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THE PLAN

I. COMBINATORICS OF (TORIC) ARRANGEMENTS.
Enumeration and structure theory: posets, polynomials,
matroids, semimatroids, and “arithmetic enrichments”

... & questions.

II. TOPOLOGY OF (TORIC) ARRANGEMENTS.
Combinatorial models, minimality, cohomology

... & more questions.

III. EPILOGUE: “EQUIVARIANT MATROID THEORY” .

. some answers — hopefully — & many more questions.



CUTTING A CAKE

3 “full” cuts.

How many pieces?



CUTTING A CAKE

6 pieces vs. 7 pieces

Pattern of intersections

P



MOBIUS FUNCTIONS OF POSETS
Let P be a locally finite partially ordered set (poset).

The Mébius function of P is p: P X P — Z, defined recursively by

w(z,y) =0 ifz Ly
Z [L(SC,Z) = 5ac,y ifx < )

z<z<y

If P has a minimum 0 and is ranked®, its characteristic polynomial is

xp(t) == Z 1ip (0, 2)tP(P)=p(®)
zeP

* i.c., there is p: P — N s.t. p(z) = length of any unrefinable chain from 0 to .

The rank of P is then p(P) := max{p(z) | z € P}
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TOPOLOGICAL DISSECTIONS
Let X be a topological space, o a finite set of (proper) subspaces of X.

The dissection of X by </ gives rise to:
a poset of intersections:

L():={NK | K C &/} ordered by reverse inclusion

a poset of layers (or connected components of intersections):

C(#) = Urer(w) To(L) ordered by reverse inclusion.

a collection of regions, i.e., the connected components of X \ U

R(A) :=mo(X \ U)

a collection of faces, i.e., regions of dissections induced on intersections.



TOPOLOGICAL DISSECTIONS
ZASLAVSKY’S THEOREM
[Combinatorial analysis of topological dissections, Adv. Math. ‘77|
Consider the dissection of a topological space X
(connected, Hausdorff, locally compact)
by a family & of proper subspaces, with R(&) = {Ry, ..., R,,} (finite).
Let P stand for either £(<) or C(&7), also assumed to be finite.
If all faces of this dissection are finite disjoint unions of open balls,

m

> _n(Ri) =) pp(X, T)s(T)

i=1 TeP
where x denotes the “combinatorial Euler number”: x(T) = x(T) if T is

~

compact, otherwise x(T) = x(T) — 1.

This gives rise to many "region-count formulas”.
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HYPERPLANE ARRANGEMENTS

A hyperplane arrangement in a K-vectorspace V is a locally finite set
o = {Hi}ties

of hyperplanes H; = {v € V | a;;(v) = b;}, where o; € V* and b; € K.

The arrangement is called central if b; = 0 for all 4.

COMBINATORIAL OBJECTS

Poset of intersections. £(#) (= C(&))

— “Geometry”

Rank function. rk : 2% — N, rk(I) := dimg(span{c; | i € I})
“Algebra”



HYPERPLANE ARRANGEMENTS

CENTRAL EXAMPLE (SAY K = R)

1 11 1if |I] =1,
A= o, g, 03] = o tk(0) =0, rk(I) =
1 -1 0 2if |I] > 1.

— I C J implies rk(I) < rk(J)

— tk(INJ)+rk(IUJ) <rk(I)+rk(J)

- 0<rk(I) < |1

— For every I C S there is a finite J C I with rk(J) = rk(I)

A matroid is any function rk : 2° — N satisfying (R).

Its characteristic “polynomial” is Xk (t) = ZIQS(—1)|T|trk(S)_rk(I)



HYPERPLANE ARRANGEMENTS

CENTRAL EXAMPLE (SAY K = R)

1 11 Lif [I| =1,
A= [ar, 00, a3] = k(D) =0, rk(I) =
1 -1 0 2if 1] > 1.

/N

Setting X7 := (;c; Hi,

rk(I) = codim(X;) = p(Xr), the rank function on L£(</)



HYPERPLANE ARRANGEMENTS

CENTRAL EXAMPLE (SAY K = R)

L(</) is a lattice with 0 = V. Moreover,
(G) x < y if and only if there is an atom p with p £ x and y = x V p.

A geometric lattice is a chain-finite lattice satisfying (G).






CRYPTOMORPHISMS

S = {atoms of L}, rk(I) = p(VI)

e

Functions tk : 2° — N Chain-finite lattices

satisfying (R) L satisfying (G)

-

L={ACS|rk(AUs)>rk(A) for all s ¢ A}

xiw(t) " e (t)
(S finite, rk > 0)



FINITE MATROIDS

Rank functions / intersection posets

. of central hyperplane arrangements

Representable m.

Orientable m.

