Geometria analitica dello spazio

 $Note\ per\ l'insegnamento\ di\ Matematica\ per\ Scienze\ Naturali\ e\ Ambientali\ e\ Scienze\ Geologiche$

Marco Abate

Dipartimento di Matematica, Università di Pisa Largo Pontecorvo 5, 56127 Pisa E-mail: marco.abate@unipi.it

Dicembre 2015

Capitolo 1

Geometria analitica dello spazio

1.1 Coordinate cartesiane nello spazio

In queste note indicheremo con A^2 il piano euclideo e con A^3 lo spazio euclideo.

Nella Sezione 3.2 del libro di testo abbiamo visto come la scelta di 3 punti O, A_1 e A_2 non allineati nel piano euclideo permette di introdurre delle coordinate nel piano, permette cioè di trovare una funzione bigettiva $\Phi: \mathcal{A}^2 \to \mathbb{R}^2$ che associa a ogni punto $P \in \mathcal{A}^2$ le sue coordinate $(x_P, y_P) \in \mathbb{R}^2$ rispetto al sistema di riferimento $R(O, A_1, A_2)$ di origine O.

In breve, la procedura è la seguente:

- la scelta dei punti O e A_1 determina una corrispondenza biunivoca fra la retta (detta asse x o asse delle ascisse) passante per i punti O e A_1 e l'insieme \mathbb{R} dei numeri reali, che associa a O il numero 0 e ad A_1 il numero 1, per cui il segmento $\overline{OA_1}$ funge da unità di misura sull'asse x;
- analogamente, la scelta dei punti O e A_2 determina una corrispondenza biunivoca fra la retta (detta asse y o asse delle ordinate) passante per i punti O e A_2 e l'insieme \mathbb{R} dei numeri reali, che associa a O il numero 0 e ad A_2 il numero 1, per cui il segmento $\overline{OA_2}$ funge da unità di misura sull'asse y;
- preso un punto $P \in \mathcal{A}^2$, la retta passante per P e parallela all'asse y interseca l'asse x in un unico punto, a cui corrisponde il numero reale $x_P \in \mathbb{R}$, detto ascissa di P; analogamente, la retta passante per P e parallela all'asse x interseca l'asse y in un unico punto, a cui corrisponde il numero reale $y_P \in \mathbb{R}$, detto ordinata di P, e si pone $\Phi(P) = (x_P, y_P)$;
- viceversa, data una coppia $(x_P, y_P) \in \mathbb{R}^2$, si trova il punto $P = \Phi^{-1}(x_P, y_P) \in \mathcal{A}^2$ come intersezione della retta passante per il punto dell'asse x di ascissa x_P parallela all'asse y con la retta passante per il punto dell'asse y di ordinata y_P parallela all'asse x.

Nello spazio \mathcal{A}^3 una procedura analoga permette di costruire una funzione bigettiva $\Psi: \mathcal{A}^3 \to \mathbb{R}^3$ che associa a ogni punto $P \in \mathcal{A}^3$ le sue coordinate $(x_P, y_P, z_P) \in \mathbb{R}^3$:

- si scelgono quattro punti O, A_1 , A_2 , A_3 non contenuti in uno stesso piano, che formeranno un sistema di riferimento $R(O, A_1, A_2, A_3)$ di origine O;
- la scelta dei punti O e A_1 determina una corrispondenza biunivoca fra la retta (detta asse x) passante per i punti O e A_1 e l'insieme \mathbb{R} dei numeri reali, che associa a O il numero 0 e ad A_1 il numero 1, per cui il segmento $\overline{OA_1}$ funge da unità di misura sull'asse x;
- analogamente, la scelta dei punti O e A_2 determina una corrispondenza biunivoca fra la retta (detta asse y) passante per i punti O e A_2 e l'insieme \mathbb{R} dei numeri reali, che associa a O il numero 0 e ad A_2 il numero 1, per cui il segmento $\overline{OA_2}$ funge da unità di misura sull'asse y;
- inoltre, la scelta dei punti O e A_3 determina una corrispondenza biunivoca fra la retta (detta asse z) passante per i punti O e A_3 e l'insieme \mathbb{R} dei numeri reali, che associa a O il numero 0 e ad A_3 il numero 1, per cui il segmento $\overline{OA_3}$ funge da unità di misura sull'asse z;
- il piano contenente i punti O, A_1 e A_2 sarà chiamato piano (coordinato) xy; il piano contenente i punti O, A_1 e A_3 sarà chiamato piano (coordinato) xz; il piano contenente i punti O, A_2 e A_3 sarà chiamato piano (coordinato) yz;
- preso un punto $P \in \mathcal{A}^3$, il piano (e non la retta) passante per P e parallelo al piano yz interseca l'asse x in un unico punto, a cui corrisponde il numero reale $x_P \in \mathbb{R}$, detto ascissa di P; analogamente, il piano passante per P e parallelo al piano xz interseca l'asse y in un unico punto, a cui corrisponde il numero reale $y_P \in \mathbb{R}$, detto ordinata di P; infine, il piano passante per P e parallelo al piano xy interseca

l'asse z in un unico punto, a cui corrisponde il numero reale $z_P \in \mathbb{R}$, detto altezza di P, e si pone $\Psi(P) = (x_P, y_P, z_P)$;

- viceversa, data una tripla $(x_P, y_P, z_P) \in \mathbb{R}^3$, si trova il punto $P = \Phi^{-1}(x_P, y_P, z_P) \in \mathcal{A}^3$ come intersezione di tre piani: il piano parallelo al piano yz passante per il punto dell'asse x di ascissa x_P , il piano parallelo al piano xz passante per il punto dell'asse y di ordinata y_P , e il piano parallelo al piano xy passante per il punto dell'asse z di ascissa z_P .

Nel seguito supporremo di aver fissato una volta per tutte un sistema di riferimento $R(O, A_1, A_2, A_3)$, e di conseguenza identificheremo lo spazio euclideo \mathcal{A}^3 con l'insieme \mathbb{R}^3 delle terne di numeri reali. In particolare, per noi un punto P sarà sempre dato da una terna di numeri reali $(x_P, y_P, z_P) \in \mathbb{R}^3$.

Osservazione 1.1.1. Per motivi che saranno più chiari quando studieremo l'algebra lineare, gli elementi di \mathbb{R}^3 saranno spesso scritti anche come colonne (e non solo come righe) di numeri reali. Per esempio, per dire che il punto P ha coordinate (x_P, y_P, z_P) scriveremo

$$P = \begin{vmatrix} x_P \\ y_P \\ z_P \end{vmatrix} .$$

In particolare,

$$O = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} .$$

Osservazione 1.1.2. Su \mathbb{R}^3 è naturale introdurre due operazioni, una somma e un prodotto per scalari, operando componente per componente. Per l'esattezza, si ha

$$\begin{vmatrix} x_1 \\ y_1 \\ z_1 \end{vmatrix} + \begin{vmatrix} x_2 \\ y_2 \\ z_2 \end{vmatrix} = \begin{vmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{vmatrix}$$

 \mathbf{e}

$$\lambda \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} \lambda x \\ \lambda y \\ \lambda z \end{vmatrix}$$

dove $\lambda \in \mathbb{R}$. Le proprietà algebriche di queste operazioni seguono immediatamente dalle proprietà della somma e del prodotto fra numeri reali. In maniera analoga si definiscono, componente per componente, una somma e un prodotto per scalari sull'insieme \mathbb{R}^n delle *n*-uple di numeri reali.

