## Chapter 2

## Structural stability

### 2.1 Definitions and one-dimensional examples

A very important notion, both from a theoretical point of view and for applications, is that of stability: the qualitative behavior should not change under small perturbations.
Definition 2.1.1: A $C^{r}$ map $f$ is $C^{m}$ structurally stable (with $1 \leq m \leq r \leq \infty$ ) if there exists a neighbourhood $U$ of $f$ in the $C^{m}$ topology such that every $g \in U$ is topologically conjugated to $f$.

Remark 2.1.1. The reason that for structural stability we just ask the existence of a topological conjugacy with close maps is because we are interested only in the qualitative properties of the dynamics. For instance, the maps $f(x)=\frac{1}{2} x$ and $g(x)=\frac{1}{3} x$ have the same qualitative dynamics over $\mathbb{R}$ (and indeed are topologically conjugated; see below) but they cannot be $C^{1}$-conjugated. Indeed, assume there is a $C^{1}$ diffeomorphism $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $h \circ g=f \circ h$. Then we must have $h(0)=0$ (because the origin is the unique fixed point of both $f$ and $g$ ) and

$$
\frac{1}{3} h^{\prime}(0)=h^{\prime}(g(0)) g^{\prime}(0)=(h \circ g)^{\prime}(0)=(f \circ h)^{\prime}(0)=f^{\prime}(h(0)) h^{\prime}(0)=\frac{1}{2} h^{\prime}(0)
$$

but this implies $h^{\prime}(0)=0$, which is impossible.
Let us begin with examples of non-structurally stable maps.
Example 2.1.1. For $\varepsilon \in \mathbb{R}$ let $F_{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}$ given by $F_{\varepsilon}(x)=x-x^{2}+\varepsilon$. We have $\left\|F_{\varepsilon}-F_{0}\right\|_{r}=|\varepsilon|$ for all $r \geq 0$, and hence $F_{\varepsilon} \rightarrow F_{0}$ in the $C^{r}$ topology. But $F_{\varepsilon}$ has two distinct fixed points for $\varepsilon>0$, only one for $\varepsilon=0$, and none for $\varepsilon<0$; therefore $F_{0}$ cannot be topologically conjugated to $F_{\varepsilon}$ for $\varepsilon \neq 0$, and hence $F_{0}$ is not $C^{1}$-structurally stable.
Example 2.1.2. The rotations $R_{\alpha}: S^{1} \rightarrow S^{1}$ are not structurally stable. Indeed, $R_{\alpha}$ is periodic if $\alpha$ is rational, and it has no periodic points if $\alpha$ is irrational, and so a rational rotation cannot ever be topologically conjugated to an irrational rotation, no matter how close they are.

Exercise 2.1.1. For $\lambda \in \mathbb{R}$ let $T_{\lambda}: \mathbb{R} \rightarrow \mathbb{R}$ given by $T_{\lambda}(x)=x^{3}-\lambda x$. Prove that:
(i) $\operatorname{Fix}\left(T_{\lambda}\right)=\{-\sqrt{1+\lambda}, 0, \sqrt{1+\lambda}\}$ for $-1<\lambda$;
(ii) when $-1<\lambda \leq 1$ the open interval $(-\sqrt{1+\lambda}, \sqrt{1+\lambda})$ is attracted by the origin;
(iii) when $\lambda>1$ the point $\sqrt{\lambda-1} \in(-\sqrt{1+\lambda}, \sqrt{1+\lambda})$ is periodic of exact period 2 ;
(iv) $T_{1}$ is not $C^{1}$-structurally stable.

And now a couple of examples of structurally stable maps.
Proposition 2.1.1: The map $L: \mathbb{R} \rightarrow \mathbb{R}$ given by $L(x)=\frac{1}{2} x$ is $C^{1}$-structurally stable.
Proof: We shall show that every $g \in C^{1}(\mathbb{R}, \mathbb{R})$ such that $\|g-L\|_{1}<1 / 2$ is topologically conjugated to $L$. The first remark is that

$$
\begin{equation*}
0<\frac{1}{2}-\|g-L\|_{1} \leq g^{\prime}(x) \leq \frac{1}{2}+\|g-L\|_{1}<1 \tag{2.1.1}
\end{equation*}
$$

for all $x \in \mathbb{R}$; therefore $g$ is a contraction (Corollary 1.2.3), has a unique fixed point $p_{0} \in \mathbb{R}$ and all $g$-orbits converge exponentially to $p_{0}$. Up to replacing $g$ by the map $x \mapsto g\left(x+p_{0}\right)-p_{0}$, which is conjugated to $g$, we can also assume $p_{0}=0$.

