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Finite matroids

Rank functions / intersection posets

... of central hyperplane arrangements

Representable m.

Orientable m.

...of pseudosphere arrangements

|R(A )| = χrk(−1)

matroids / geometric lattices

(tropical linear spaces, matroids over the hyperfield K)



Toric arrangements

A = [a1, . . . , an] ∈ Md×n(Z)

A in (Zq)
d ⊆ (S1)d ⊆ (C∗)d

Discrete tori

(enumeration)

{χi}i|ρ(q) := |(Zq)
d \ [Aq|

is a quasipolynomial in q, with

χ1(t) = (−1)dT (1− t, 0),

χj(t) =?,

χρ(t) = (−1)dTA(1− t, 0)

[Kamiya–Takemura–Terao ‘08,
Lawrence ‘11, ...]

Ehrhart theory

(of zonotopes)

The zonotope ZA :=
P

ai
has Ehrhart polynomial

EZA
(t) = (−1)dTA(

t+1
t , 1)

(= |Zd ∩ tZA| for t ∈ N)

[d’Adderio–Moci ‘13]

Topology (in (C∗)d)

M(A ) := (C∗)d \ [A

• Poin(M(A ), t) = tdTA(
2t+1

t , 0)
[Looijenga ‘95,

De Concini–Procesi 2005]

• M(A ) minimal; presentation
of the ring H∗(M(A ),Z)
[D.–d’Antonio ‘13, Callegaro–D. ‘15]

• Wonderful models
[Moci ‘12, Gaiffi-De Concini ‘16]

Dissections of (S1)d

The complement (S1)d \ [A has

TA(1, 0) connected regions.

[Lawrence ‘09 and ‘11;
Ehrenborg–Readdy–Slone ‘09]

The “Coxeter case”
[Moci ‘08, Aguiar-Petersen ‘14,

D.-Girard ‘16+]

Poset of layers

C(A ):

Matroid over Z

M(I) := Z
d/haiiI

Arithmetic matroid

m(I) := |Tor(M(I))|

Ar. Tutte Poly.

TA(x, y)





Toric arrangements

Combinatorial framework

Ansatz: “periodic arrangements”

L(A !)

A
!

F(A !)

C(A )

A

F(A )

Poset of
intersections

Poset (category)
of polyhedral faces

/Zd (as acyclic

categories)
/Zd(as posets)

/Zd

Characterize axiomatically the involved posets and the group actions.



Semimatroids

Recall by way of example

A :

1

2

43

K := {I such that \i∈IHi 6= ;

{}, {1}, {2}, {3}, {4}

{1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}

{1, 2, 3}}

These are the central sets.

rk : K ! N, I 7! codim(\i∈IHi)

L(A ):): V

H1 H2 H3 H4

(S,K, rk) is a semimatroid.

[today: loopless]

L is a geometric semilattice

Cryptomorphism



Group actions on semimatroids

Let G be a group

A G-semimatroid

S : G ! (S,K, rk)

is an action of G

on a semimatroid (S,K, rk)

by rank- and centrality- pre-

serving bijections of S.

A G-geometric semilattice

S : G ! L

is an action of G

on a geometric semilattice L

by poset-automorphisms.

Cryptomorphism! X



Group actions on semimatroids

Z
2 !

c0

c1

c2

d0 d1 d2

b0

b
−1

b1 b2

b3
a1 a2 a3

a4

a5

S := {ai, bj , ck, dl}i,j,k,l∈Z, L := poset of intersections,

K := {;, a1, b0, a1b0, b1, a1b1, . . .} 63 a1b0c0

for X 2 K, rk(X) := codim\X



Group actions on semimatroids

Quotient posets

Let G be a group

G-semimatroid

S : G ! (S,K, rk)

G-geometric semilattice

S : G ! L

CS := L/G, the set {Gx | x 2 L} ordered by

Gx  Gy iff x L gy for some g

(This is a poset)



Group actions on semimatroids

Example (G = Z
2)

c0

d0

b1b0
a1 a2

a0

CS := L/G

;

a b c d

[a0b0c0d0][b1c0] [a1c0][a1b0] [a2b1] [a1b1]



