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Linear Parabolic Equations in Banach Spaces
with Variable Domains but Constant Interpolation Spaces.

PAOLO ACQUISTAPACE - BRUNELLO TEBBENI

0. - Introduction.

Let E be a Banach space. We look for C1-solutions of the Cauchy problem

where T &#x3E; 0, is a family of closed linear operators in .E with
domains DACt), x is an element of .E and f : [0, T] ~ E is (at least) a con-
tinuous function. We suppose that for each t E [0, T] A(t) generates an
analytic semigroup, and that its domain is possibly not dense in E,
i.e. the semigroup s ~ exp [sA(t)] may be not strongly continuous at s = 0.
Although the domains may vary with t, we assume that for a fixed 10 E ]0,1 [
the interpolation spaces oo) between DA(t) and E are independent
of t.

Many authors have studied Problem (0.1) in the parabolic case under
different assumptions. The simplest situation is that of constant domains,
i.e. DA(t) = Da(o) for each t E [0, T] : then a standard hypothesis is a Hölder
condition on t (in the uniform topology). Existence and regu-

larity results in this case are due to Tanabe [33], Sobolevskii [29], Poul-
sen [23], Da Prato - Grisvard [10], Da Prato - Sinestrari [12], Acquista-
pace - Terreni [2], [3] .

When the domains depend on t, in order to obtain existence results
much more smoothness for A.(t) is required: a standard hypothesis is now

Pervenuto alla Redazione il 31 Gennaio 1985 ed in forma definitiva il 6 Set-
tembre 1985.
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the differentiability of t --~- A(t)) for each fixed 2. This however is
not yet sufficient to show existence of differentiable solutions of (0.1 ) ; we
quote the existence and regularity results obtained, under different addi-
tional assumptions, by Kato - Tanabe [1 7 ] , Tanabe [34], Yagi [37], [38],
Suryanarayana [32], y again Da Prato - Grisvard [10], y Acquistapace - Ter-
reni [1].

Problem (0.1) has been studied in another important situation, namely
the case in which the domains still change with t, but there exists some
intermediate space Y, between and .E which is independent of t;
this allows a considerable weakening of the smoothness assumptions about
A(t). Sobolevskii [27], [28] and Kato [16] consider the case Y, = 7

for fixed e c- ]0, 1[, with a Holder condition on t - [- A(t)]~ [- A(o)]-e of
order -. In concrete cases the characterizations of the frac-
tional powers’ domains Dr-A(t)]e, as well as, possibly, y their constancy with
respect to t, are known essentially when E is an L"-space (see Lions
[19], [20], Seeley [24], [25]). Another possible choice for Yt is the (real)
interpolation space oo) : these spaces have been characterized in

several cases (see Grisvard [13], [14], Da Prato - Grisvard [11], Lunardi [22],
Acquistapace - Terreni [3], [4]), and in a large number of variable-domain
examples it turns out that oo) is indeed constant in t for sufficiently
small e.

Thus in the present paper we assume oo) = for a

fixed ~O E ]0, 1[; moreover we require that t - A(t)-l’ is cx-H61der contin-

uous from into oo) with ot E ]1- e, l [ , in analogy with the
assumptions of [27], [28] , [16] : -. On the other hand we do not need density
of domains and do not use the fundamental solution: we use a suitable

« a priori » representation formula for the solution of (0.1) (if it exists),
and show that if the data x, f are smooth enough, y this formula indeed

yields the unique solution of (0.1). In addition we prove maximal regularity
of the solution both in time and in space, y provided x and f satisfy some
necessary and sufficient compatibility conditions: in other words, u’ and
A( .) u( . ) are O-Hölder continuous in [0, T] whenever f does, and are bounded
-with values in oo) whenever f does.

Let us describe now the subject of the next sections. Section 1 contains

some notations, assumptions and preliminary results; in Section 2 we derive
uniqueness and some simple necessary conditions for existence; in Section 3
the properties of all functions and operators appearing in our representa-
tion formula are analyzed in detail; Section 4 is devoted to the study of
certain problems which approximate Problem (0.1) and are useful in the

proof of existence; in Section 5 we prove our main results; finally in Sec-
tion 6 we describe two examples.
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1. - Notations, assumptions and preliminaries.