Definizione 1.1.1: Diremo che due punti v^1 , $v^2 \in \mathbb{R}^3$ con v^1 , $v^2 \neq O$ sono proporzionali se esiste $\lambda \in \mathbb{R}$ tale che $v^2 = \lambda v^1$. (Quando studieremo l'algebra lineare diremo che sono linearmente dipendenti.)

Osservazione 1.1.3. Una volta fissato un sistema di riferimento $R(O, A_1, A_2, A_3)$, a ogni punto $P \in \mathcal{A}^3$ possiamo associare anche il vettore applicato nell'origine \overrightarrow{OP} ; indicheremo con \mathcal{V}_O^3 l'insieme dei vettori applicati nell'origine. In particolare, il vettore \overrightarrow{OO} sarà detto vettore nullo; inoltre porremo $\overrightarrow{i} = \overrightarrow{OA_1}$, $\overrightarrow{j} = \overrightarrow{OA_2}$ e $\overrightarrow{k} = \overrightarrow{OA_3}$. Analoghe definizioni si possono introdurre nel piano, ottenendo \mathcal{V}_O^2 .

Anche su V_O^3 possiamo introdurre una somma e un prodotto per scalari. La somma di due vettori applicati $\overrightarrow{OP_1}$, $\overrightarrow{OP_2} \in V_O^3$ è il vettore $\overrightarrow{OP} = \overrightarrow{OP_1} + \overrightarrow{OP_2}$ il cui estremo P è il quarto vertice del parallelogramma di vertici O, P_1 e P_2 . Il prodotto di un vettore applicato $\overrightarrow{OP_1} \in V_O^3$ per uno scalare $\lambda \in \mathbb{R}$ è il vettore applicato $\overrightarrow{OP} = \lambda \overrightarrow{OP_1}$ il cui estremo P si trova sulla retta r passante per O e P_1 , e ha coordinata λ su questa retta rispetto al sistema di coordinate dato da O e P_1 (in altre parole, il segmento \overrightarrow{OP} è lungo $|\lambda|$ volte il segmento $\overrightarrow{OP_1}$, e P è sulla semiretta determinata da O e P_1 se $\lambda > 0$, sulla semiretta opposta se $\lambda < 0$). Maggiori dettagli su queste operazioni si trovano nella Sezione 10.1 del libro di testo.

Osservazione 1.1.4. Le operazioni introdotte su \mathbb{R}^3 e quelle introdotte su \mathcal{V}_O^3 sono strettamente correlate. Infatti usando un po' di geometria euclidea dello spazio è possibile dimostrare che

$$P = \begin{vmatrix} x_P \\ y_P \\ z_P \end{vmatrix} \in \mathbb{R}^3$$
 se e solo se $\overrightarrow{OP} = x_P \vec{i} + y_P \vec{j} + z_P \vec{k}$.

1.2 Piani 3

Di conseguenza, usando le proprietà distributive e associative della somma e del prodotto per scalari, si trova che se P_1 ha coordinate (x_1, y_1, z_1) e P_2 ha coordinate (x_2, y_2, z_2) allora

$$\overrightarrow{OP} = \overrightarrow{OP_1} + \overrightarrow{OP_2}$$
 se e solo se $P = \begin{vmatrix} x_1 \\ y_1 \\ z_1 \end{vmatrix} + \begin{vmatrix} x_2 \\ y_2 \\ z_2 \end{vmatrix}$

 \mathbf{e}

$$\overrightarrow{OP} = \lambda \overrightarrow{OP_1} \qquad \text{se e solo se} \qquad P = \lambda \begin{vmatrix} x_1 \\ y_1 \\ z_1 \end{vmatrix} \;.$$

In altre parole, una volta fissato un sistema di riferimento, sommare o moltiplicare per uno scalare vettori applicati o terne di numeri reali è esattamente la stessa cosa. Per questo motivo (una volta fissato un sistema di riferimento) noi identificheremo sistematicamente punti dello spazio euclideo, vettori applicati nell'origine e terne di numeri reali, e useremo indistintamente le parole "punto" o "vettore" anche per indicare gli elementi di \mathbb{R}^3 .

1.2 Piani

In questa sezione vogliamo mostrare come sia possibile descrivere i punti di un dato piano una volta fissato un riferimento cartesiano.

ESEMPIO 1.2.1. Sia π_{yz} il piano yz. Per definizione, i punti di π_{yz} sono esattamente i punti di \mathbb{R}^3 con ascissa uguale a 0; in formule,

$$\pi_{yz} = \left\{ \begin{vmatrix} x \\ y \\ z \end{vmatrix} \in \mathbb{R}^3 \mid x = 0 \right\} .$$

ESEMPIO 1.2.2. Sia π un piano parallelo al piano π_{yz} . Di nuovo per definizione, i punti di π hanno tutti la stessa ascissa, che chiameremo d; viceversa, ogni punto di ascissa d appartiene al piano π . In altre parole,

$$\pi = \left\{ \begin{vmatrix} x \\ y \\ z \end{vmatrix} \in \mathbb{R}^3 \mid x = d \right\} .$$

Negli esempi precedenti, i punti di un piano sono stati identificati come i punti dello spazio le cui coordinate soddisfano una certa equazione. Questo è sempre possibile:

Definizione 1.2.1: Dati $a, b, c, d \in \mathbb{R}$ con a, b, c non tutti nulli, il piano π di equazione cartesiana

$$ax + by + cz = d \tag{1.2.1}$$

è dato da

$$\pi = \left\{ \begin{vmatrix} x \\ y \\ z \end{vmatrix} \in \mathbb{R}^3 \mid ax + by + cz = d \right\}.$$

In altre parole, i punti del piano sono tutti e soli i punti dello spazio le cui coordinate soddisfano l'equazione ax + by + cz = d. I coefficienti a, b e c sono i parametri di giacitura del piano π . Il piano π_0 di equazione cartesiana ax + by + cz = 0 (cioè stessi parametri di giacitura ma termine noto nullo) è il piano di giacitura del piano π .

Osservazione 1.2.1. Per definizione, un punto $P_0 = (x_0, y_0, z_0) \in \mathbb{R}^3$ appartiene al piano π di equazione cartesiana ax + by + cz = d se e solo se $d = ax_0 + by_0 + cz_0$.

