A tropical approach to a generalized Hodge conjecture for positive currents

Farhad Babaee

SNSF/Université de Fribourg

February 20, 2017 - Toblach
Are all positive currents with Hodge classes approximable by positive sums of integration currents? (Demailly 1982)
Are all positive currents with Hodge classes approximable by positive sums of integration currents? (Demailly 1982)

No! (Joint work with June Huh)
X complex smooth manifold of complex dimension n.

- $\mathcal{D}^k(X) :=$ Space of smooth differential forms of degree k, with compact support $=$ test forms
- $\mathcal{D}'^k(X) =$ Space of currents of dimension k $:=$ Topological dual to $\mathcal{D}^k(X)$
- $\langle T, \varphi \rangle \in \mathbb{C}$ (linear continuous action)
- $T \in \mathcal{D}'^k(X)$ current is closed ($= d$-closed), $\langle dT, \varphi \rangle := (-1)^{k+1}\langle T, d\varphi \rangle = 0$, $\forall \varphi \in \mathcal{D}^{k-1}(X)$
• $\mathcal{D}^{p,q}(X)$: Smooth (p, q)-forms with compact support

• $\mathcal{D}_{p,q}'(X) := (\mathcal{D}^{p,q}(X))'$

• For currents (p, q)-bidimension $= (n - p, n - q)$-bidegree
• $\mathcal{D}^{p,q}(X)$: Smooth (p, q)-forms with compact support
• $\mathcal{D}'_{p,q}(X) := (\mathcal{D}^{p,q}(X))'$
• For currents (p, q)-bidimension $= (n - p, n - q)$-bidegree
• $T_j \rightarrow T$ in weak limit, if $\langle T_j, \varphi \rangle \rightarrow \langle T, \varphi \rangle \in \mathbb{C}$
Example
Let $Z \subset X$ a smooth submanifold of dimension p, define the *integration current along* Z, denoted by $[Z] \in D'_p(X)$

$$\langle [Z], \varphi \rangle := \int_Z \varphi, \quad \varphi \in D^{p,p}(X).$$

This definition extends to analytic subsets Z, by integrating over the smooth locus.
Definition
A smooth differential (p, p)-form φ is positive if $\varphi(x)|_S$ is a nonnegative volume form for all p-planes $S \subset T_xX$ and $x \in X$.

Definition
A current $T \in \mathcal{D}'_{p,p}(X)$ is called positive if
\[\langle T, \varphi \rangle \geq 0 \]
for every positive test form $\varphi \in \mathcal{D}_{p,p}(X)$.
Examples of positive currents

- An integration current on an analytic subset is a positive current, with support equal to Z
- Convex sum of positive currents
The generalized Hodge conjecture for positive currents \((HC^+)\)

Question/Conjecture: Are all the positive closed currents approximable by a convex sum of integration currents along analytic cycles?

\[\mathcal{I}^+ \leftarrow \sum_{i} \lambda_{ij}^+ [Z_{ij}], \]

Demailly, the superhero, 1982: True for \(p = 0, n-1, n\).
The generalized Hodge conjecture for positive currents \((HC^+)\)

Question/Conjecture: Are all the positive closed currents approximable by a convex sum of integration currents along analytic cycles?

\[
\mathcal{I}^+ \leftarrow \sum_i \sum_j \lambda_{ij}^+[Z_{ij}],
\]

On a smooth projective variety \(X\), and

\[
\{ \mathcal{I}^+ \} \in \mathbb{R} \otimes_{\mathbb{Z}} \left(H^{2q}(X, \mathbb{Z})/\text{tors} \cap H^{q,q}(X) \right),
\]

where \(q = n - p\).
The generalized Hodge conjecture for positive currents
\((HC^+)\)

Question/Conjecture: Are all the positive closed currents approximable by a convex sum of integration currents along analytic cycles?

\[
\mathcal{T}^+ \leftarrow \sum_j \lambda_{ij}^+ [Z_{ij}],
\]

On a smooth projective variety \(X\), and

\[
\{ \mathcal{T}^+ \} \in \mathbb{R} \otimes_{\mathbb{Z}} (\mathcal{H}^{2q}(X, \mathbb{Z})/\text{tors} \cap \mathcal{H}^{q,q}(X)),
\]

where \(q = n - p\).

Demainly, the superhero, 1982: True for \(p = 0, n - 1, n\).
The Hodge conjecture (HC)

The Hodge conjecture: The group

\[\mathbb{Q} \otimes \mathbb{Z} \left(H^{2q}(X, \mathbb{Z})/\text{tors} \cap H^{q,q}(X) \right), \]

consists of classes of \(p \)-dimensional algebraic cycles with rational coefficients.

