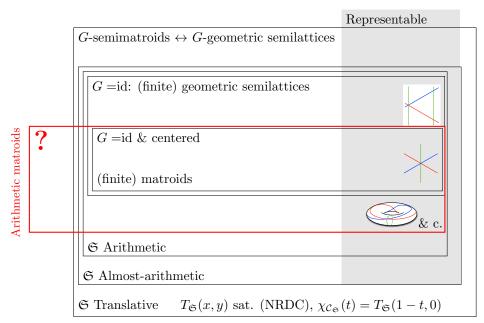
 $G = \mathbb{Z}^{2d} \longrightarrow$ Elliptic arrangements

(*) in this case, the arithmetic matroid $(E_{\mathfrak{S}}, \underline{\mathbf{rk}}, m_{\mathfrak{S}})$ is *dual* to that associated to the list of defining characters by d'Adderio–Brändén–Moci

COARSE OVERVIEW



"FINER" OVERVIEW



1. Does the theory of AM's fully embed in G-semimatroids?

Construct, for every arithmetic matroid $(E, \operatorname{rk}, m)$ a *G*-semimatroid \mathfrak{S} such that $(E_{\mathfrak{S}}, \operatorname{\underline{rk}}, m_{\mathfrak{S}})$ is isomorphic to $(E, \operatorname{rk}, m)$

– or find obstructions (!).

- 1. Does the theory of AM's fully embed in G-semimatroids?
- 2. Structure of the posets $\mathcal{C}_{\mathfrak{S}}$
 - are these posets *shellable*? At least Cohen-Macauley?

 $(\mathcal{C}(\mathscr{A})$ shellable for toric Weyl type A_n, B_n, C_n [D.-Girard '17+])

- characterize intrinsecally the class of these posets

(cf. "developability" in Bridson-Häfliger)

- 1. Does the theory of AM's fully embed in G-semimatroids?
- 2. Structure of the posets $\mathcal{C}_{\mathfrak{S}}$
- 3. Duality theory

Construct, for a given arithmetic \mathfrak{S} , a \mathfrak{S}^* such that $(\mathfrak{S}^*)^* \simeq \mathfrak{S}$ and, for instance, $T_{\mathfrak{S}}(x, y) = T_{\mathfrak{S}^*}(y, x)$. Can one do it for general translative \mathfrak{S} ?

One motivation for developing duality is the following item.

- 1. Does the theory of AM's fully embed in G-semimatroids?
- 2. Structure of the posets $\mathcal{C}_{\mathfrak{S}}$
- 3. Duality theory
- 4. Partition functions, Dahmen-Micchelli spaces

Recent motivation for the study of toric arrangements is De Concini, Procesi and Vergne's theory of partition functions and splines, see [De Concini – Procesi, Topics in hyperplane arrangements, polytopes and box splines, Springer Universitext 2011]

Can one describe the combinatorics of this situation (e.g. wall-crossing of partition functions, etc.) in terms of the associated \mathfrak{S} ?

- 1. Does the theory of AM's fully embed in G-semimatroids?
- 2. Structure of the posets $\mathcal{C}_{\mathfrak{S}}$
- 3. Duality theory
- 4. Partition functions, Dahmen-Micchelli spaces
- 5. Topology

Does \mathfrak{S} determine the cohomology ring in the toric case? E.g.: \mathfrak{S}_1 : and \mathfrak{S}_2 : are not isomorphic. Ans: how about nonrealizable toric Salvetti complexes?

- 1. Does the theory of AM's fully embed in G-semimatroids?
- 2. Structure of the posets $\mathcal{C}_{\mathfrak{S}}$
- 3. Duality theory
- 4. Partition functions, Dahmen-Micchelli spaces
- 5. Topology

"Und jedem Anfang wohnt ein Zauber inne..."