Conjutation of the representation of
$$S_m$$
 on the elgebra A_m .
Whe know that on A_m there is a notical S_m -action
(where S_m permites the indices 1,2, 1, m) $A_m = A(B_m)$
and an extended S_{m+1} action.
Jet $S_m = \langle \tau_1, \tau_2, ..., \tau_{m-1} \rangle$ where $\tau_c = (i, (H))$
and $S_m = \langle \tau_0, \tau_1, ..., \tau_{m-1} \rangle$ where $\tau_c = (i, (H))$
 $T_m = (T_m, T_m, ..., T_m, ...$

Example as S2 representation $A_2^{o} = \langle 1 \rangle_{\downarrow} = \square$ $A_{z}^{1} = \langle a_{1z} \rangle = \square$ ~ S2 representation Let us first observe that $A_{m}^{k} = A_{m-1}^{k} \bigoplus A_{m-1}^{k-1} \cdot \mathcal{N}$ \Re where $\mathcal{N} = \bigoplus_{m=1}^{m-1} \mathcal{L}_{sm}$. This lasily follows since the know a bosis for A_m^k . The ISOMORPHISM \Re is an 150 of $\langle \tau_1, \tau_{m-2} \rangle \cong S_{m-1}$ representations. Let us consider R=1: $A_m^{\prime} = A_{m-1} \oplus N$ We observe that A_{m-1}^{1} is a < to, , T_{m-2} > module runce on A _____ there is the extended S_ action. We can now take a < to, , tm-2> complement T to Am-1

$$A_{m}^{1} = A_{m-1}^{1} \oplus T$$
Now, what is the decomposition of T is $\langle \tau_{0}, \tau_{m-2} \rangle$
module?
We notice that T and N are ISOMORPHIC
 $S \langle \tau_{11}, \tau_{m-2} \rangle$ modules, rince
 $A_{m-1}^{1} \oplus T \cong A_{m-1}^{1} \oplus N$ is on ISOMORPHISM
of $\langle \tau_{11}, \tau_{m-2} \rangle$ modules.
Naw $N = \langle a_{1m}, a_{2m}, \tau_{n-2} \rangle$ permutes the indices 1, $m-1$,
is nonmorphic to the natural representation of
 S_{m-1} on Ψ^{m-1} .
Therefore $T \cong N \cong \bigoplus_{m=1}^{m-1} \oplus \bigoplus_{m=2}^{m-2}$ as S_{m-1} rep.
By heri's rule we know that there is only one
representation of $\langle \tau_{01}, \tau_{m-2} \rangle$ that, restricted to
 $\langle \tau_{11}, \tau_{m-2} \rangle$ gives $\bigoplus_{m=1}^{m-1} \oplus \bigoplus_{m=2}^{m-2}$, that is to
rowy, $\bigoplus_{m=1}^{m-1}$ the standard representation of S_{m} .

This proves that
$$T \cong \prod_{m=1}^{m-1} M \leq \tau_{0, 1}, \tau_{m-2} > Ny$$

but us go back to A_m^{K} . We will prove that
Chrown $A_m^{K} \cong A_{m-1}^{K} \oplus A_{m-1}^{K-1} \cdot T$ as $\times \tau_{0, 1}, \tau_{m-2} > Ny$
had For every i we write
 $\alpha_{cm} = \gamma_{c}^{1} + \gamma_{c}^{2}$ where $\gamma_{c}^{1} \in A_{m-1}^{1}$, $\gamma_{c}^{2} \in T$
but $2 \in A_m^{K}$. Then $2 = 2_0 + \bigotimes_{s=1}^{m} \mathbb{Z}_{3} \otimes M_{3m}$
 $\sigma_{m} \otimes A_m^{K} = A_{m-1}^{K} \oplus A_{m-1}^{K-1} \cdot N$
 $\mathbb{Z}_{0} \qquad \mathbb{Z}_{3}$
Therefore $2 = Z_0 + \sum_{s=1}^{m} \mathbb{Z}_{3} \times \mathbb{Z}_{3}^{1} + \sum_{s=1}^{m} \mathbb{Z}_{3} \times \mathbb{Z}_{3}^{2}$
 $F_{m} \otimes F_{m-1} \oplus F_{m-1} \oplus F_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1} \oplus F_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1} \oplus F_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m-1}^{K} \oplus \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m-1}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m-1}^{K} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m-1}^{K-1} \otimes \Gamma_{m-1}^{K-1} \cdot T$
 $\Gamma_{m} \otimes \Gamma_{m}^{K-1} \otimes \Gamma_{m-1}^{K-1} \cdot T$