Let E be a Banach space and fix T &#x3E; 0. If Y i s another Banach space

continuously imbedded into E, we will consider the Banach function spaces
B(Y) = {bounded functions: [0, T] - Y) and C( Y), 06(Y) (ð E ]0, 1[), C1( Y)
with their usual norms. We will also use the function spaces B+( Y) _
If: ]0, T] ---)- Y: fl[B,TJ is bounded Y8 &#x3E; 0}, and C+( Y), C+ ( Y), C+( Y)
which are defined similarly. 

"

If are Banach spaces, £~( Y, Z) (or simply £(Y) if Y = Z) is

the Banach space of bounded linear operators Y -* Z, with the usual norm.
Let A : ~C~2013~jE7 be a closed linear operator. For a G ]0, 1 [ we will use
the real interpolation spaces (D..4’ with their usual norm (for a defi-
nition see Lions [18], Lions - Peetre [21], y Butzer - Berens [8]). Obviously

have the continuous inclusions

DEFINITION 1.1. When A is the infinitesimal generator of a strongly
continuous (except possibly at 0) semigroup we will set

Now we list our assumptions.
HYPOTHESIS I. For each t E [0, T] A(t) is a closed linear operator in E,

with domain which is the infinitesimal generator of an analytic
semigroup {exp More pre ~isely:

(i) there exists such that

(ii) there exists M &#x3E; 0 such that

REMARK 1.2. The domains are not supposed to be dense in .E,
so that the semigroups {exp [$A(t)]) are not necessarily strongly continuous
at ~ = 0 ; however if Hypothesis I holds and .E’ is reflexive (or, more gen-
erally, if E is locally sequentially weakly compact) then = E for each

e[0, T] (see Kato [15]).
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HYPOTHESIS II. There such that

set-theoretically and topologically; more precisely: 
‘ .

(ii) there exists such that

REMARK 1.3. By Hypothesis II and by the Reiteration Theorem (Trie-
bel [36, Theorem 1.10.2]) it follows that for each fl E ]0, e] we ha.ve

set-theoretically and topologically; moreover there exists 0 such that

Moreover by (1.1) the closures DA(t) coincide with D4(o) for each t E [0, T].
It is then justified the following

DEFINITION 1.4. We set

formulas (1.8), (1.9) and (1.10) below define a class of norms in oo)
which are all equivalent uniformly in t.

HYPOTHESIS III. There exist and .L &#x3E; 0 such that

Let us define now the strict solutions of problem (0.1).

DEFINITION 1.5. Let xED.A(O), f E G(E). We say that a function UE C(-l©)
is a strict solution of (0.1) if u c- Gl(E), u(t) EDA(t), VtE [0, T] and

Thus we have for any strict solution of (0.1). If we set

and

then any strict solution u of (0.1) satisfies
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Let us recall now some properties of the semigroups
and of the interpolation spaces.&#x26;.4 ...... -- o-- A--’ ...........a..t’ ’" .a "" ..... A ’-’ .LA.....,.t’ "" ’V ’"’ ...., -A(t)BVY -/’

By the well-known representation of the analytic semigroup exp

where

(with fixed e get the usual estimai,

As {exp [$A(t)]I~_,o is a bounded analytic semigroup, we can characterize
the interpolation spaces oo) in several ways (see [8] for the dense-
domain case, [26] and [1] for the general case). Namely we have:

the corresponding norms

are all equivalent to the usual norm of D,(t)(fl, oo) as an interpolation
space (see [8]). If in addition (J E ]0, e], by (1.2) these equivalences hold
uniformly in t: thus, as claimed in Definition 1.4, each one of the norms
(1.8), (1.9) and (1.10) ;an be taken as a norm in DA(fJ, oo), with equivalences
holding uniformly in t.
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The above characterizations are meaningful also in the extreme cases
~ = 0 and fl = 1. In these cases one has D4(0, oo) = E and DA(t)(l, oo)
D DA(t) for each t E [0, T] (without equality in general). However we will

adopt the following convention:

CONVENTiON 1.6. We set

Let us recall some other useflll properties.