Osservazione 1.2.2. Supponi che siano fissati i parametri di giacitura a_0 , b_0 , c_0 , e indichiamo con π_d il piano di equazione cartesiana $a_0x + b_0y + c_0z = d$, con $d \in \mathbb{R}$. I piani π_d al variare di $d \in \mathbb{R}$ sono tutti a due a due disgiunti (perché?), cioè sono paralleli. In particolare, $O \in \pi_d$ se e solo se d = 0; quindi il piano di giacitura è l'unico piano passante per l'origine e parallelo al piano dato.

Osservazione 1.2.3. L'equazione cartesiana di un piano π non è unica. Infatti, se $\lambda \neq 0$ allora

$$ax + by + cz = d$$
 se e solo se $\lambda(ax + by + cz) = \lambda d$ se e solo se $(\lambda a)x + (\lambda b)y + (\lambda c)z = \lambda d$,

per cui ax + by + cz = d e $(\lambda a)x + (\lambda b)y + (\lambda c)z = \lambda d$ sono equazioni cartesiane dello stesso piano (perché?). Viceversa, è possibile far vedere che due equazioni della forma (1.2.1) determinano lo stesso piano se e solo se sono una un multiplo dell'altra.

Vediamo di capire se riusciamo a descrivere quali punti $P \in \mathbb{R}^3$ appartengono al piano π di equazione cartesiana ax + by + cz = d. Per ipotesi, almeno uno dei parametri di giacitura è non nullo; supponiamo $a \neq 0$ (se a = 0 si procederà in modo analogo usando uno degli altri parametri di giacitura). Allora $P = (x, y, z) \in \mathbb{R}^3$ appartiene al piano π se e solo se

$$ax + by + cz = d$$
 se e solo se $x = \frac{d}{a} - \frac{b}{a}y - \frac{c}{a}z$.

In altre parole, $P = (x, y, z) \in \mathbb{R}^3$ appartiene al piano π se e solo se

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} (d/a) - (b/a)y - (c/a)z \\ y \\ z \end{vmatrix} = \begin{vmatrix} d/a \\ 0 \\ 0 \end{vmatrix} + y \begin{vmatrix} -b/a \\ 1 \\ 0 \end{vmatrix} - z \begin{vmatrix} -c/a \\ 0 \\ 1 \end{vmatrix}.$$

Scrivendo

$$P_0 = \begin{vmatrix} d/a \\ 0 \\ 0 \end{vmatrix}, \qquad v = \begin{vmatrix} -b/a \\ 1 \\ 0 \end{vmatrix}, \qquad w = \begin{vmatrix} -c/a \\ 0 \\ 1 \end{vmatrix},$$

abbiamo quindi ottenuto che tutti i punti $P \in \pi$ si possono scrivere nella forma

$$P = P_0 + yv + zw ,$$

dove $y, z \in \mathbb{R}$ sono numeri reali qualsiasi. Questo suggerisce di introdurre la seguente

Definizione 1.2.2: Dati P_0 , v, $w \in \mathbb{R}^3$, con v, $w \neq O$ non proporzionali, il piano π passante per P_0 e di vettori di giacitura v e w è l'insieme dei punti della forma

$$P = P_0 + sv + tw , (1.2.2)$$

al variare di $s, t \in \mathbb{R}$. In altre parole, π è l'immagine della funzione $F: \mathbb{R}^2 \to \mathbb{R}^3$ la cui espressione è data da $F(s,t) = P_0 + sv + tw$. La formula (1.2.2) è detta equazione parametrica del piano π , e s e t sono detti parametri. Il piano di giacitura π_0 di π ha equazione parametrica P = sv + tw.

In altre parole ancora, se

$$P_0 = \begin{vmatrix} x_0 \\ y_0 \\ z_0 \end{vmatrix}, \qquad v = \begin{vmatrix} v_1 \\ v_2 \\ v_3 \end{vmatrix}, \qquad w = \begin{vmatrix} w_1 \\ w_2 \\ w_3 \end{vmatrix},$$

allora un punto $P=(x,y,z)\in\mathbb{R}^3$ appartiene al piano passante per P_0 e avente vettori di giacitura v e w se e solo se esistono $s,t\in\mathbb{R}$ tali che

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} x_0 \\ y_0 \\ z_0 \end{vmatrix} + s \begin{vmatrix} v_1 \\ v_2 \\ v_3 \end{vmatrix} + t \begin{vmatrix} w_1 \\ w_2 \\ w_3 \end{vmatrix} = \begin{vmatrix} x_0 + sv_1 + tw_1 \\ y_0 + sv_2 + tw_2 \\ z_0 + sv_3 + tw_3 \end{vmatrix}.$$
 (1.2.3)

Vogliamo trovare un'equazione cartesiana di un piano di equazione parametrica (1.2.2). In altre parole, dobbiamo trovare $a, b, c, d \in \mathbb{R}$ con a, b, c non tutti nulli in modo che tutti i punti della forma (1.2.3) soddisfino la relazione ax + by + cz = d. In altre parole, vogliamo che

$$a(x_0 + sv_1 + tw_1) + b(y_0 + sv_2 + tw_2) + c(z_0 + sv_3 + tw_3) = d$$

1.2 Piani 5

sia vero per qualsiasi $s, t \in \mathbb{R}$. Raccogliendo s e t a sinistra, e portando a destra tutti i termini che non dipendono da s e t, otteniamo

$$(av_1 + bv_2 + cv_3)s + (aw_1 + bw_2 + cw_3)t = d - ax_0 - by_0 - cz_0.$$

Ora, il membro sinistro è una funzione di s e t, mentre il membro destro è una costante; quindi perché i due membri siano uguali occorre che anche il membro sinistro sia costante. Ma questo può accadere (perché?) se e solo se i coefficienti di s e t sono uguali a zero — e di conseguenza anche il membro destro dev'essere uguale a zero. In altre parole, a, b, c e d devono soddisfare il seguente sistema lineare:

$$\begin{cases} av_1 + bv_2 + cv_3 = 0, \\ aw_1 + bw_2 + cw_3 = 0, \\ ax_0 + bu_0 + cz_0 = d. \end{cases}$$
(1.2.4)

Questo è un sistema lineare di tre equazioni in quattro incognite (a, b, c e d), le cui soluzioni ci forniscono i parametri di giacitura del piano π . Per risolverlo, conviene usare le prime due equazioni per trovare a, b e c (a meno di un multiplo; ricorda l'Osservazione 1.2.3); mettendo i valori trovati nella terza equazione si ricava d. Ma vediamo un esempio.

