Basics on the Arlik- Golomon algebra

Let
$$A = \{H_{1}, \dots, H_{N}\}$$
 be a central hyperform arrangement
in a vector space IK^{M} . Let R be a commutative rung
We denote by $\overline{E} = \bigoplus Re_{H}$.
This is a free R -module vectore the elements e_{H} are in
bigrection with the hyperplanes of A .
Let $\overline{E} = \Lambda(\overline{E})$ be the exterior algebra, that is
naturally graded : $\overline{E}_{0} = R$
 $\overline{E}_{1} = \langle e_{H_{1}}, \dots, e_{H_{M}} \rangle_{R}$

$$E_{p} = \langle -\cdots, e_{H_{i_{f}}} \cdots e_{H_{i_{p}}} \rangle_{R}$$
We notice that $E_{p} = 0 \quad \forall \quad p > N = |\mathcal{X}|$.
Definition We define a R-linear may $\mathcal{D}_{E}: E \rightarrow E$
ly $\mathcal{D}_{1} = 0$, $\mathcal{D}_{H} = 1 \quad \forall \quad H \in \mathcal{X}$ and, for $p \ge 2$
 $\mathcal{D}(e_{H_{1}} \cdots e_{H_{p}}) = \sum_{K=1}^{p} (-1)^{K-1} e_{H_{1}} \cdots e_{H_{K}} \cdots e_{H_{p}}$
With H_{1} , $H_{p} \in \mathcal{A}$

Given a p-type of hyperforms
$$S = (H_1, \dots, H_p)$$

we denote $|S| = p$ and
 $l_S = l_{H_1} \cdots l_{H_p} \in E$ $\Omega = H_1 \Omega$ $\Omega = H_p$
NOTATION if $p = 0$, then $S = ()$ and
 $l_S = 1$ $\Omega = 1K^m$
Given a subspace U in IK^m , we denote by $r(U)$
the CODIMENSION of U .
Befinition Wile call S independent if $r(\Omega = |S|)$
and elependent if $r(\Omega = S) < |S|$
Set S_p denote the set of all the p-types and let
 $S = U = S_p$

Definition Let t be a control hyperflow avangement as above
We denote by
$$I = I(A)$$
 the ideal of E generated
by the elements Zez for all dependent SES.
We notice that I is generated by homogeneous elements,
hence it is a graded ideal:
 $I = \bigoplus_{p=0}^{\infty} I \cap E_p$
Orlek and Soloman introduced in 1980 the following
algebra.
Definition Let A be a central hyperflow anangement as
above. We define
 $A = A(A) = E_I$
We denote by $q: E \rightarrow A$ the projection and we
write $q(e_{+}) = a_{+} + H \in A$
 $q(e_{5}) = a_{5} + 5 \in S$
 $q(E_p) = A_p$

EX= ZRes SeSx We observe that

$$E = \bigoplus_{X \in L} E_{X}.$$

$$X \in L$$

$$Zheorem \quad Eor \quad X \in L(A), \text{ we put } A_X = \varphi(E_X).$$

$$A = \bigoplus_{X \in L(A)} A_X$$

$$X \in L(A)$$

Remark The Orlik-Jolomon algebra can be defined
also for offine hyperplane anangements. The main
difference is that one takes the ideal I generated by
2 ls (S dependent) and by ls (with
$$nS=\phi$$
).

Theorem (Orlik-Lolomon, 1980). Let \mathcal{X} be an hyperflane arrangement in the complex vector space V. Let $\mathcal{M}(\mathcal{A}) = V - \mathcal{O} + \mathcal{H}$. Het then $\mathcal{H}^{\star}(\mathcal{M}(\mathcal{A}), \mathcal{K}) \cong \mathcal{A}(\mathcal{A})$ coefficients in $\mathcal{R} = \mathcal{K}$

Remark This theorem holds also with integer coefficients: $H^{*}(\mathcal{M}(\mathcal{A}), Z') \cong \mathcal{A}(\mathcal{A})$ coefficients in R = Z.

Remark Let t be a central arrangement. Ear every $H \in A$, let a_{H} be a functional in V^{*} ouch that $H = \{ v \in V \mid a_{H}(v) = 0 \}$. Then the map $a_{H} \iff \begin{bmatrix} da_{H} \\ a_{H} \end{bmatrix}$ gives the isomorphism in the Rham cohomology.

Lee the book of Orlik and Zerao "Arrangements of Hyperplanes, 1992 for proofs and further properties of A (A). (CHAPTER 3, SECTIONS 1 and 2)

Che Amold's algebra Let us consider the braid arrangement β_m . It is the arrangement in $V = \underset{(1)}{\stackrel{m}{\neq}} \underset{(1)}{\stackrel{(1)}{\neq}}$ given by the hyperplanes $H_{L_{f}} = \{ X_{L} - X_{J} = 0 \}$ (they are well defined in V). Let us identify V with $\{(x_1, x_m) \in \mathbb{C}^n | \mathbb{Z} \times_{\mathbb{C}} = 0\}$ Then the complement of the amangement \mathcal{B}_n is the Continuation Lines Configuration Lyoce $C_{m}(4) = \left\{ (x_{1}, \dots, x_{m}) \in 4^{m} \mid \sum x_{c} = 0, \quad x_{c} \neq x_{J} \neq c \neq J \right\}$ In 1969 Arnold proved that the cohomology algebra $H^{\star}(C_m(4), 4)$ is isomorphic to the stere commutative algebra with generators $\left\{ \begin{array}{c} Q_{LJ} \\ \end{array} \middle| 1 \leq i < J \leq m \right\}$ and relations $A_{ij} a_{ik} - a_{ij} a_{jk} + a_{ik} a_{jk} = 0$ earrow 1 \leq l < J < K \leq M Remark Actually it was proved for integer coefficients. From now on vie focus on complex coefficients.

From Orlik and Joloman result at follows that
the Arnold algebra is asomorphic to
$$A(\beta_m)$$
.
The following exercises show a proof. complex cofficients
Exercise 1 Let us consider the braid arrangement β_m .
Let $S = (H_1, , H_p)$ be a p-tuple. Then S is
dependent if and only if it contains a subsequence of the
forum $(H_{i_1J_4}, H_{i_2J_2})$ $(H_{i_pJ_p})$ with $J_h = i_{h+1}$
 $\forall h = 1, ..., p-1$ and $J_p = L_4$ (i.e., the sequence is
⁷a cycle₁₁).
Exercise 2 Arnold relations (B) can be verifier as
 $\partial e_S = 0$ for all $S \in S$ minimally dependent
this mean that if we
clear an hyperfere from the
triple, what remains is independent
 T in E coincides with the ideal generated by
 ∂e_S for every $S \in S_3$ dependent.

A basis for $A(\beta_m)$. Let us consider the following array Theorem A boos for A (Bm) is $\left\{ \begin{array}{c} Q_{i_{1}J_{4}} & Q_{i_{2}J_{2}} & \cdots & Q_{i_{p}J_{p}} \\ & U_{h} < J_{h} & \forall h = 1, \dots, p \end{array} \right\}$ This means that a boos for $A(\beta_m)$ is given by all the monomials obtained taking one element from each rove of the array above. Exercise Using Andd's relations &, pone that the monomials above are a set of generators for $A(\beta_m)$.

We notice that on the algebra $A(\beta_m)$ there is a natural S_m action, that permutes the indices in a_{ij} (NOTATION $a_{ij} = a_{ji}$).

One of the goals of this course is to illustrate some projecties of this interesting representation of Sm that comes from the geometry of configuration years.