...of pseudosphere arrangements

IR()| = xrx(—1)

matroids / geometric lattices

(tropical linear spaces, matroids over the hyperfield K)

Infinite example: set of all subspaces of V.
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MATROIDS

NEW MATROIDS FROM OLD

Let (S,rk) be a matroid and let s € S

Notice: it could be that rk(s) = 0 — in this case s is called a loop.
An isthmus is any s € S with rk(J Us) =1k(I\s) + 1 forall I C S.

The contraction of s is the matroid defined by the rank function

rk/s 129\ 5 N, 1k (1) := k(I Us) — rk(s)

The deletion of s is the matroid defined by the rank function
rkys 0 29\ 5 N, 1k (1) := rk(])

The restriction to s is the one-element matroid given by

I‘k[s] : 2{5} — N, I‘k[s] (I) = rk(I)



MATROIDS

THE TUTTE POLYNOMIAL
The Tutte polynomial of a finite matroid (S, rk) is
Trk(%y) = EICS(x _ 1)rk(S)—rk(I) (y _ 1)|I|—rk(I)

(first introduced by W. T. Tutte as the ”dichromate” of a graph).

Immediately: . (t) = (=1)*) T (1 —¢,0)
Deletion - contraction recursion: there are numbers o, T s.t.

Tr z, Tr AT, if s isthmus or loo
(DC) T(eg) =4 (@ 9)Tne (@,9) >

0Ty ss(x,y) + 7T \s(z,y) otherwise.
(in fact, c =7 =1).



MATROIDS
THE TUTTE POLYNOMIAL - UNIVERSALITY
Let .# be the class of all isomorphism classes of nonempty finite matroids,

and R be a commutative ring.

Every function f : .# — R for which there are 0,7 € R such that,

for every matroid rk on the set |S]| > 2

flkpg) f(rkys) if s isthmus or loop
(DO)  Jk) =g TR
of(rk/s)+ 7f(rk\s) otherwise,
is an evaluation of the Tutte polynomial. [Brylawski ‘72]

(More precisely, if you really want to know: f(rk) = T,k (f(i), f(1)), where

i, resp. 1 is the single-isthmus, resp. single-loop, one-element matroid.



HYPERPLANE ARRANGEMENTS
AFFINE EXAMPLE (K = R)
1 111

[a17a2aa37a4] = ) (blab27b37b4) = (Oa07071)
1 -1 0 0

_ I such that N;erH; # 0
{13 {2}, {3}, {4}

> {1,2},{1,3},{2,3},{1,4},{2,4}

{1,2,3}

o These are the central sets.

The family K is an abstract simplicial complex on the set of vertices S.
The function rk : £ — N, rk(I) := dimspang{«; | i € I} satisfies |...]
Any such triple (S, IC, k) is called a semimatroid.

[Kawahara ‘04, Ardila ‘07]



HYPERPLANE ARRANGEMENTS

AFFINE EXAMPLE (K = R)

/

The poset of intersections £(<7)

— is not a lattice; it is a meet-semilattice (i.e., only x Ay exists)

— every interval satisfies (G), thus it is ranked by codimension

.. what kind of posets are these?



HYPERPLANE ARRANGEMENTS

CONING




HYPERPLANE ARRANGEMENTS

GEOMETRIC SEMILATTICES

ca

A geometric semilattice is any poset of the form Lx,,
where L is a geometric lattice and 0 <.

CRYPTOMORPHISM
T

Semimatroids ‘ ‘ Geometric semilattices
Y\_/

[Wachs-Walker ‘86, Ardila ‘06, D.-Riedel ‘15]



HYPERPLANE ARRANGEMENTS

ABSTRACT THEORY

Semimatroid (5, K, rk) / intersection posets £

of affine hyperplane arrangements

of “pseudoarrangements”

[Baum-Zhu ‘15, D.-Knauer ‘17+]

semimatroids / geometric semilattices

(Q: abstract tropical manifolds?)




SEMIMATROIDS

TUTTE POLYNOMIALS

If (S, K,rk) is a finite semimatroid, the associated Tutte polynomial is

T(z,y) = Z(x - 1)rk(S)—rk(1) (y — 1)|I|—rk(I)
IeK

Exercise: Define contraction and deletion for semimatroids (analogously as
for matroids) and prove that Ty (x,y) satisfies (DC) with 0 =7 = 1.
[Ardila ‘07]



TORIC ARRANGEMENTS

A toric arrangement in the complex torus T := (C*)? is a set
o = {K17~-~7Kn}

of ‘hypertori’ K; = {z € T'| 2% = b;} with a; € Z*\{0},b; € C*/ =1/ € S!

The arrangement is called centered if all b; = 0, complexified if all b; € S'.