Esempio 1.2.3. Vogliamo trovare un'equazione cartesiana per il piano π di equazione parametrica

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix} + s \begin{vmatrix} 1 \\ -1 \\ 1 \end{vmatrix} + t \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} .$$
 (1.2.5)

Il sistema (1.2.4) in questo caso è

$$\begin{cases} a - b + c = 0, \\ a + b + c = 0, \\ b + 2c = d. \end{cases}$$

Sottraendo la prima equazione dalla seconda ci riconduciamo al sistema

$$\begin{cases} a-b+c=0 \ , \\ 2b=0 \ , \\ b+2c=d \ , \end{cases}$$

da cui segue subito

$$\begin{cases} a = -c , \\ b = 0 , \\ d = 2c . \end{cases}$$

Quindi un'equazione cartesiana di π è della forma -cx + cz = 2c, con $c \neq 0$ qualsiasi; come previsto, l'equazione cartesiana è definita a meno di un multiplo (c). Per esempio, prendendo c = 1 troviamo l'equazione

$$-x + z = 2.$$

Per verificare l'esattezza del risultato, è sufficiente inserire le espressioni di x, y e z date da (1.2.5) nell'equazione cartesiana trovata e verificare che si ottiene un'identità. E infatti si ha -(s+t)+(2+s+t)=2 per qualsiasi valore di s e t, come desiderato.

Vogliamo ora fornire un'interpretazione geometrica dei parametri di giacitura di un piano. Nella Sezione 10.2 del libro di testo è spiegato come usare il prodotto scalare per determinare il coseno θ dell'angolo fra due vettori (applicati nell'origine) $v, w \in \mathbb{R}^2$:

$$\cos \theta = \frac{\langle v, w \rangle}{\|v\| \|w\|} \,, \tag{1.2.6}$$

dove $||v|| = \sqrt{v_1^2 + v_2^2}$ è la lunghezza del vettore $v = (v_1, v_2)$, $||w|| = \sqrt{w_1^2 + w_2^2}$ è la lunghezza del vettore $w = (w_1, w_2)$, e $\langle v, w \rangle = v_1 w_1 + v_2 w_2$ è il prodotto scalare di v e w. In particolare, siccome due vettori sono ortogonali se e solo se il coseno dell'angolo fra loro è zero, i vettori v e w sono ortogonali se e solo se $\langle v, w \rangle = 0$.

Si può dimostrare che la formula (1.2.6) vale anche per vettori $v, w \in \mathbb{R}^3$, usando la seguente naturale generalizzazione del prodotto scalare:

Definizione 1.2.3: Siano $v = (v_1, v_2, v_3), w = (w_1, w_2, w_3) \in \mathbb{R}^3$ due vettori (applicati nell'origine). Il prodotto scalare $\langle v, w \rangle$ di $v \in w$ è dato da

$$\langle v, w \rangle = v_1 w_1 + v_2 w_2 + v_3 w_3 \in \mathbb{R} .$$

Inoltre, la lunghezza ||v|| di v è data da

$$||v|| = \sqrt{\langle v, v \rangle} = \sqrt{v_1^2 + v_2^2 + v_3^2} \ge 0$$
.

Con queste definizioni, il coseno dell'angolo fra v e w è ancora dato dalla formula (1.2.6), e di conseguenza due vettori v, $w \in \mathbb{R}^3$ sono ortogonali se e solo se $\langle v, w \rangle = 0$.

Osservazione 1.2.4. Le formule per il prodotto scalare e per la lunghezza di un vettore si possono chiaramente estendere a "vettori" espressi da n-uple di numeri reali, senza limitarsi ai casi n=2 e n=3. Il prodotto scalare di due elementi $v=(v_1,\ldots,v_n)$ e $w=(w_1,\ldots,w_n)$ di \mathbb{R}^n è definito dalla formula

$$\langle v, w \rangle = v_1 w_1 + \dots + v_n w_n ,$$

e la lunghezza dalla formula

$$||v|| = \sqrt{\langle v, v \rangle} = \sqrt{v_1^2 + \dots + v_n^2}$$
.

In questo contesto, la formula (1.2.6) diventa la definizione del coseno dell'angolo fra i due "vettori" $v \in w$.

Consideriamo ora un piano π_0 passante per l'origine, di equazione cartesiana ax + by + cz = 0. Usando il prodotto scalare possiamo esprimere il piano π_0 come segue:

$$\pi_0 = \left\{ \begin{vmatrix} x \\ y \\ z \end{vmatrix} \in \mathbb{R}^3 \mid ax + by + cz = 0 \right\} = \left\{ \begin{vmatrix} x \\ y \\ z \end{vmatrix} \in \mathbb{R}^3 \mid \left\langle \begin{vmatrix} a \\ b \\ c \end{vmatrix}, \begin{vmatrix} x \\ y \\ z \end{vmatrix} \right\rangle = 0 \right\}.$$

In altre parole, i punti del piano π_0 sono esattamente i punti ortogonali al vettore (a, b, c) dato dai parametri di giacitura. Ricordando che un piano qualsiasi di equazione cartesiana ax + by + cz = d è parallelo al suo piano di giacitura, che ha equazione ax + by + cz = 0, abbiamo fatto vedere che:

- il vettore (a,b,c) dei parametri di giacitura di un piano π di equazione cartesiana ax + by + cz = 0 è ortogonale $a\pi$:
- viceversa, ogni piano di equazione cartesiana ax + by + cz = d è ortogonale al vettore (a, b, c).

In particolare, è estremamente semplice trovare l'equazione cartesiana del piano π passante per il punto $P_0 = (x_0, y_0, z_0)$ e ortogonale al vettore $v_0 = (a, b, c)$: infatti a, b e c devono essere i parametri di giacitura, e d dev'essere dato (Osservazione 1.2.1) da $d = ax_0 + by_0 + cz_0$. Quindi l'equazione cartesiana cercata è

$$ax + by + cz = ax_0 + by_0 + cz_0$$
 o, equivalentemente, $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$.

Nota che la formula $ax + by + cz = ax_0 + by_0 + cz_0$ può essere scritta anche nella forma

$$\left\langle \left| \begin{array}{c} a \\ b \\ c \end{array} \right|, \left| \begin{array}{c} x \\ y \\ z \end{array} \right| \right\rangle = \left\langle \left| \begin{array}{c} a \\ b \\ c \end{array} \right|, P_0 \right\rangle ,$$

per cui il piano π è costituito dai vettori il cui coseno dell'angolo con (a, b, c) è uguale al coseno dell'angolo fra (a, b, c) e P_0 .

Esempio 1.2.4. Vogliamo un'equazione cartesiana per il piano π passante per $P_0 = (1, 2, -3)$ e ortogonale a (-2, 3, 5). Per quanto abbiamo visto la risposta è

$$-2x + 3y + 5z = -2 \cdot 1 + 3 \cdot 2 + 5 \cdot (-3) = -11.$$

1.2 Piani 7

Siamo ora anche in grado di dare un'interpretazione geometrica ai conti che abbiamo descritto per passare da equazione cartesiana a equazione parametrica e viceversa. Infatti, supponiamo che $P=P_0+sv+tw$ sia un'equazione parametrica di un piano di equazione cartesiana ax+by+cz=0. Allora il piano di giacitura ha equazione P=sv+tw e dev'essere composto tutto da vettori ortogonali ad (a,b,c). In particolare, v (che si ottiene con s=1 e t=0) e w (che si ottiene con s=0 e t=1) devono essere entrambi ortogonali a (a,b,c). Quindi passare da equazioni cartesiane a equazioni parametriche corrisponde a determinare un punto (P_0) del piano e due vettori (non nulli e non proporzionali) v e w ortogonali al vettore (a,b,c) dei parametri di giacitura.

