The extended
$$S_{m+1}$$
 action on $H\left(C_m(4), 4\right)$
Let us consider the configuration space
 $C_m(4) = \left\{(x_{11}, x_m) \in 4^m \mid \mathbb{Z} \times i = 0, x_{i} \neq x_{j}\right\}$
It can be viewed as the complement of the essential
braid arrangement β_m , whose hyperpones are
 $H_{iJ} = \left\{x_{i} - x_{J} = 0\right\}$ in $V = \frac{4^m}{4} \begin{pmatrix}1\\i\\i\end{pmatrix}$
We can identify V with $\left\{(x_{11}, x_m) \in 4^m \mid \mathbb{Z} \times i = 0\right\}$
After this identifications, the hyperplanes of β_m can
still be written as $H_{iJ} = \left\{x_{i} - x_{J} = 0\right\}$.
Now we construct on S_m -equivariant map
 $C_m(4) \longrightarrow IP(C_m(4)) \times 4^m$

where
$$\overline{\Pi}$$
: $C_m(4) \rightarrow P(C_m(4))$ is the
standard projection, and $Q = \overline{\Pi}(x_c - x_s)$ is
the defining polynomial of the arrangement β_m
and S_m atts turnely on ξ^{\pm} .
 ξ^{\pm} and $R^2(9) = \overline{\Pi}(9) \iff p = \lambda q$ for $\lambda \in \xi^{\pm}$
and $R^2(9) = Q^2(\lambda q) \iff Q^2(9) = \lambda^{m(m-1)} Q^2(9)$
 $\iff \lambda^{m(m-1)} = 1$
the fibers of χ are the orbits of the action of the cyclic
gray
 $\Gamma^{-} = \{ \Xi \in S^{+} \mid \Xi^{m(m-1)} = 1 \}$
Proposition the map χ is a corresing map.
Mow we recall the following Transfer Theorem (see for indense
Hatchen, Algebraic Topology, hap 36.1) in a general version:
Chearem Let G be a finite group, X a paracompact, Hausdorff
locally euclidean space where G acts, and IF a field with
that $F = 0$ or charle $\gamma = H^*(X, F)^G$

In our setting we have: TRANSFER $H^{*}(C_{m}(4))' \cong H^{*}(C_{m}(4)/n) \cong$ $\cong \operatorname{H}^{*}(\operatorname{IP}(\mathcal{C}_{m}(\mathcal{C})) \times \mathcal{C}^{*}) \cong \operatorname{H}^{*}(\operatorname{P}(\mathcal{C}_{m}(\mathcal{C}))) \otimes \operatorname{H}^{*}(\mathcal{C}^{*})$ KUNNETH FORMULA where the cohomology is wath complex coefficients. Now we observe that the action of I on Cm (4) is the restriction of the continous action of 5 on (m(4). Since S' is a path-connected topological group, the action of 5' on H* (Cm (4)) is turial (every element 2 of 5' acts by a mop hamatopic to the identity). Therefore $H^*((m(\xi))) = H^*((m(\xi)))$. It is easy to check that the may of is Sm equinariant (where S_m acts in the natural vicing on C_m(&) and IP(C_m(&)) and acts trivially on t^a). Also the map $C_m(4) \xrightarrow{\sim} P(C_m(4)) \times 4^*$ is Sm equivariant

Cherefore : There is an isomorphism of Sm representations Cheorem A $H^{*}(\mathcal{C}_{m}(4)) \cong H^{*}(\mathcal{P}(\mathcal{C}_{m}(4))) \otimes \mathcal{L}[e]$ $\mathcal{T}^{(e^{c})}$ This is the cohomology ring $H^*(\mathfrak{A}^*)$, where ϵ has degree 1, and S_m acts trivially. Aur plan is to point out an Sm+y action on H" (IP ((m (4)), that restricted to Sm gives the notural action. Using Theorem A we will "lift" the $S_{m+\gamma}$ action to $H^*((m(4)))$.

The moduli space
$$M_{0,m+1}$$

Eor $m = 2$ consider the configuration space
 $\binom{n+1}{p^{1}(4)} = \{(P_{0}|P_{1}, \dots, P_{m}) \in (P^{1}(4))^{m+1} | P_{c} \neq P_{s} \}$
Definition The moduli space of $m+1$ jointed curves of
genus 0 is
 $M_{0,m+1} = C_{m+1} \left(P^{1}(4) \right)$
 $P_{5L}(2,4)$
 $i \cdot e \cdot The group of progettine
cutomorphisms of $P^{1}(4)$.
Let $p = [P_{0}|P_{1}, \dots, P_{m}] \in M_{0,m+1}$. There is a unique
progetime automorphism $F \in P_{5L}(2,4)$ such that
 $F(P_{0}) = (0,1) = \infty$, $F(P_{1}) = (1,0) \cdot$, $F(P_{2}) = (1,1)$
SIMPLIFIED NOTATION; it should be $[P_{0}, 1]$$