LEmmA 1.7. Under .Hypothesis 1, we have:

if then

if and only if

if if acnd only if 

if if acnd only if

PROOF. Parts (i), (iii) and (iv) are easy consequences of (1.6), (1.9) and
(1.8). Part (ii) is proved in [26, Proposition 1.2(i)]. / /

LEMMA 1.8. Under Hypotheses I, II, III let and

Then:

PROOF. (i) It is a straightforward computation.

(ii) It follows by (i), Hypothesis III and (1.10).

(iii) Taking into ac,,ount (i) we can write

the result then follows easily by Hypothesis III and (1.10). ///
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LEMMA 1.9. Under Hypotheses III let 0, Then we have :

(i) &#x3E; iff

(ii) if

PROOF. The results follow by (1.6) and Lemma 1.8 (ii)-(iii). ///

LEMMA 1.10. Under Hypotheses I, II, III let P E [0, ] ; then

PROOF. It follows by (1.6), (1.9) and the semigroup property. ///

2. - Necessary conditions.

In this section we derive some easy necessary conditions for the existence

of strict solutions of (0.1 ), and prove uniqueness of such solutions. Hypoth-
eses I, II, III are always assumed.

PROPOSITION 2.1..Let x E DA(o), f E O(E) acnd suppose 01(E)
n C(D4(.)) is a strict solution of (0.1). Then we must have A(O)x + f(0) E D~.

PROOF. We have as t -0+

PROPOSITION 2.2. For each x E DA(o) and f E O(E) there exists at most

one strict solution of ( 0.1 ) .
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PROOF. Let w be a strict solution of (0.1) with x = 0, f = 0. Fix

t E ]0, T] and set

Then

by integrating from 0 to t and operating with A(t) we get

By Hypothesis III

so that by Gronwall’s Lemma (see e.g. Amann [7]) we deduce w = 0. ///

REMARK 2.3. For each E C(E) set

then equation (2.1) becomes

Repeat (just formally) the above argument for the solution u of (0.1) with
non-zero data x, f (if it exists): it follows that

where

If f E C(E) and the function (2.3) is not meaningful in general:
but we will see in Section 3 that for slightly more regular data L(f, x)
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makes sense, and it will be possible to get for any strict solution u of (0.1)
the following representation formula:

3. - The representation formula.

In this section we analyze the properties of the operator Q and of the
function L(f, x), respectively defined by (2.2) and (2.3) ; as a consequence
we will prove the representation formula (2.4) for any strict solution of

(0.1) with sufficiently regular data. Hypotheses I, II and III are always
assumed.

(a) The function L( f, x).

PROPOSITION 3.1. Fix and let

7’hen:

and

i f and only if

i f and only if

i f and only if

PROOF. (ii)-(iii) We can write

hence if
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We estimate separately each term on the right-hand side by using Lem-
mata 1.10 and 1.9 (i)-(ii). Tedious but easy calculations yield

and (ii)-(iii) follow by Lemma 1.7 (ii)-(iii). As evidently t - exp [tA(O)]
belongs to 0’ (E(E)), (3.1) also implies the first part of (i).

(iv) We can write for

Again we estimate separately each term, using Lemmata 1.10, 1.9 (i)-(ii)
and 1.7 (i). Therefore we obtain for each t E [0, T]

and taking into account (ii), (iv) follows by Lemma 1.7 (iv). As, clearly,
(3.2) also implies the second part of (i). ///
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PROPOSITION 3.2..h’2x and let

Then :

i f and only if

i f and only if

if and only if

PROOF. (ii)-(iii) We can write

By splitting and using Lemmata 1.10 and 1.9 (i)-(ii)
we easily check

so that (ii) and (iii) follow by Lemma 1.7 (ii)-(iii); (3.3) also implies the
first part of (i).