Viceversa, supponiamo il piano π abbia equazione parametrica $P=P_0+sv+tw$. Allora passare a equazione cartesiana significa trovare un vettore (a,b,c) non nullo che sia ortogonale sia a v sia a w questo è il significato delle prime due equazioni in (1.2.4) —, e poi scegliere $d \in \mathbb{R}$ in modo che $P_0 \in \pi$ — e questo è il significato della terza equazione in (1.2.4).

Per capire vantaggi e svantaggi di equazioni parametriche e cartesiane, proviamo a usarle per affrontare dei problemi geometrici che coinvolgono piani.

Il primo problema che affrontiamo è come trovare il piano π passante per tre punti $P_0=(x_0,y_0,z_0)$, $P_1=(x_1,y_1,z_1)$, $P_2=(x_2,y_2,z_2)\in\mathbb{R}^3$ non allineati. Equazioni parametriche di π si scrivono subito: sono

$$P = P_0 + s(P_1 - P_0) + t(P_2 - P_0). (1.2.7)$$

Infatti ponendo s = t = 0 si recupera P_0 , ponendo s = 1, t = 0 si recupera P_1 (in quanto $P_0 + P_1 - P_0 = P_1$), e ponendo s = 0 e t = 1 si recupera P_2 .

Le equazioni cartesiane richiedono invece un poco più di lavoro: infatti, ricordando l'Osservazione 1.2.1, per trovare i coefficienti a, b, c e d di un'equazione cartesiana per π dobbiamo risolvere il sistema

$$\begin{cases} ax_0 + by_0 + cz_0 = d, \\ ax_1 + by_1 + cz_1 = d, \\ ax_2 + by_2 + cz_2 = d. \end{cases}$$

Nota che sottraendo la prima equazione alle altre due, e poi mettendo la prima equazione al terzo posto, otteniamo il sistema

$$\begin{cases} a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0) = 0, \\ a(x_2 - x_0) + b(y_2 - y_0) + c(z_2 - z_0) = 0, \\ ax_0 + by_0 + cz_0 = d, \end{cases}$$

che è esattamente il sistema che dobbiamo risolvere per passare dalle equazioni parametriche (1.2.7) a equazioni cartesiane.

ESEMPIO 1.2.5. Vogliamo il piano passante per i punti $P_0=(2,1,1),\ P_1=(-1,-1,2)$ e $P_2=(1,2,1).$ Siccome $P_1-P_0=(-3,-2,1)$ e $P_2-P_0=(-1,1,0),$ equazioni parametriche sono

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \\ 1 \end{vmatrix} + s \begin{vmatrix} -3 \\ -2 \\ 1 \end{vmatrix} + t \begin{vmatrix} -1 \\ 1 \\ 0 \end{vmatrix} .$$

Per trovare le equazioni cartesiane dobbiamo risolvere il sistema

$$\begin{cases} 2a + b + c = d , \\ -a - b + 2c = d , \\ a + 2b + c = d . \end{cases}$$

Sommando la terza equazione alla seconda, e sottraendo il doppio della terza equazione alla prima, ci riconduciamo al sistema

$$\begin{cases}
-3b - c = -d, \\
b + 3c = 2d, \\
a + 2b + c = d.
\end{cases}$$

Sommando il triplo della seconda equazione alla prima equazione troviamo

$$\begin{cases} 8c = 5d \;, \\ b + 3c = 2d \;, \\ a + 2b + c = d \;, \end{cases} \implies \begin{cases} c = \frac{5}{8}d \;, \\ b = 2d - 3c = \frac{1}{8}d \;, \\ a = d - 2b - c = \frac{1}{8}d \;. \end{cases}$$

Qualsiasi valore non nullo di d ci fornisce dei parametri di giacitura di π . Prendendo per esempio d=8 otteniamo come equazione cartesiana

$$x + y + 5z = 8.$$

Il secondo problema consiste nel determinare le posizioni reciproche di due piani, dove la "posizione reciproca" è determinata da che tipo di intersezione hanno:

Definizione 1.2.4: Diremo che due piani π_1 e π_2 sono paralleli se sono disgiunti, cioè se $\pi_1 \cap \pi_2 = \emptyset$; che sono incidenti se la loro intersezione è una retta; che sono coincidenti se coincidono, cioè se $\pi_1 = \pi_2$ — per cui in particolare la loro intersezione è un piano.

Determinare la posizione reciproca di due piani partendo dalle equazioni parametriche è possibile, ma richiede diversi conti; e capire quali conti fare richiede delle nozioni di algebra lineare che vedremo solo in seguito. Invece, determinare la posizione reciproca di due piani a partire dalle equazioni cartesiane è molto più semplice. Infatti, se $a_1x + b_1y + c_1z = d_1$ è un'equazione cartesiana per il piano π_1 , e $a_2x + b_2y + c_2z = d_2$ è un'equazione cartesiana per il piano π_2 , i punti dell'intersezione $\pi_1 \cap \pi_2$ sono dati dalle soluzioni del sistema

$$\begin{cases} a_1x + b_1y + c_1z = d_1 , \\ a_2x + b_2y + c_2z = d_2 . \end{cases}$$
 (1.2.8)

Quindi per trovare la posizione reciproca di π_1 e π_2 basta risolvere il sistema (1.2.8): se non ha soluzioni i piani sono paralleli; se le soluzioni dipendono da due parametri (cioè le soluzioni sono le equazioni parametriche di un piano) i piani sono coincidenti; se le soluzioni dipendono da un solo parametro dobbiamo essere nel solo caso rimasto, e quindi i due piani sono incidenti (quando studieremo i sistemi lineari in generale vedremo che non ci sono altri casi possibili: le soluzioni di (1.2.8) o non esistono oppure dipendono necessariamente da uno o da due parametri).

Osservazione 1.2.5. Nota che è facile stabilire la posizione reciproca dei due piani semplicemente guardando il sistema (1.2.8). Infatti, per l'Osservazione 1.2.3 i due piani sono coincidenti se e solo se le due equazioni sono una un multiplo dell'altra, e questo si vede a occhio. Inoltre, i due piani sono paralleli se e solo se (non sono coincidenti e) hanno lo stesso piano di giacitura, e questo accade (Osservazioni 1.2.2 e 1.2.3) se e solo se il vettore dei parametri di giacitura di un piano è proporzionale al vettore dei parametri di giacitura dell'altro piano (e i due piani non sono coincidenti), condizione anche questa che si verifica a occhio. Infine, se il vettore dei parametri di giacitura di un piano non è proporzionale al vettore dei parametri di giacitura dell'altro piano allora i due piani sono incidenti.

Concludiamo questa sezione con degli esempi numerici di determinazione della posizione reciproca di due piani.