In particular, every point
$$p \in M_{0,m+1}$$
 has a UNIQUE representative
of this type:
 $p = [f_{0}, \dots, f_{m}] = [c_{0}+1), (1,0), (1,1), (X_{2}+y_{c}), \dots, (X_{m-1}+y_{m-1})]$
with $X_{c} \neq 0$ $\forall i$, $y_{3} \neq 0$ $\forall s$, $X_{c} \neq y_{i}$ $\forall i$
and $y_{i} \neq \frac{y_{3}}{X_{c}} \neq c \neq s$.
Now we choose in V^{\pm} the booss $e_{c} = X_{c} - X_{1}$
 $e_{m+1} = X_{m} - X_{1}$
and we denote by v_{1} , v_{m-1} its dual boots in V .
Notice that if we write an element $q \in (r_{1}(\xi))$ using this
booss we have: $q = (Y_{1}, \dots, Y_{m-1})$ with $Y_{c} \neq 0$ $\forall i$
(otherwise $q \in H_{1,c+1}$) and $y_{c} \neq Y_{3} \neq c \neq s$ (otherwise
 $q \in H_{cri,3+1}$).
We now define the map (using the booss described above)
 $\phi : \widehat{H}(C_{n}(\xi)) \longrightarrow M_{0,m+1}$

 $\left[\begin{pmatrix} \chi_{1} \\ \end{pmatrix}, \chi_{m-1} \end{pmatrix} \longrightarrow \left[\begin{pmatrix} 0, 1 \\ \end{pmatrix}, \begin{pmatrix} 1, 0 \\ \end{pmatrix}, \begin{pmatrix} 1, 1 \\ \end{pmatrix}, \begin{pmatrix} \chi_{1} \\ \chi_{2} \end{pmatrix}, \cdots, \begin{pmatrix} \chi_{1} \\ \chi_{m-1} \end{pmatrix} \right]$

$$\frac{\operatorname{Remark}}{\mathfrak{F}_{L} \neq 0} \neq us \quad \text{viel defined nine, as remarked chave,} \\ \overline{\mathfrak{F}_{L} \neq 0} \neq i, \quad \overline{\mathfrak{F}_{L} \neq \mathfrak{F}_{5}} \neq \iota \neq s. \\ \frac{\operatorname{Remark}}{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark}} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}} \operatorname{Remark} \xrightarrow{\operatorname{Remark}}$$

$$\frac{hoof}{2} \quad \text{det us denote by } T_{i} = (v, c+1) \quad \text{the transportion}$$
so S_{m} is generated by $T_{1}, T_{2}, \dots, T_{m-1}$.
It is infricant to check our claim on T_{1}, \dots, T_{m-1} .
Set us for instance consider T_{1} .
Set $q = [(1, Y_{2}), \dots, Y_{m-1}] \in \mathbb{P}(C_{m}(4))$. Recall that $(1, Y_{2}, \dots, Y_{m-1})$
is visitin with regret to the boos $v_{1,1}, v_{m-1}$ and symetry
a point $(a_{1,1}, a_{m}) \in V$ such that $a_{2}-a_{1}=1$
 $a_{3}-a_{1}=y_{2}$
 $a_{m}-a_{1}=y_{m-1}$
Since $T_{1}(a_{1},\dots, a_{m}) = (a_{2}, a_{1}, \dots, a_{m})$, this vector with
respect to the boos $v_{1,1}v_{m-1}$ is $(-1, Y_{2}-1,\dots, Y_{m-1}-1)$
therefore $T_{1} = T_{1} [(1, Y_{2}) \dots, Y_{m-1})] = [(1, 1-y_{2}, \dots, 1-y_{m-1})]$
On the other hand, let us focus on the action of T_{1}
on $\psi(q) = [(0, 1), (1, 0), (1, 1), (1, y_{2}), \dots, (1, y_{m-1})]$.
 T_{1} free this in cononical form size act by the

projectivity
$$\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$$
, i.e. the projectinty that
sends $\mathcal{O} \rightarrow \mathcal{O}$, $(1,1) \rightarrow (1,0)$, $(1,0) \rightarrow (1,1)$.
For $T_{+} \phi(q) = [(0,1), (1,0), (1,1), (1,1-\partial_{Z}), \cdots, (1,1-\partial_{m-1})]$
And the two actions of T_{+} egree.
Sumbarly one checks that $\forall i$ the actions of T_{i}
agree D
One observes that ϕ is an isomorphism of algebraic varieties
 $\phi : IP(C_{m}(4)) \cong M_{0,m+1}$
here S_{m+1} acts
From this isomorphism one has a S_{m+1} action on
 $P(C_{m}(4))$ and therefore on $H^{\times}(P(C_{m}(4)))$.
Remark 1 det $q = [(1,8_{Z_{1}}, 3_{m-1})] \bullet (F \times ERCISE!)$

Remork 2

In the end, via Theorem A, we have a S_{m+1} action on $H^*(C_m(4))$. One can prove (Mathieu '96) that this action does not come from an S_{m+1} action on the space (m(4)).