For simplicity assume that the matrix [a1, ..., a,] has rank d.

Note: Arrangements in the discrete torus (Z,)% or in the compact torus

(S1)? are defined accordingly, by suitably restricting the b;s.

Example: Identify Z? with the coroot lattice of a crystallographic Weyl

system, and let the a;s denote the vectors corresponding to positive roots.



TORIC ARRANGEMENTS

EXAMPLE - CENTERED, IN (S1)?

1 11 Lif [I| =1,
A= [ar, 00, a3] = k(D) =0, rk(I) =
1 -1 0 2if 1] > 1.



TORIC ARRANGEMENTS

EXAMPLE - CENTERED, IN (S')?
o o
[>L]
OO O
/
o C(): \°
Since A has maximal rank, every region is an open d-ball. Thus
> a(Ry) = 35 (=1)? = (=1)!|R (=)
Since x((S1)%) =0 for d > 0, x(¥) = 1, and C(«/) is ranked,

[R(«/)| = (=1)"Xc(ar)(0)



TORIC ARRANGEMENTS

EXAMPLE - CENTERED, IN (S1)?

LA
N/

o C(o): .

What kind of posets are these?
What structural properties do they have?

What natural class of abstract posets do these belong to?



TORIC ARRANGEMENTS
EXAMPLE - CENTERED, IN (S1)?
1 11 Lif |1 =1,
A:=lag,a0,a3) = , rtk(0) =0, rk(I) =
1 -1 0 2 if 1] > 1.
For I C [n] let

m(I) := product of the invariant factors of the matrix A(I) = [o; : i € I],

Xetom () 1= gy m(D) (1) 71D

Then,
m(I) = [mo(Micr Kl Xekm () = Xe(ar) ()

[Ehrenborg-Readdy-Slone ‘09, Lawrence ‘11, Moci ‘12]
The triple ([n],rk, m) satisfies the axioms of an arithmetic matroid

[d’Adderio-Moci ‘13, Bréandén-Moci ‘14 |



TORIC ARRANGEMENTS

ARITHMETIC TUTTE POLYNOMIAL

The “arithmetic tutte polynomial” associated to a toric arrangement is
Ticom(,y) == Ypcg m(I)(w — 1) =D (y — =@

[Moci ‘12]
Immediately: Y m(t) = (—1) DTy, (1 —¢,0). Also:

(z — DT, ma, (@, 9) + Tix, o om, (2,y) s isthmus
(NRDC) - Tu(,y) = ¢ T m, (2,9) + (y = DT, (2, y) s loop

Toc)om (T, Y) + Thke oo, (T, 9) otherwise.
[d’Adderio-Moci ‘13]

(NRDC) holds whenever ([n],rk, m) is an arithmetic matroid

[d’Adderio-Moci ‘13, Briandén-Moci ‘14]



TORIC ARRANGEMENTS

ABSTRACT THEORY?

— Arithmetic matroids — Xc(a)(t) enumerates points/faces
axioms for (S,rk,m) with in the compact and discrete torus.
e a duality theory, [Lawrence ‘08 ans ‘11, E-R-S ‘09]
e a “Tutte” polynomial T'a(z, y) - “ab/cd index” for C()
satisfying NRDC [Ehrenborg-Readdy-Slone ‘09

* No cryptomorphisms — C(«) via “marked” partitions for

e No natural nonrealizable examples e o/ “graphical” [Aguiar-Chan]

— Matroids over rings [Fink-Moci ‘15] e &/ from root system [Bibby ‘16],
Axioms for {Z%/{c:)ier}icim shellable in type ABC' [Girard ‘17+]
(“even more algebraic”) e No abstract characterization

(More about arithmetic matroids on Friday)



TORIC ARRANGEMENTS

TOWARDS A COMPREHENSIVE ABSTRACT THEORY

Ansatz: “periodic arrangements”

L(a") Flah)
Poset of Poset (category)
intersections of polyhedral faces
JZ (as posets) JZ4 (as acyclic

categories)

C(o) F()

Characterize axiomatically the involved posets and the group actions.



THE LONG GAME

Let A =la1,...,an] € Maxn(Z)

(Central) hyperplane (Centered) toric (Centered) elliptic
arrangement arrangement arrangement
)\ii (Cd—>(C /\z (C*)d—>(C* /\il Ed—>]E

2z Zjajizj g»—)sz;-W gszajizj

H; :=ker \; K; :=ker \; L; :=ker \;

”(Z{:{Hh?Hn} M:{K177Kn} %:{LlaaLn}

M(e7) = C?\ ue? M(e) = (C*)%\ U M(e) =R\ U/
rk: 2" 5 N 9 ’C("Q{)

m: 2l 5 N * ’M(d)