ESEMPIO 1.2.6. Vogliamo trovare la posizione reciproca dei piani π_1 di equazione cartesiana x+y+2z=3 e π_2 di equazione cartesiana 2x+2y+4z=6. Il sistema formato dalle due equazioni è

$$\begin{cases} x + y + 2z = 3, \\ 2x + 2y + 4z = 6; \end{cases}$$

La seconda equazione è il doppio della prima; quindi (ricorda l'Osservazione 1.2.3) si tratta di due piani coincidenti, di equazione parametrica (ottenuta risolvendo una qualsiasi delle due equazioni)

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 3 \\ 0 \\ 0 \end{vmatrix} + s \begin{vmatrix} -1 \\ 1 \\ 0 \end{vmatrix} + t \begin{vmatrix} -2 \\ 0 \\ 1 \end{vmatrix} .$$

1.3 Rette 9

ESEMPIO 1.2.7. Vogliamo trovare la posizione reciproca dei piani π_1 di equazione cartesiana x+y+2z=3 e π_3 di equazione cartesiana 2x+2y+4z=8. Il sistema formato dalle due equazioni è

$$\begin{cases} x + y + 2z = 3, \\ 2x + 2y + 4z = 8; \end{cases}$$

Sottraendo il doppio della prima equazione alla seconda equazione otteniamo l'uguaglianza 0 = 2, chiaramente falsa; quindi il sistema non ammette soluzioni e i due piani sono paralleli (confronta con le Osservazioni 1.2.2 e 1.2.3).

ESEMPIO 1.2.8. Vogliamo trovare la posizione reciproca dei piani π_1 di equazione cartesiana x+y+2z=3 e π_3 di equazione cartesiana 2x-2y+4z=8. Il sistema formato dalle due equazioni è

$$\begin{cases} x + y + 2z = 3, \\ 2x - 2y + 4z = 8; \end{cases}$$

Sottraendo il doppio della prima equazione alla seconda equazione otteniamo

$$\begin{cases} x+y+2z=3 \ , \\ -4y=2 \ , \end{cases} \implies \begin{cases} x=3-y-2z=\frac{7}{2}-2z \ , \\ y=-\frac{1}{2} \ , \end{cases}$$

per cui le soluzioni del sistema si possono scrivere nella forma

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} \frac{7}{2} - 2z \\ -\frac{1}{2} \\ z \end{vmatrix} = \begin{vmatrix} 7/2 \\ -1/2 \\ 0 \end{vmatrix} + z \begin{vmatrix} -2 \\ 0 \\ 1 \end{vmatrix} ,$$

dove $z \in \mathbb{R}$ può assumere un qualsiasi valore. Le soluzioni dipendono quindi da un solo parametro libero (z), e questo vuol dire che i piani sono incidenti, e si intersecano in una retta.

1.3 Rette

Nella sezione precedente abbiamo visto che intersecando due piani è possibile ottenere una retta. Questo suggerisce come ottenere le equazioni cartesiane di una retta:

Definizione 1.3.1: Le equazioni

$$\begin{cases} a_1x + b_1y + c_1z = d_1 , \\ a_2x + b_2y + c_2z = d_2 , \end{cases}$$
 (1.3.1)

sono equazioni cartesiane della retta $r \subset \mathbb{R}^3$ dello spazio ottenuta come intersezione del piano di equazione cartesiana $a_1x + b_1y + c_1z = d_1$ con il piano di equazione cartesiana $a_2x + b_2y + c_2z = d_2$, sotto l'ipotesi che (a_1,b_1,c_1) non sia proporzionale a (a_2,b_2,c_2) in modo che l'intersezione sia effettivamente una retta (vedi l'Osservazione 1.2.5). La retta r_0 di equazione cartesiana

$$\begin{cases} a_1x + b_1y + c_1z = 0, \\ a_2x + b_2y + c_2z = 0, \end{cases}$$

è detta retta di giacitura di r.

Analogamente, l'Esempio 1.2.8 suggerisce come devono essere fatte le equazioni parametriche di una retta:

Definizione 1.3.2: Dati $P_0, v \in \mathbb{R}^3$, con $v \neq O$, la retta r passante per P_0 e con vettore direttore v è l'insieme dei punti della forma

$$P = P_0 + tv (1.3.2)$$

al variare di $t \in \mathbb{R}$. In altre parole, r è l'immagine della funzione $F: \mathbb{R} \to \mathbb{R}^3$ la cui espressione è data da $F(t) = P_0 + tv$. La formula (1.3.2) è detta equazione parametrica della retta r, e t è detto parametro. La retta di giacitura r_0 di r ha equazione parametrica P = tv.

Osservazione 1.3.1. L'equazione parametrica di una retta nel piano è sempre della forma (1.3.2), semplicemente con P_0 e v appartenenti a \mathbb{R}^2 e non a \mathbb{R}^3 . Invece, nel piano basta una sola equazione cartesiana ax + by = c per descrivere una retta.

Per passare da equazioni cartesiane a equazioni parametriche è sufficiente risolvere il sistema (1.3.1), come visto nell'Esempio 1.2.8. Per passare da equazioni parametriche a equazioni cartesiane si procede in modo non dissimile a quanto visto per i piani. Supponiamo di avere una retta di equazione parametrica

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} x_0 \\ y_0 \\ z_0 \end{vmatrix} + t \begin{vmatrix} v_1 \\ v_2 \\ v_3 \end{vmatrix} .$$

Le equazioni cartesiane devono essere soddisfatte da tutti i punti della retta. Quindi, se ax + by + cz = d è una delle equazioni cercate, l'uguaglianza

$$a(x_0 + tv_1) + b(y_0 + tv_2) + c(z_0 + tv_3) = d \iff (av_1 + bv_2 + cv_3)t = d - (ax_0 + by_0 + cz_0)$$

dev'essere vera per ogni valore di $t \in \mathbb{R}$. Questo è possibile se e solo se (perché?) entrambi i membri sono identicamente nulli, cioè se e solo se

$$\begin{cases} av_1 + bv_2 + cv_3 = 0, \\ ax_0 + by_0 + cz_0 = d. \end{cases}$$
 (1.3.3)

In altre parole, i vettori (a_1, b_1, c_1) e (a_2, b_2, c_2) devono essere due vettori (non proporzionali) entrambi ortogonali al vettore direttore della retta r; e una volta identificati (a_1, b_1, c_1) e (a_2, b_2, c_2) i valori di d_1 e d_2 si ottengono usando la seconda equazione in (1.3.3).