Demailly 1982: \(HC^+ \implies HC \).
Hodge conjecture for real currents (HC')

If \mathcal{T} is a (p, p)-dimensional real closed current on X with cohomology class

$$\{ \mathcal{T} \} \in \mathbb{R} \otimes \mathbb{Z} \left(H^{2q}(X, \mathbb{Z})/\text{tors} \cap H^{q,q}(X) \right),$$

then \mathcal{T} is a weak limit of the form

$$\mathcal{T} \leftarrow \sum_{i,j} \lambda_{ij} [Z_{ij}],$$

where λ_{ij} are real numbers and Z_{ij} are p-dimensional subvarieties of X.

Demailly 2012: HC’ \iff HC
Theorem (B - Huh)

There is a 4-dimensional smooth projective toric variety X and a $(2, 2)$-dimensional positive closed current \mathcal{T}^+ on X with the following properties:

1. The cohomology class of \mathcal{T}^+ satisfies
 \[\{ \mathcal{T}^+ \} \in H^4(X, \mathbb{Z})/\text{tors} \cap H^{2,2}(X). \]

2. The current \mathcal{T}^+ is not a weak limit of the form
 \[\mathcal{T}^+ \leftarrow \sum_i \lambda_{ij}^+ [Z_{ij}], \]
 where $\lambda_{ij}^+ > 0$, Z_{ij} are algebraic surfaces in X.

HC$^+$ not true in general!
Theorem (B - Huh)

There is a 4-dimensional smooth projective toric variety X and a $(2,2)$-dimensional positive closed current \mathcal{T}^+ on X with the following properties:

1. The cohomology class of \mathcal{T}^+ satisfies

$$\{\mathcal{T}^+\} \in H^4(X, \mathbb{Z})/\text{tors} \cap H^{2,2}(X). \quad \text{OK!}$$

2. The current \mathcal{T}^+ is not a weak limit of the form

$$\mathcal{T}^+ \leftarrow \sum_i \sum_j \lambda_{ij}^+[Z_{ij}],$$

where $\lambda_{ij}^+ > 0$, Z_{ij} are algebraic surfaces in X.

HC$^+$ not true in general!
Extremality in the cone of closed positive currents

Definition
A \((p, p)\)-closed positive current \(T\) is called extremal if for any decomposition \(T = T_1 + T_2\), there exist \(\lambda_1, \lambda_2 \geq 0\) such that \(T = \lambda_1 T_1\) and \(T = \lambda_2 T_2\). (\(T_i\) closed, positive and same bidimension).
Extremality reduces the problem to sequences

Lemma

X an algebraic variety, \mathcal{T}^+ be a (p, p)-dimensional current on X of the form

$$\mathcal{T}^+ \leftarrow_i \sum_j \lambda^+_{ij}[Z_{ij}],$$

where $\lambda^+_{ij} > 0$, Z_{ij} are p-dimensional irreducible analytic subsets of X. If \mathcal{T} is extremal then

$$\mathcal{T}^+ \leftarrow_i \lambda^+_i[Z_i].$$

for some $\lambda^+_i > 0$ and Z_i irreducible analytic sets.
Proposition

Let \(\{ \mathcal{T} \} \) be a \((2,2)\) cohomology class on the 4 dimensional smooth projective toric variety \(X \). If there are nonnegative real numbers \(\lambda_i \) and 2-dimensional irreducible subvarieties \(Z_i \subset X \) such that

\[
\{ \mathcal{T} \} = \lim_{i \to \infty} \{ \lambda_i [Z_i] \},
\]

then the matrix

\[
[L_{ij}] \{ \mathcal{T} \} = -\{ \mathcal{T} \} \cdot D_{\rho_i} \cdot D_{\rho_j},
\]

has at most one negative eigenvalue.
Our goal

A $(2, 2)$-current on a 4-dimensional smooth projective toric variety which is

- Closed
- Positive
- Extremal, and
- Its intersection form has more than one negative eigenvalues
Tropical currents

\[\text{Log} : (\mathbb{C}^*)^n \rightarrow \mathbb{R}^n \]
\[(z_1, \ldots, z_n) \mapsto (-\log |z_1|, \ldots, -\log |z_n|) \]

- \(\text{Log}^{-1}(\{pt\}) \simeq (S^1)^n \),
- \(\dim_{\mathbb{R}} \text{Log}^{-1}(\text{rational p-plane}) = n + p \)
- \(\text{Log}^{-1}(\text{rational p-plane}) \) has a natural fibration over \((S^1)^{n-p} \) with fibers of complex dimension \(p \)
- Similarly for any \(p \)-cell \(\sigma \), \(\text{Log}^{-1}(\sigma) \) has a natural fibration over \((S^1)^{n-p} \)
Tropical currents

\[
\text{Log} : (\mathbb{C}^*)^n \rightarrow \mathbb{R}^n \\
(z_1, \ldots, z_n) \mapsto (-\log |z_1|, \ldots, -\log |z_n|)
\]