2heorem A (Mathieu '96, G.)
Set us cannider
$$A_{m}^{k}$$
 as a $< \tau_{11}, \tau_{n-1}$?
representation (this is the natural S_{m} representation).
Moreoner, let us correcter A_{n-1}^{k} , A_{n-1}^{k-1} as
 $< \tau_{0}$, τ_{n-2} representations (this is the extended S_{m}
representation). Let us consult T as $< \tau_{0}$, τ_{n-2} ?
representation). Let us consult T as $< \tau_{0}$, τ_{n-2} ?
representation. Then
 $A_{m}^{k} \cong A_{n-1}^{k} \bigoplus (A_{m-1}^{k-1} \otimes T)$
Instead extended extended.
as S_{m} representations.
Proof Recall that A_{m}^{k} is a $< \tau_{0}$, $\tau_{m-1} > = S_{m}$
representation. We consult the true outby outputs of S_{m+1}
 $H = < \tau_{0}, \tau_{n-2}$ and $k = < \tau_{1}, \tau_{m-1} >$.
Since they are conjugate $m < \tau_{0}, \tau_{m-1} >$ the
representation $Res < \tau_{0}, \tau_{m-2} > A_{m}^{k}$ and
 $K = T_{m} > T_{m}$

Now the claim follows from the preceding theorem, fet us vente à table : digue 1011 3 2 \Box Az $\Box D$ Az III 日+日 A4 F & According to Rieri's rule, there are trace possibilities here: By the geometric construction of the extended action we know that $H^*(C_m(4)) \cong H^*(P(C_m(4)) \otimes [e]$ (ϵ^2) as Smin modules, sor, informally: (E) & every meduable representation appears together with another copy shifted in degree +1 // . To the right choice is FIFD + ED

Remark To full the table, we also used the computation that follows from the exercise $U \otimes I_{nd} \stackrel{S_n}{\underset{m-1}{\overset{s_{m-1}}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}}{\overset{s_{m-1}}{\overset{s_{m-1}}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}}{\overset{s_{m-1}}{\overset{s_{m-1}}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}}{\overset{s_{m-1}}{\overset{s_{m-1}}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1}}{\overset{s_{m-1$ that is to say $\bigcup \otimes \left(\square + \square \right) \stackrel{\sim}{=} J_{nol} \stackrel{S_m}{\underset{S_{m-1}}{\xrightarrow{S_m}}} Re_{S_{m-1}} \bigcup$ table. Fill the nor "A5" m the

bet us now deal with the full representation
$$A_{m}$$

(i.e., whe consider all the degrees together).
From Theorem A we have the worresploym of S_{m} and $M_{m} \cong A_{m-1} \oplus (A_{m-1} \otimes \bigoplus)$
 $A_{m} \cong A_{m-1} \oplus (A_{m-1} \otimes \bigoplus)$
 $A_{m} \cong A_{m-1} \oplus (A_{m-1} \otimes \bigoplus)$
 $A_{m} \cong A_{m-1} \otimes Ind_{S_{m-1}}$
This can be rewritten as
 $A_{m} \cong A_{m-1} \otimes Ind_{S_{m-1}} \boxtimes$
 $A_{m} \cong A_{m-1} \otimes Ind_{S_{m-1}} \boxtimes$
 $A_{m} \cong Ind_{S_{m-1}} \oplus Ind_{S_{m-1}} \boxtimes$
 $A_{m} \cong Ind_{S_{m-1}} \oplus Ind_{S_{m-1}} \oplus Ind_{S_{m-1}} \oplus$
where have
 $A_{m} \cong Ind_{S_{m-1}} (Res S_{m} A_{m-1}) \cong Ind_{S_{m-1}} \otimes Ind_{S_{m-1}} \oplus$
 $A_{m} \cong Ind_{S_{m-1}} (Res S_{m} A_{m-1}) \cong Ind_{S_{m-1}} \otimes Ind_{S_{m-1}} \oplus Ind$

Chis, since
$$A_{z} \cong 2 \square$$
 as S_{z} representation,
gives a quick proof of the following result of Lehrer:
Zheorem (Lehrer 1987)
 $A_{m} \cong 2 \text{ Ind}_{S_{z}}^{S_{m}} \square$
Remark A generolisation is provided by the algebra
 $H^{*}(C_{m}(\mathbb{R}^{d}), \mathbb{4})$
where $C_{m}(\mathbb{R}^{d}) = \{(v_{T}, v_{T}) \in (\mathbb{R}^{d})^{m} \mid v_{c} \neq v_{T} \text{ of } t \neq s \}$
zhe case $d \equiv 2$ (in fact d even) gives A_{m} .
Zhe case $d \equiv 2$ (in fact d even) gives A_{m} .
Zhe cove d odd has been studied by several arthress
(F. Cohim, Lehrer, Mathieu) and can also be studied using
the same methods illustrated above (extended S_{m+1} action).