Esempio 1.3.1. Vogliamo equazioni cartesiane per la retta r di equazioni parametriche

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix} + t \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} .$$

Dobbiamo trovare due vettori ortogonali al vettore (1,1,1), non proporzionali fra loro; in altre parole, dobbiamo trovare due soluzioni non proporzionali dell'equazione a+b+c=0. Per esempio, possiamo prendere

$$\begin{vmatrix} a_1 \\ b_1 \\ c_1 \end{vmatrix} = \begin{vmatrix} 1 \\ -1 \\ 0 \end{vmatrix} \qquad \text{e} \qquad \begin{vmatrix} a_2 \\ b_2 \\ c_2 \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \\ -1 \end{vmatrix}.$$

Usando la seconda equazione in (1.3.3) ricaviamo $d_1 = 1 \cdot 1 + (-1) \cdot 0 + 1 \cdot 0 = 1$ e $d_2 = 1 \cdot 1 + 0 \cdot 0 + 1 \cdot (-1) = 0$, per cui

$$\begin{cases} x - y = 1 \\ x - z = 0 \end{cases}$$

sono delle equazioni cartesiane per la retta r.

Osservazione 1.3.2. È facile scrivere un'equazione parametrica per la retta r passante per due punti distinti $P_0 = (x_0, y_0, z_0)$ e $P_1 = (x_1, y_1, z_1)$: è data da

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} x_0 \\ y_0 \\ z_0 \end{vmatrix} + t \begin{vmatrix} x_1 - x_0 \\ y_1 - y_0 \\ z_1 - z_0 \end{vmatrix}.$$

Invece, per trovare equazioni cartesiane della stessa retta bisogna trovare due soluzioni non proporzionali del sistema di due equazioni in quattro incognite

$$\begin{cases} ax_0 + by_0 + cz_0 = d, \\ ax_1 + by_1 + cz_1 = d, \end{cases} \iff \begin{cases} a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0) = 0, \\ ax_0 + by_0 + cz_0 = d, \end{cases}$$

dove le incognite sono a, b, c e d.

Le equazioni cartesiane sono invece comode per studiare le posizioni reciproche di una retta e un piano.

1.3 Rette 11

Definizione 1.3.3: Siano π un piano e r una retta nello spazio. Diremo che r e π sono paralleli se sono disgiunti, cioè $r \cap \pi = \emptyset$; diremo che sono incidenti se si intersecano in un solo punto; e che r è contenuta in π se r è un sottoinsieme di π , per cui $r \cap \pi$ è una retta.

Se il piano π ha equazione cartesiana ax+by+cz=d e la retta r equazioni cartesiane $a_1x+b_1y+c_1z=d_1$ e $a_2x+b_2y+c_2z=d_2$, per trovare la posizione reciproca di r e π basta risolvere il sistema

$$\begin{cases} ax + by + cz = d , \\ a_1x + b_1y + c_1z = d_1 , \\ a_2x + b_2y + c_2z = d_2 . \end{cases}$$

Se il sistema non ha soluzioni allora r e π sono paralleli; se ha un'unica soluzione allora sono incidenti (e la soluzione è il punto d'intersezione); se invece ha infinite soluzioni allora r è contenuta in π .

Esempio 1.3.2. Consideriamo la retta r di equazioni cartesiane

$$\begin{cases} x+y+z=1 \ , \\ x-y+z=0 \ , \end{cases}$$

e il piano π_1 di equazione cartesiana 3x - y + 2z = 1. Per risolvere il sistema

$$\begin{cases} x + y + z = 1, \\ x - y + z = 0, \\ 3x - y + 2z = 1, \end{cases}$$

sottraiamo la prima equazione dalla seconda, e il triplo della prima equazione dalla terza; otteniamo

$$\begin{cases} x + y + z = 1 , \\ -2y = -1 , \\ -4y + z = -2 , \end{cases} \implies \begin{cases} x = 1 - y - z = 1/2 , \\ y = 1/2 , \\ z = -2 + 4y = 0 . \end{cases}$$

Il sistema ha un'unica soluzione (1/2, 1/2, 0), per cui $r \in \pi_1$ sono incidenti, e (1/2, 1/2, 0) è il loro punto di intersezione.

ESEMPIO 1.3.3. Sia r la stessa retta dell'esempio precedente e consideriamo il piano π_2 di equazione cartesiana 3x - y + 3z = 1. Per risolvere il sistema

$$\begin{cases} x + y + z = 1, \\ x - y + z = 0, \\ 3x - y + 3z = 1. \end{cases}$$

sottraiamo la prima equazione dalla seconda, e il triplo della prima equazione dalla terza; otteniamo

$$\begin{cases} x+y+z=1 \;, \\ -2y=-1 \;, \\ -4y=-2 \;, \end{cases} \implies \begin{cases} x=1-y-z=1/2-z \;, \\ y=1/2 \;, \\ y=1/2 \;. \end{cases}$$

Il sistema ha infinite soluzioni della forma (1/2 - z, 1/2, z), per cui r è contenuta in π_2 . Nota che

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 1/2 \\ 1/2 \\ 0 \end{vmatrix} + z \begin{vmatrix} -1 \\ 0 \\ 1 \end{vmatrix}$$

è un'equazione parametrica della retta r.

ESEMPIO 1.3.4. Sia r la stessa retta dell'Esempio 1.3.2, e consideriamo il piano π_3 di equazione cartesiana 3x - y + 3z = 0. Per risolvere il sistema

$$\begin{cases} x + y + z = 1, \\ x - y + z = 0, \\ 3x - y + 3z = 0 \end{cases}$$

sottraiamo la prima equazione dalla seconda, e il triplo della prima equazione dalla terza; otteniamo

$$\begin{cases} x + y + z = 1, \\ -2y = -1, \\ -4y = -3, \end{cases} \implies \begin{cases} x = 1 - y - z, \\ y = 1/2, \\ y = 3/4, \end{cases}$$

che è chiaramente impossibile, per cui r e π_3 sono paralleli.

Infine, le posizioni reciproche di due rette non dipendono solo da quanti punti sono nell'intersezione:

Definizione 1.3.4: Siano r_1 ed r_2 due rette nello spazio. Se $r_1 \cap r_2$ è un punto, diremo che r_1 ed r_2 sono incidenti; se $r_1 = r_2$ diremo che sono coincidenti. Se $r_1 \cap r_2 = \emptyset$ abbiamo due casi: se r_1 ed r_2 hanno la stessa retta di giacitura allora sono parallele; se invece hanno rette di giacitura distinte sono sghembe.

Le equazioni parametriche sono utili per distinguere rette incidenti o sghembe dalle rette parallele o coincidenti, in quanto le due rette hanno la stessa retta di giacitura se e solo se (perché?) i loro vettori di giacitura sono proporzionali. Usando le equazioni cartesiane riusciamo invece a distinguere i quattro casi.