Group actions on semimatroids

Example (G = Z
2)

c0

d0

b1b0
a1 a2

a0

a b c d

[a0b0] [a0c0] [a0d0] [b0c0] [b0d0] [c0d0][a1b1] [a1c0] [b1c0] [a1b0] [a2b1]

[a0b0c0] [a0b0d0] [a0c0d0] [b0c0d0]

[a0b0c0d0]

;

;(1)

a(1) b(1) c(1) d(1)

{a, b}(4) {a, c}(2) {b, c}(2) {a, d}(1) {b, c}(1) {b, d}(1)

{a, b, c}(1) {a, b, d}(1) {a, c, d}(1) {b, c, d}(1)

{a, b, c, d}(1)

KS := K/G

ES := S/G = {a, b, c, d}

K := {{Gx1...Gxk}|{x1...xk}∈K} =

rk(A) := max{rk(X) | Φ(GX)⊆A}

mS(A) := |Φ−1(A)|.

G{x1...xk}

{Gx1...Gxk}

Φ

TS(x, y) :=
X

A⊆ES

mS(A)(x− 1)rk(S)−rk(A)(y − 1)|A|−rk(A)



Group actions on semimatroids

Translative actions

S is called translative if, for all x 2 S and g 2 G,

{x, g(x)} 2 K implies x = g(x).

Theorem The function rk : 2ES ! N always defines a semimatroid. It

defines a matroid if, and only if, S is translative.

In the ‘realizable’ case, this corresponds to the arrangement A0,

(remember?)

Theorem If S is translative, the triple (ES, rk,mS) satisfies axiom (P)

“pseudo-arithmetic”



Group actions on semimatroids

Translative actions

S is called translative if, for all x 2 S and g 2 G,

{x, g(x)} 2 K implies x = g(x).

Theorem. If S is translative, the characteristic polynomial of the poset

CS = L/G is

χCS
(t) = (−1)rTS(1− t, 0).

Corollary. If S arises from a translative Z
r-action on a rank r oriented

semimatroid (“periodic wiggly arrangement”), then the number of regions

of the associated toric pseudoarrangement is

|R(A )| = (−1)rTS(1, 0)



Deletion / Contraction

c0

c1

c2

d0 d1 d2

b0

b
−1

b1 b2

b3
a1 a2 a3

a4

a5

e1

e0

S:

e := Ge0; stab(e) := stab(ei)

c0

c1

c2

d0 d1 d2

b0

b
−1

b1 b2

b3
a1 a2 a3

a4

a5

S \ e:

d0 d1 d2

b0 b1 b2 b3
a1 a2 a3 a4S/e: stab(e) !



Group actions on semimatroids

Translative actions

Theorem If S is translative, for all e 2 ES we have the recursion

TS(x, y) = (x− 1)TS\e(x, y) + (y − 1)TS/e(x, y),

according to whether e is a coloop or a loop of (ES,K, rk), where

S \ e := G ! (S,K, rk) \ e, S/e := stab(e) ! (S,K, rk)/e.

Think: “removing an orbit of hyperplanes”, resp. considering the stab(He)-

periodic arrangement induced in He

(NRDC)



Group actions on semimatroids

Towards arithmetic matroids

A translative S is called normal if, for all X 2 K, stab(X) is normal in G.

This allows, given X 2 K, to consider the group

ΓX :=
Y

x∈X

G/ stab(x)

Theorem. If S is translative and normal, (ES, rk,mS) satisfies (P),

(A.1.2) and (A.2).

For the “initiated”: moreover, TS(x, y) satisfies an “activity decomposition

theorem” à la Crapo.



Group actions on semimatroids

Towards arithmetic matroids

A translative S is called normal if, for all X 2 K, stab(X) is normal in G.

This allows, given X 2 K, to consider ΓX :=
Q

x∈X G/ stab(x), and

W (X) := {(gx)x∈X 2 ΓX | {gxx}x∈X 2 K}

S is called arithmetic if, for all X 2 K, W (X) is a subgroup of ΓX .

Theorem: If S is arithmetic, then (ES, rk,mS) is an arithmetic matroid.