It is clear that for every $x \neq 0$ there exists a unique $k_{0} \in \mathbb{Z}$ such that $L^{k_{0}}(x) \in[-10,-5) \cup(5,10]$; let us prove a similar property for $g$.

The inequalities (2.1.1) imply that $g$ is strictly increasing and $g$ - id is strictly decreasing; in particular, $x<0$ implies $0>g(x)>x$ and $x>0$ implies $0<g(x)<x$. We then claim that for every $x \neq 0$ there exists a unique $h_{0} \in \mathbb{Z}$ such that $g^{h_{0}}(x) \in[-10, g(-10)) \cup(g(10), 10]$. Indeed, take $x>0$; since $g^{h}(x) \rightarrow 0^{+}$there exists a minimum $h_{0} \geq 0$ such that $g^{h}(x) \leq g(10)$ for all $h \geq h_{0}+1$. Then

$$
g(10)<g^{h_{0}}(x) \leq 10<g^{h_{0}-1}(x)<g^{h_{0}-2}(x)<\cdots
$$

as required. A similar argument works for $x<0$.
To build a topological conjugation $h: \mathbb{R} \rightarrow \mathbb{R}$ between $L$ and $g$ let us begin by requiring it to be a linear homeomorphism of $[-10,-5] \cup[5,10]$ with $[-10, g(-10)] \cup[g(10), 10]$ fixing $\pm 10$, and hence sending $\pm 5$ in $g( \pm 10)$, so that $g \circ h( \pm 10)=h \circ f( \pm 10)$. For $x \notin[-10,-5] \cup[5,10] \cup\{0\}$ take $k_{0} \in \mathbb{Z}$ such that $L^{k_{0}}(x) \in[-10,-5) \cup(5,10]$ and set

$$
h(x)=g^{-k_{0}} \circ h \circ L^{k_{0}}(x)
$$

Finally, set $h(0)=0$. We must show that $h: \mathbb{R} \rightarrow \mathbb{R}$ is a homeomorphism conjugating $L$ and $g$.
First of all, $h$ is invertible. Indeed, let us define $h_{1}: \mathbb{R} \rightarrow \mathbb{R}$ as follows: put $h_{1}(0)=0$, and, for $y \neq 0$, take $h_{0} \in \mathbb{Z}$ such that $g^{h_{0}}(y) \in[-10, g(-10)) \cup(g(10), 10]$ and put $h_{1}(y)=L^{-h_{0}} \circ h^{-1} \circ g^{h_{0}}(y)$. Then it is easy to check that $h \circ h_{1}=h_{1} \circ h=$ id.

Now let us show that $h$ is continuous. If $x_{0} \neq 0$ and $L^{k_{0}}\left(x_{0}\right) \neq \pm 10$ then there is a $\delta>0$ such that $L^{k_{0}}(x) \in(-10,5) \cup(5,10)$ as soon as $\left|x-x_{0}\right|<\delta$, and hence $h$ is continuous in $x_{0}$. If $L^{k_{0}}(x)=10$ and $x \rightarrow x_{0}^{-}$then $h(x)=g^{-k_{0}} \circ h \circ L^{k_{0}}(x) \rightarrow g^{-k_{0}}(10)=h\left(x_{0}\right)$; if instead $x \rightarrow x_{0}^{+}$then

$$
h(x)=g^{-k_{0}-1} \circ h \circ L^{k_{0}+1}(x) \rightarrow g^{-k_{0}-1} \circ h \circ L(10)=g^{-k_{0}-1}(h(5))=g^{-k_{0}-1}(g(10))=g^{-k_{0}}(10)=h\left(x_{0}\right),
$$

and so $h$ is continuous in $x_{0}$. So $h: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ is a homeomorphism and strictly increasing, because it is so on $[-10,5) \cup(5,10]$; therefore it must be continuous in zero too.