Supponiamo che le rette r_1 ed r_2 abbiamo come equazioni cartesiane

$$r_1: \quad \begin{cases} a_1x + b_1y + c_1z = d_1 \ , \\ a_2x + b_2y + c_2z = d_2 \ , \end{cases} \quad r_2: \quad \begin{cases} a_1'x + b_1'y + c_1'z = d_1' \ , \\ a_2'x + b_2'y + c_2'z = d_2' \ , \end{cases}$$

e consideriamo il sistema di quattro equazioni in tre incognite

$$\begin{cases} a_1x + b_1y + c_1z = d_1, \\ a_2x + b_2y + c_2z = d_2, \\ a'_1x + b'_1y + c'_1z = d'_1, \\ a'_2x + b'_2y + c'_2z = d'_2. \end{cases}$$

Se questo sistema ha infinite soluzioni allora le due rette coincidono; se ha un'unica soluzione allora le due rette sono incidenti; se non ha soluzioni allora le due rette sono parallele o sghembe. Per distinguere fra questi due ultimi casi occorre considerare il sistema

$$\begin{cases} a_1x + b_1y + c_1z = 0, \\ a_2x + b_2y + c_2z = 0, \\ a'_1x + b'_1y + c'_1z = 0, \\ a'_2x + b'_2y + c'_2z = 0, \end{cases}$$

che fornisce l'intersezione delle rette di giacitura. Se questo sistema ha infinite soluzioni allora (perché?) le due rette sono parallele; se invece ha come unica soluzione il punto (0,0,0) allora le due rette sono sghembe.

Concludiamo queste note con esempi delle quattro situazioni.

Esempio 1.3.5. Consideriamo le due rette

$$r_1: \quad \begin{cases} x-y+z=1 \; , \\ x+y-z=1 \; , \end{cases} \qquad r_2: \quad \begin{cases} 3x+y-z=3 \; , \\ 3x-y+z=3 \; . \end{cases}$$

Per risolvere il sistema

$$\begin{cases} x - y + z = 1, \\ x + y - z = 1, \\ 3x + y - z = 3, \\ 3x - y + z = 3. \end{cases}$$

1.3 Rette 13

sottraiamo la prima equazione dalla seconda, e il triplo della prima equazione dalla terza e dalla quarta. Otteniamo

$$\begin{cases} x - y + z = 1 \ , \\ 2y - 2z = 0 \ , \\ 4y - 4z = 0 \ , \\ 2y - 2z = 0 \ , \end{cases} \implies \begin{cases} x = 1 + y - z = 1 \ , \\ y = z \ , \\ y = z \ , \\ y = z \ ; \end{cases}$$

quindi il sistema ha infinite soluzioni della forma (1, z, z), per cui le due rette sono coincidenti, e

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} + z \begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$$

è una loro equazione parametrica.

Esempio 1.3.6. Sia r_1 la stessa retta dell'esempio precedente, e consideriamo la retta

$$r_3: \begin{cases} x+y+z=0, \\ 3x+y+z=2. \end{cases}$$

Per risolvere il sistema

$$\begin{cases} x - y + z = 1, \\ x + y - z = 1, \\ x + y + z = 0, \\ 3x + y + z = 2. \end{cases}$$

sottraiamo la prima equazione dalla seconda e dalla terza, e il triplo della prima dalla quarta. Otteniamo

$$\begin{cases} x - y + z = 1 , \\ 2y - 2z = 0 , \\ 2y = -1 , \\ 4y - 2z = -1 , \end{cases} \implies \begin{cases} x = 1 + y - z , \\ y = z , \\ y = -1/2 , \\ y = -\frac{1}{4} + \frac{1}{2}z , \end{cases} \implies \begin{cases} x = 1 , \\ y = -1/2 , \\ z = -1/2 . \end{cases}$$

Il sistema ha un'unica soluzione (1, -1/2, -1/2); quindi le rette r_1 ed r_3 sono incidenti, e si intersecano nel punto (1, -1/2, -1/2).

Esempio 1.3.7. Sia r_1 la stessa retta dell'Esempio 1.3.5, e consideriamo la retta

$$r_4: \begin{cases} 3x + y - z = 3, \\ 3x - y + z = 4. \end{cases}$$

Per risolvere il sistema

$$\begin{cases} x-y+z=1 \; , \\ x+y-z=1 \; , \\ 3x+y-z=3 \; , \\ 3x-y+z=4 \; . \end{cases}$$

sottraiamo la prima equazione dalla seconda, e il triplo della prima equazione dalla terza e dalla quarta. Otteniamo

$$\begin{cases} x - y + z = 1, \\ 2y - 2z = 0, \\ 4y - 4z = 0, \\ 2y - 2z = 1, \end{cases} \implies \begin{cases} x = 1 + y - z, \\ y = z, \\ y = z, \\ y = z + 1, \end{cases}$$

che chiaramente non può avere soluzioni; quindi r_1 ed r_4 sono parallele o sghembe. Per capire in quale dei due casi siamo consideriamo il sistema

$$\begin{cases} x - y + z = 0, \\ x + y - z = 0, \\ 3x + y - z = 0, \\ 3x - y + z = 0. \end{cases}$$

Procedendo come prima ricaviamo

$$\begin{cases} x - y + z = 0 , \\ 2y - 2z = 0 , \\ 4y - 4z = 0 , \\ 2y - 2z = 0 , \end{cases} \implies \begin{cases} x = y - z = 0 , \\ y = z , \\ y = z , \\ y = z , \end{cases}$$

che ha infinite soluzioni della forma (0, z, z), per cui r_1 ed r_4 sono parallele.

ESEMPIO 1.3.8. Infine, sia r_1 sempre la stessa retta dell'Esempio 1.3.5, e consideriamo la retta

$$r_5: \begin{cases} x+y+z=0 \ , \\ 3x+y+z=-2 \ . \end{cases}$$

Per risolvere il sistema

$$\begin{cases} x - y + z = 1, \\ x + y - z = 1, \\ x + y + z = 0, \\ 3x + y + z = -2 \end{cases}$$

sottraiamo la prima equazione dalla seconda e dalla terza, e il triplo della prima dalla quarta. Otteniamo

$$\begin{cases} x - y + z = 1 \ , \\ 2y - 2z = 0 \ , \\ 2y = -1 \ , \\ 4y - 2z = -5 \ , \end{cases} \implies \begin{cases} x = 1 + y - z \ , \\ y = z \ , \\ y = -1/2 \ , \\ y = -\frac{5}{4} + \frac{1}{2}z \ , \end{cases}$$

che non ha soluzioni, in quanto se z=y=-1/2 allora $-\frac{5}{4}+\frac{1}{2}z=-\frac{3}{2}\neq -\frac{1}{2}=y$, contro l'ultima equazione. Quindi r_1 ed r_5 sono o parallele o sghembe. Per capire in quale dei due casi siamo consideriamo il sistema

$$\begin{cases} x - y + z = 0, \\ x + y - z = 0, \\ x + y + z = 0, \\ 3x + y + z = 0. \end{cases}$$

Procedendo come prima ricaviamo

$$\begin{cases} x - y + z = 0 , \\ 2y - 2z = 0 , \\ 2y = 0 , \\ 4y - 2z = 0 , \end{cases} \implies \begin{cases} x = y - z , \\ y = z , \\ y = 0 , \\ y = \frac{1}{2}z , \end{cases}$$

che ha come unica soluzione (0,0,0). Di conseguenza, le rette r_1 ed r_5 sono sghembe.