- \(\text{Log}^{-1}(\{pt\}) \simeq (S^1)^n\),
- \(\dim_{\mathbb{R}} \text{Log}^{-1}(\text{rational } p\text{-plane}) = n + p\)
- \(\text{Log}^{-1}(\text{rational } p\text{-plane})\) has a natural fibration over \((S^1)^{n-p}\) with fibers of complex dimension \(p\)
- Similarly for any \(p\)-cell \(\sigma\), \(\text{Log}^{-1}(\sigma)\) has a natural fibration over \((S^1)^{n-p}\)
\(n = 2, \ p = 1 \)

\[\mathbb{R}^2 \longrightarrow (\mathbb{C}^\times)^2 \]

Support \(\mathcal{F}_\mathcal{C} = \text{Log}^{-1}(\mathcal{C}), \ \mathcal{F}_\mathcal{C} = \sum_\sigma w_\sigma \int_{S^{n-p}} [\text{fibers of } \text{Log}^{-1}(\sigma)] \ d\mu \)
\(\mathcal{C} \subset \mathbb{R}^n, \dim(\mathcal{C}) = p \) \(\mathcal{T}_\mathcal{C} \in \mathcal{D}'_{p,p}((\mathbb{C}^*)^n) \), Support \(\mathcal{T}_\mathcal{C} = \log^{-1}(\mathcal{C}) \)

\(\{ \overline{\mathcal{T}}_\mathcal{C} \} = \text{rec}(\mathcal{C}) \in H^{n-p,n-p}(X_\Sigma) \) \(\overline{\mathcal{T}}_\mathcal{C} \in \mathcal{D}'_{p,p}(X_\Sigma) \)
\(\mathcal{C} \subset \mathbb{R}^n, \dim(\mathcal{C}) = p \quad \mathcal{T}_\mathcal{C} \in \mathcal{D}_{p,p}^\prime((\mathbb{C}^*)^n), \text{Support } \mathcal{T}_\mathcal{C} = \log^{-1}(\mathcal{C}) \)

\[\{ \overline{\mathcal{T}}_\mathcal{C} \} = \text{rec}(\mathcal{C}) \in H^{n-p,n-p}(X_\Sigma) \quad \overline{\mathcal{T}}_\mathcal{C} \in \mathcal{D}_{p,p}^\prime(X_\Sigma) \]
A $(2, 2)$-current on a 4-dimensional smooth projective toric variety which is

- Closed
 - Balanced complex
- Positive
 - Positive weights
- Extremal
 - ?
- Its intersection form has more than one negative eigenvalues
 - ?
Extremality of tropical currents in any dimension/codimension

Weights unique up to a multiple + Not contained in any proper affine subspace
Examples of extremal currents

Lelong 1973: Integration currents along irreducible analytic subsets are extremal. Is that all?
Demailly 1982: $i\pi \partial \bar{\partial} \log \max\{|z_0|, |z_1|, |z_2|\}$ is extremal on \mathbb{P}^2, and its support has real dimension 3, thus cannot be an integration current along any analytic set.

Dynamical systems (usually with fractal supports, thus non-analytic):
Higher Codimension: Dinh and Sibony 2005, Guedj 2005, Dinh and Sibony 2013

Complicated structures, easily seen to be approximable!
Extremal if: weights unique up to a multiple \(+ \) Not contained in any proper affine subspace
Manipulation of signatures for 2-cells in dimension 4

The operation $F \mapsto -F_{ij}$ produces one new positive and one new negative eigenvalue for its intersection matrix.

The operation $F \mapsto -F_{ij}$ produces one new positive and one new negative eigenvalue for its intersection matrix.
A $(2, 2)$-current on a 4-dimensional smooth projective toric variety which is

- Closed
 - Balanced complex
- Positive
 - Positive weights
- Extremal
 - Non-degenerate + weights unique up to a multiple
- Its intersection form has more than one negative eigenvalues
 - The operation on two cells provides one new negative and one new positive eigenvalue
A concrete example

Consider \(G \subseteq \mathbb{R}^4 \setminus \{0\} \)

where \(e_1, e_2, e_3, e_4 \) are the standard basis vectors of \(\mathbb{R}^4 \) and \(f_1, f_2, f_3, f_4 \) the rows of

\[
M := \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & -1 & 1 \\
1 & 1 & 0 & -1 \\
1 & -1 & 1 & 0
\end{pmatrix}.
\]

The weights of solid (resp. dashed) edges are +1 (resp. −1).
Thank you for your attention, indeed!