Remark 1. There are translative and not normal, and normal but not

arithmetic S’s. In general, it seems very restrictive to require arithmeticity.



Group actions on semimatroids

Towards arithmetic matroids

A translative S is called normal if, for all X 2 K, stab(X) is normal in G.

This allows, given X 2 K, to consider ΓX :=
Q

x∈X G/ stab(x), and

W (X) := {(gx)x∈X 2 ΓX | {gxx}x∈X 2 K}

S is called arithmetic if, for all X 2 K, W (X) is a subgroup of ΓX .

Theorem: If S is arithmetic, then (ES, rk,mS) is an arithmetic matroid.

Remark 2. W (X) parametrizes all elements of Φ−1(Φ(GX)). In the case of

periodic arrangements, this induces a group structure on the set of connected

components of the intersection of the “subtori” in Φ(GX) ✓ ES.



Representable cases

Call S representable if it arises as an action by translations on an affine rank

d arrangement A of hyperplanes. In this case, (ES, rk,mS) is an arithmetic

matroid and

CS ' C(A ).

G = {id} ! (Central) arrangements of hyperplanes,

G = Z
d ! (Centered) toric arrangements*

G = Z
2d ! Elliptic arrangements

(*) in this case, the arithmetic matroid (ES, rk,mS) is dual to that associ-

ated to the list of defining characters by d’Adderio–Brändén–Moci



Coarse overview

G-semimatroids / G-geometric semilattices

... of periodic hyperplane arrangements

Representable

Orientable

...of pseudoarrangements

S



“Finer” overview

Representable

G-semimatroids $ G-geometric semilattices

G =id: (finite) geometric semilattices

G =id & centered

(finite) matroids

& c.

S Arithmetic

S Almost-arithmetic

S Translative TS(x, y) sat. (NRDC), χCS
(t) = TS(1− t, 0)

?

A
ri
th
m
et
ic

m
a
tr
o
id
s



Your turn!



Your turn!

1. Does the theory of AM’s fully embed in G-semimatroids?

Construct, for every arithmetic matroid (E, rk,m) a G-semimatroid S

such that (ES, rk,mS) is isomorphic to (E, rk,m)

– or find obstructions (!).



Your turn!

1. Does the theory of AM’s fully embed in G-semimatroids?

2. Structure of the posets CS

– are these posets shellable? At least Cohen-Macauley?

(C(A ) shellable for toric Weyl type An, Bn, Cn [D.-Girard ‘17+])

– characterize intrinsecally the class of these posets

(cf. “developability” in Bridson-Häfliger)



Your turn!

1. Does the theory of AM’s fully embed in G-semimatroids?

2. Structure of the posets CS

3. Duality theory

Construct, for a given arithmetic S, a S
∗ such that (S∗)∗ ' S and,

for instance, TS(x, y) = TS∗(y, x).

Can one do it for general translative S?

One motivation for developing duality is the following item.



Your turn!

1. Does the theory of AM’s fully embed in G-semimatroids?

2. Structure of the posets CS

3. Duality theory

4. Partition functions, Dahmen-Micchelli spaces

Recent motivation for the study of toric arrangements is De Concini,

Procesi and Vergne’s theory of partition functions and splines, see

[De Concini – Procesi, Topics in hyperplane arrangements, polytopes and box

splines, Springer Universitext 2011]

Can one describe the combinatorics of this situation (e.g. wall-crossing

of partition functions, etc.) in terms of the associated S?



Your turn!

1. Does the theory of AM’s fully embed in G-semimatroids?

2. Structure of the posets CS

3. Duality theory

4. Partition functions, Dahmen-Micchelli spaces

5. Topology

Does S determine the cohomology ring in the toric case?

E.g.: S1:: and S2: are not isomorphic.

Ans: how about nonrealizable toric Salvetti complexes?



Your turn!

1. Does the theory of AM’s fully embed in G-semimatroids?

2. Structure of the posets CS

3. Duality theory

4. Partition functions, Dahmen-Micchelli spaces

5. Topology

“Und jedem Anfang wohnt ein Zauber inne...”