(iv) We can write for 

Estimate once more each term separately: by Lemma 1.10 and Hypoth-
esis III we deduce for each t E [0, T]

and taking into account (ii), (iv) follows by Lemma 1.7 (iv); (3.4) also im-
plies the second part of (i). ///
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(b) The operator Q.

PROPOSITION 3.3. We have:

PROOF. we have for any

By Lemmata 1.10 (i) and 1.9 (i) it follows easily that

(ii) Let 99 E C(E) ; we already know that Qge c(E) and
Now if Lemma 1.10 easily yields for any

which implies the result. ///

(e) The operator (1- Q)-l.

PROPOSITION 3.4. We have:

i) the operator exats and belongs to

and

, then the same holds for

for each

for each
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PROOF. (i) Pick (o &#x3E; 0 and define a new norm in C(E) by

Obviously

On the other hand it is easily seen that

this clearly implies that (1- Q) is an isomorphism in C(E) with respect
to the norm 11 - (for large ro), and (i) then follows by (3.5).

(iii) Let by (i), and

-By Proposition 3.3 (i), and

Hence &#x3E; and

(iv) Let by and

By Proposition 3.3 (11), ( and

Hence, as in the proof of (iii) we get

(ii) Let then by
and By Proposition 3.3,

so that 1p has the same regularity as (p. ///

Now we are ready to give sense to the heuristic argument used in
-Remark 2.3 to introduce the representation formula for the strict solution
of (0.1). Indeed, we have:
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PROPOSITION 3.5. Fix, let and sup-

pose that f, x fulfil any of the following conditions : (i) and

or and Then if u is a
strict solution of (0.1 ) the following representation formula holds :

where the operator Q and the function L(f, x) are defined by (2.2) and (2.3)..

PROOF. Proceeding as in the proof of Proposition 2.2 (see also Re-

mark 2.3) we deduce that

and (3.6) follows by Proposition 3.4 (i). ///

We have to show now that the function u given by (3.6) is in fact the
strict solution of (0.1), provided the data x, f are sufficiently regular. We
will obtain u as the limit in C1(.E) of a suitable sequence where

the functions Un solve certain problems which in some sense approach
problem (0.1) as n - oo. Such problems have the same form as (0.1) with

A(t) replaced by the bounded operator An(t) := nA(t)R(n, A(t)) (the Yosida
approximation of A(t)). This will be done in the next sections.

4. - The approximating problems.

We analyze here the properties of the solutions un of the approximating
problems mentioned at the end of the preceding section; we prove a represen-
tation formula for Un which is analogous to (3.6) and study the convergence
as n - oo. Hypotheses I, II, III are always assumed.

We start with a review of the main properties of the Yosida approxi--
mations

LEMMA 4.1. Fix Then :

PROOF. Tedious but elementary. ///
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LEMMA 4.2. Let An(t) be given by (4.1). If then :

and

(iv) if

PROOF. Part (i), (ii) and (iii) are straightforward.

(iv) By (ii) we easily find

Now by (iii) we have

with y given by (1.5) ; hence if f3 E [0, ~o] and we choose oo), by
Lemma 4.1 it is not difficult to check for each a E [0, 1]

choose such that

Then by (1.4), (4.2) and (iv)
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hence

limsup sup sup

LEMMA 4.3. If and we have :

(ii) if

PROOF. Part (i) is straightforward; part (ii) follows by using (i) and
Lemma 4.1 (i), exactly as in the proof of Lemma 1.9 (i). ///

Fix now and consider for each n E 1~+ the problem

where An(t) is given by (4.1).

PROPOSITION 4.4..Let ; then for each n E IiT+ problem,
(4.4) n has a unique solution un E C1 (E), given by

where the operator Qn and the f unetion Ln( f, xn) are defined by
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PROOF. For fixed n E N+, by Lemma 1.8 (ii) we get

Thus the method of successive approximations yields a unique solution
of (4.4)n . Formula (4.5)n follows as in the proof of Proposition 3.5. ///

We study now the regularity and convergence properties of the func-
tions and of the operators Qn, defined respectively by (4.7)n
and (4.6)n.

(a) The f unctions

PROPOSITION 4.5. If , and then.