Finally, for $x \in \mathbb{R}^{*}$ we have

$$
g \circ h(x)=g^{-k_{0}+1} \circ h \circ L^{k_{0}}(x)=g^{-k_{0}+1} \circ h \circ L^{k_{0}-1}(L(x))=h \circ L(x)
$$

and $g \circ h=h \circ f$ as required.
The previous proof used, without naming it, the notion of fundamental domain.
Definition 2.1.2: Let $f: X \rightarrow X$ a continuous self-map of a topological space $X$. A fundamental domain for $f$ is an open subset $D \subset X$ such that every orbit of $f$ intersect $D$ in at most one point and intersect $\bar{D}$ in at least one point.
Exercise 2.1.2. Let $f: X \rightarrow X$ and $g: Y \rightarrow Y$ be two continuous self-maps. Assume that there are a fundamental domain $D_{f} \subset X$ for $f$, a fundamental domain $D_{g} \subset Y$ for $g$ and a homeomorphism $h: \overline{D_{f}} \rightarrow \overline{D_{g}}$ such that $g \circ h=h \circ f$ on $f^{-1}\left(\overline{D_{f}}\right) \cap \overline{D_{f}}$. Show that $f$ and $g$ are topologically conjugated.

A variation on the previous argument allows us to prove the following
Proposition 2.1.2: If $\mu>2+\sqrt{5}$ then $F_{\mu}$ is $C^{2}$-structurally stable.
Proof: We shall use the notations introduced in Section 1.6. In particular, the hypothesis $\mu>2+\sqrt{5}$ implies $\left|F_{\mu}^{\prime}(x)\right|>1$ for all $x \in I_{0} \cup I_{1}$.

Take $g \in C^{2}(\mathbb{R}, \mathbb{R})$. Since $F_{\mu}^{\prime \prime} \equiv-2 \mu$, there is $\varepsilon_{1}>0$ such that $\left\|g-F_{\mu}\right\|_{2}<\varepsilon_{1}$ then $g^{\prime \prime}(x)<0$ for all $x \in \mathbb{R}$; in particular, $g$ is concave, and so it can have at most two fixed points. Actually, if $\left\|g-F_{\mu}\right\|_{0}$ is small enough then $g$ has exactly two fixed points $\alpha$ and $\beta$, as close as we want to 0 and $p_{\mu}$. Indeed, choose $x_{1}<0<x_{2}<p_{\mu}$ and let $\delta=\min \left\{\left|F_{\mu}\left(x_{1}\right)-x_{1}\right|,\left|F_{\mu}\left(x_{2}\right)-x_{2}\right|\right\}$. If $\left\|g-F_{\mu}\right\|_{0}<\delta / 2$ then we have $g\left(x_{1}\right)-x_{1}<0$ and $g\left(x_{2}\right)-x_{2}>0$, and hence $g$ must have a fixed point $\alpha \in\left(x_{1}, x_{2}\right)$. In a similar way one proves that $g$ has a fixed point $\beta$ close to $p_{\mu}$.

Being $g$ concave, it has a unique critical point $c$; up to take $\left\|g-F_{\mu}\right\|_{1}$ small enough we can assume that $c$ is close to $1 / 2$ and $\alpha<c<\beta$, and so there must exist $\alpha<\beta^{\prime}<c<\beta<\alpha^{\prime}$ such that $g\left(\alpha^{\prime}\right)=\alpha$ and $g\left(\beta^{\prime}\right)=\beta$. Finally, up to decreasing $\| g-\left.F_{\mu}\right|_{1}$ again, we can also assume that there are $\alpha<a_{0}<c<a_{1}<p_{\mu}$ such that $g\left(a_{0}\right)=g\left(a_{1}\right)=\alpha^{\prime}$ and $\left|g^{\prime}\right|>1$ on $\left[\alpha, a_{0}\right] \cup\left[a_{1}, \alpha^{\prime}\right]$.