PROOF. It is quite easy since, for fixed
and are continuous functions with values in &#x26;(J~). ///

PROPOSITION 4.6. Fix If and

then

in

PROOF. We have for each t E [0, T]

Now by Lemma 4.2 (iv)

to estimate the other two terms we fix any E E [0, T] and distinguish two
cases:
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If v we have, by Lemma 4.2 (iv) and (4.1)

this, together with (4.8), implies

lim sup

If as we can write

Now by Lemmata 4.2 (iv), 4.3 (ii) and 1.9 (i)-(ii) we have easily

on the other hand, noting that = A(o)x and using Lemma 4.2 (vi)
we find

as

Hence we get

limsup sup

Summing up, recalling (4.8) we have shown that

limsup sup

and the result follows. ///
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PROPOSITION 

and then

in

PROOF. We have for each

Now by Lemma 4.2 (iv)

Again to estimate the second term we fix any 8 E ]0, T[ and distinguish
two cases: (a ) t E [0, E] , (b) t E ]e, T].

If t E ]s, T], wr still have (4.9), so that we still get (4.10). If t E [0, 81
we write (as 

and as in the proof of Proposition 4.6 we obtain (4.11) and (4.12); on the
other hand by Lemma 4.2 (vi)

Hence by taking into account (4.14) we deduce (4.13). ///

(b) The operators Qn.

PROPOSITION 4.8. (i) and

as
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PROOF. (i) It is easily seen that, for figed n, Qn E C( O(E)), since the
kernel of Qn belongs to Moreover (4.15) easily follows by (4.3)
and Lemma 4.1 (ii).

(ii) If by Lemma 4.2 (iv) we readily obtain

(e) The operators

PROPOSITION 4.9. (i) The operator (1- and belongs to 
and moreover

2~2 as

PROOF. (i) Exactly as in the proof of Proposition 3.4 (i); estimate (4.16)
is a consequence of (4.15).

(ii) Set then it is easily seen that
so that the result follows by (i) and Proposi-

tion 4.8 (ii). ///

5. - Strict solutions.

We are now ready to show that the function u(t) defined by (3.6) is in
fact the strict solution of (0.1); we will prove here also its maximal regu-
larity properties. As usual, we always assume Hypotheses I, II and III.

THEOREM 5.1. Fix let and sup-

pose that Then

(i) the function u defined by (3.6) is the unique strict solution of (0.1);

and

and if and only if

PROOF. (i) For each be the strict solution of

problem (4.4)n . By Proposition 4.4 ’Un is given by
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where

defined by (4.6)n and (4.7)n. By Propositions 4.6 and 4.9 (ii), and taking
into account that . we deduce that u. 2013~ ~ in C(E)

oo, where u is the function (3.6) (which belongs to C(D_4(.)) by Pro-
positions 3.1 (ii) and 3.4 (i)). On the other hand

and hence, by Propositions 4.6 and 4.9 (ii), in O(E) as n -+ 00,
where

This implies that and

As we have shown

that 2c is a strict solution of (0.1).
Uniqueness follows by Proposition 2.2.

(ii) By Proposition 3.1 (i), which by Proposition 3.4 (ii)
implies as ~ 11 we also get

Next, Proposition 3.1 (i) also yields .
so that by Proposition 3.4 (ii)

On the other hand we can write

as (Proposition 3.4 (ii)), we have

(Proposition 3.3. (ii)) and therefore (5.3) and (5.2) imply that

(iii) We have if and only if

(Proposition 3.4 (ii) ), i.e. if and only if
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(Proposition 3.1 (iii) ) ; as this is also equivalent to

C6(B). In addition by Proposition 3.1 (iv) if

and only if which by Proposition 3.4 (iv) is

equivalent to by (5.3) and Proposi-
tion 3.3 (ii) it follows that this is true if and only if u’ 00)). ///

THEOREM let

and suppose that . Then :

(i) the f unction u defined by (3.6) is the unique strict solution of (0.1 ) ;

and

and. if and only
if

PROOF. (i) As in the proof of Theorem 5.1, let u,, be the strict solution
of problem (4.4)n ; then u,,, is given by (~.1)n. By Propositions 4.7 and

4.9 (ii), u,, --&#x3E;- u in C(.E) as n -+ 00, where u is the function (3.6) (which
belongs to C(D,(.)) by Propositions 3.1 (ii) and 3.4 (i)); similarly we have

in as

This means that u E 01(E) and as

we have shown that u is a strict solution of (0.1). Uniqueness follows by
Proposition 2.2.

(ii) By Proposition 3.2 (i), which by Proposi-
tion 3.4 (ii) implies

as ~c’= A( ~ )~( ~ ) -~- f, we also get 00)). Next, Proposition 3.2 (i)
also yields so that by Proposition 3.4 (ii)

(iii) We have ) if and only
if (Proposition 3.4 (iv)), i.e. if and only if .

~ (Proposition 3.2 (iv)) ; as this is also equi-
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valent to In addition by Proposition 3.2 (iii)
if and only if which by Proposition 3.4 (iii) is

equivalent to

6. - Examples.

We apply here the results of the preceding sections to partial differential
equations of parabolic type in a bounded open set Q C Rn, in the cases
E = LP(S2), with 1  p  oo, or E = C(S~). In these cases, as remarked

in the Introduction, concrete characterizations of the interpolation spaces
oo) are known (see Grisvard [13], [14], Da Prato - Grisvard [11],

Lunardi [22], Acquistapace - Terreni [3], [4] ) .
First example.

Fix m E N+, and let Q be a bounded connected open set of .Rn with
boundary 8Q of class C2-. Consider the differential operator with complex-
valued coefficients

under the following assumptions :

(6.3) (strong uniform ellipticity)

(root condition) there exists 00 E ]n/2, n] such that if Â = e exp (iO)
10100 then for each pair ($, C) of linearly independent

vectors of .Rn, 7 the polynomial in the complex variable 17

has exactly m roots with positive imaginary part.

Consider also the boundary differential operators
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under the following assumptions:

and with

and

where is the unit outward normal vector at x E 8Q;

(complementing condition) if A = e 10 10,, then
for each x E 8Q and for each vector -r(x) tangent to 8Q at x, the
polynomials in the complex variable q

are linearly independent modulo the polynomial (compare with
(6.4)~

We want to study the parabolic initial-boundary value problem

where 4 and are prescribed data.
Set and for each define

where for is the usual Sobolev space.
We will verify that there exists ro &#x3E; 0 such that ~A. (t) - satis-

fies Hypotheses I, II and III of Section 1. 
A basic tool is the following result (Agmon - Douglis - Nirenberg [6], y

Agmon [5]) :
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PROPOSITION 6.1. Under assumptions (6.1)-(6.8), there exist
and ro &#x3E; 0 (independent of p) such that if then the problem

has a unique solution u(t) E Moreover there exists Op &#x3E; 0 (inde-
pendent of t) such that

where Gj is any function in satisfying

PROOF. It follows easily by Tanabe [35, Lemma 3.8.1] and Triebel

[36, Theorem 5.5.2(b)]. ///

By Proposition 6.1 it is clear that Hypothesis I is fulfilled. Concerning
Hypothesis II, we need the characterization of
proved by Grisvard [13], [14] . First of all we have:

DEFINITION 6.2. For s &#x3E; 0 the Besov-Nikolsky space is defined

as follows:

(i) if

where

(ii) if

where

(iii) if
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A norm in ’), where r with kEN and ore]0y 1], is given by

It is known that if s &#x3E; 1/p the functions of B~ (S~) have a trace on all.
The characterization of the spaces D4(t)(fl, oo) is the following:

PROPOSITION 6.3. Under assumptions (6.1)-(6.8) let 1 be defined
by ( 6.10 ) . Then for each t E [0, T] we have

for

provided for In particular if
tually, if we nave

with equivalent norms ; moreover such equivalence is uniform in t.