So $g$ has on $\left[\alpha, \alpha^{\prime}\right]$ the same qualitative properties $F_{\mu}$ has on $[0,1]$. Furthermore, it is easy to see that $g^{k}(x) \rightarrow-\infty$ for all $x \in(-\infty, \alpha) \cup\left(\alpha^{\prime},+\infty\right)$. Moreover, arguing as we did for $F_{\mu}$ in Theorems 1.6.3 and 1.7.6, we can show that all points in $\left[\alpha, \alpha^{\prime}\right]$ have orbits tending to $-\infty$ except for the orbits belonging to a $g$-invariant Cantor set $\Lambda_{g}$ on which $g$ is topologically conjugated to a 2 -shift. In particular, we have a topological conjugation $h: \Lambda \rightarrow \Lambda_{g}$ between $\left.F_{\mu}\right|_{\Lambda}$ and $\left.g\right|_{\Lambda_{g}}$.

To extend $h$ to the rest of $\mathbb{R}$ we again use a fundamental domain. Choose $x_{0}<\min \left\{g^{2}(c), F_{\mu}^{2}(1 / 2)\right\}<0$; it is then not difficult to see that $D=\left(F_{\mu}\left(x_{0}\right), x_{0}\right)$ and $D_{g}=\left(g\left(x_{0}\right), x_{0}\right)$ are fundamental domains for $F_{\mu}$ on $(-\infty, 0)$ and for $g$ on $(-\infty, \alpha)$ respectively. Let $h: \bar{D} \rightarrow \overline{D_{g}}$ be a linear increasing homeomorphism; then, using the technique delineated in the previous proof (and in Exercise 2.1.2) we can extend $h$ to a homeomorphism $h:(-\infty, 0) \rightarrow(-\infty, \alpha)$ conjugating $F_{\mu}$ and $g$. We now extend $h$ to $(1,+\infty)$ by taking as $h(x)$ the unique solution $y \in\left(\alpha^{\prime},+\infty\right)$ of the equation $g(y)=h \circ F_{\mu}(x)$.

Now we put $h(1 / 2)=c$ and we extend $h$ to $A_{0}$ by taking, for $x \in A_{0} \cap(0,1 / 2)$, as $h(x)$ the unique solution $y \in\left(a_{0}, c\right)$ of the equation $g(y)=h \circ F_{\mu}(x)$, and, for $x \in A_{0} \cap(1 / 2,1)$, as $h(x)$ the unique solution $y \in\left(c, a_{1}\right)$ of the same equation.

Arguing by induction it is now easy to extend $h$ to all the $A_{n}$, and we end up with a homeomorphism $h: \mathbb{R} \backslash \Lambda \rightarrow \mathbb{R} \backslash \Lambda_{g}$ conjugating $F_{\mu}$ with $g$. In this way we get an invertible map $h: \mathbb{R} \rightarrow \mathbb{R}$ conjugating $F_{\mu}$ with $g$; we must only show that $h$ and its inverse are continuous at $\Lambda$, respectively $\Lambda_{g}$.

By construction, $h$ sends $I_{0} \backslash \Lambda$ onto $\left[\alpha, a_{0}\right] \backslash \Lambda_{g}$, and $I_{1} \backslash \Lambda$ onto [ $\left.a_{1}, \alpha^{\prime}\right] \backslash \Lambda_{g}$. Furthermore, again by construction, $h$ sends $I_{0} \cap \Lambda$ onto $\left[\alpha, a_{0}\right] \cap \Lambda_{g}$, and $I_{1} \cap \Lambda$ onto $\left[a_{1}, \alpha^{\prime}\right] \cap \Lambda_{g}$. Therefore $h\left(I_{0}\right)=\left[\alpha, a_{0}\right]$ and $h\left(I_{1}\right)=\left[a_{1}, \alpha^{\prime}\right]$.

Take now $x_{0} \in \Lambda$ with $S\left(x_{0}\right)=\mathbf{s}$, so that $x_{0}=\bigcap_{n \geq 0} F_{\mu}^{-n}\left(I_{s_{n}}\right)$, and hence $h\left(x_{0}\right)=\bigcap_{n \geq 0} g^{-n}\left(I_{s_{n}}^{g}\right)$, where $I_{0}^{g}=\left[\alpha, a_{0}\right]$ and $I_{1}^{g}=\left[a_{1}, \alpha^{\prime}\right]$. But we have $h\left(\bigcap_{n=0}^{n_{0}} F_{\mu}^{-n}\left(I_{s_{n}}\right)\right)=\bigcap_{n=0}^{n_{0}} g^{-n}\left(I_{s_{n}}^{g}\right)$ for every $n_{0} \geq 0$; since the intersections $\bigcap_{n=0}^{n_{0}} g^{-n}\left(I_{s_{n}}^{g}\right)$ form a fundamental system of neighbourhoods of $h\left(x_{0}\right)$ it follows that $h$ is continuous at $x_{0}$, and we are done.