PROOF. See Grisvard [13], [14], Triebel [36, Theorem 4.3.3 (a)]. The

equivalence of norms when {3  1/2mp is uniform in t since all assumptions1

concerning E(t, x, D) and are uniform in t. ///

By Proposition 6.3 Hypothesis II follows easily with 
a norm in 00) = 00) is given by (G.12 ) with

s = 

To verify Hypothesis III we need a further assumption. Extend the

coefficients of to functions such that

and with

next, assume that
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Then have :

PROPOSITION 6.4. Under assumptions (6.1)-(6.8), (6.13) and (6.14), let

be defined by (6.10) and let (JJ be the number introduced in Pro-

position 6.1. Then

PROOF. Set Then solves

in Q,

hence by (6.11)

Denoting by x, D) the differential operator whose coefficients are Y

w e have

hence by (6.15) we easily deduce that

and the result follows since

Now Hypothesis III clearly follows by the continuous inclusion
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Thus we have shown that under assumptions (6.1)-(6.8), (6.13) and (6.14)
the operators ~.~(t) - defined by (6.10) fulfil Hypotheses I, II and
III with any 9 E ]0, 1/2mp[ and any a E ]1- e, 1[; therefore Theorems 5.1
amd 5.2 are applicable to problem (6.9): we omit the explicit statement
of the results.

Second example.

Choose m = 1 and let ,~ be a bounded connected open set of with

8Q of class C2. Consider again the differential operator E(t, x, D) defined
by (6.1), under assumptions (6.2), (6.3), (6.4). Concerning the boundary
operator x, D) ==: -P(t, x, D), we take an oblique derivative operator,
i.e.

where

with

and

are real-valued, and

(here v(x) is the unit outward normal vector at

We want to study the problem

Set and

and

Let us verify Hypotheses I, II, III. Hypothesis I follows by a result of
Stewart [31, Theorem 1]:



103

PROPOSITION 6.5. Let m = 1 and assume (6.1)-(6.4), (6.16)-(6.18). There

exist ];r/2, n] and ro &#x3E; 0 such that if Â - ro E then the problem

on

has a unique solution moreover there exists 0 &#x3E; 0 (inde-
p endent o f t) such that

PROOF. See [31]. ///

The characterization of oo) needed to get Hypothesis II is proved
in Acquistapace - Terreni [4, Theorem 6.2]. Namely, y we have:

PROPOSITION 6.6..Let m = 1, assume (6.1)-(6.4), (6.16)-(6.18) and define
by (6.20). Then for each t E [0, T] have (with equivalent norms) :

here the Zygmund class C*~ 1(S~) is defined by

and normed by

whereas the space is defined by

and normed by
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Moreover the equivalence of norms is uniform in t. In particular, if
~e]0, oo) does not depend on t.

PROOF. See [4]. The uniformity in t of the equivalences follows as in
Proposition 6.3. ll/

Hence Hypothesis II holds with any (! e ]0, [ .
To get Hypothesis III introduce, as in (6.14), the additional requirement

that

there exists such that and

Set where Then

and solves

in

on

so that choosing p &#x3E; n and using (6.11) we check

and by Sobolev’s Theorem

Thus for each we get

which is Hypothesis III.
Hence if m = 1, under assumptions (6.1)-(6.4), (6.16)-(6.18), (6.21) the

operators {A(t) - introduced in (6.20) satisfy Hypotheses I, II and
III with any ~O e ]0, -1-[ and ~ny a E ]1- ~O, 1[, so that Theorems 5.1 and 5.2
are applicable to problem (6.19). We omit the details.
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REMARK 6.7. The above argument applies to Dirichlet boundary con-
ditions (when m = 1 and 3D is of class C2). In this case Hypothesis I fol-
lows by Stewart [30, Theorem 1] (if 3D E C2‘) and Cannarsa - Terreni -
Vespri [9, Theorem 6.1] (general case); the characterization of oo),
which is due to Lunardi [22, Theorem 2.7] 02,/1 and ay e O/l(Q) for
jyj = 2) and to Acquistapace - Terreni [4, Theorem 6.3] (general case), is

the following:

if

if

if

Thus 00) is constant in t for all {J e ]0, 1[ (whereas DA(t) does depend
on t). Finally Hypothesis III follows exactly as before.
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