Exercise 2.1.3. Let $I \subseteq \mathbb{R}$ an interval, $f: I \rightarrow I$ of class $C^{1}$, and $p \in I$ a hyperbolic fixed point of $f$ with $\left|f^{\prime}(p)\right| \neq 0$, 1. Prove that there are a neighbourhood $U$ of $p$, a neighbourhood $V$ of 0 in $\mathbb{R}$ and a homeomorphism $h: U \rightarrow V$ such that $h \circ f(x)=f^{\prime}(p) \cdot h(x)$ for all $x \in U \cap f^{-1}(U)$.

Exercise 2.1.4. Show that hyperbolic fixed points in one variable are locally $C^{1}$-structurally stable, in the sense that if $I \subseteq \mathbb{R}$ is an interval, $f: I \rightarrow I$ is of class $C^{1}$, and $p \in I$ a hyperbolic fixed point of $f$ with $\left|f^{\prime}(p)\right| \neq 0,1$, then there are a neighbourhood $U$ of $p$ and an $\varepsilon>0$ so that if $g \in C^{1}(I, I)$ is such that $\|f-g\|_{1, U}<\varepsilon$ then $g$ has a hyperbolic fixed point in $U$ and $\left.g\right|_{U}$ is topologically conjugated to $\left.f\right|_{U}$.

### 2.2 Expanding maps of the circle

This section is devoted to a particularly nice example of structurally stable maps: the expanding self-maps of the circle $S^{1}$.

Definition 2.2.1: A continuous self-map $f: X \rightarrow X$ of a metric space $X$ is expanding if there are $\mu>1$ and $\varepsilon_{0}>0$ such that for all $x, y \in X$ such that $d(x, y)<\varepsilon_{0}$ one has

$$
d(f(x), f(y)) \geq \mu d(x, y)
$$

Exercise 2.2.1. Prove that every open expanding map of a compact connected metric space is a covering map.

If $X$ actually is a Riemannian manifold $M$, we have an infinitesimal characterization of expansivity:
Proposition 2.2.1: Let $f: M \rightarrow M$ be a $C^{1}$ self-map of a Riemannian manifold $M$. Then:
(i) If $f$ is expanding there is $\mu>1$ so that $\left\|d f_{x}(v)\right\| \geq \mu\|v\|$ for every $x \in M$ and $v \in T_{x} M$.
(ii) If $M$ is compact and there is $\mu>1$ such that $\left\|d f_{x}(v)\right\| \geq \mu\|v\|$ for every $x \in M$ and $v \in T_{x} M$, then $f$ is expanding.

Proof: (i) Let $\mu>1$ and $\varepsilon_{0}>0$ be the constants associated to $f$. Choose $v \in T_{x} M \backslash\{O\}$, and let $\sigma:(-\varepsilon, \varepsilon) \rightarrow M$ be a geodesic with $\sigma(0)=x$ and $\sigma^{\prime}(0)=v$. In particular, for $t>0$ small we have $d(x, \sigma(t))=t\|v\|<\varepsilon_{0}$, and thus

$$
\mu t\|v\|=\mu d(x, \sigma(t)) \leq d(f(x), f(\sigma(t))) \leq \int_{0}^{t}\left\|d f_{\sigma(s)}\left(\sigma^{\prime}(s)\right)\right\| d s
$$

Dividing by $t$ and letting $t \rightarrow 0$ we get $\mu\|v\| \leq\left\|d f_{x}(v)\right\|$, as claimed.
(ii) By the inverse function theorem, $f$ is a local diffeomorphism. By compactness we can choose $\delta_{0}>0$ such that every ball of radius $\delta_{0}$ is sent diffeomorphically onto its image, and $\delta_{1}>0$ such that every connected component of the inverse image of a $\delta_{1}$-ball has a diameter less than $\delta_{0}$. Finally, let $0<\varepsilon<\delta_{0}$ be such that $d(x, y) \leq \varepsilon$ implies $d(f(x), f(y))<\delta_{1} / 2$. Let $\gamma:[0,1] \rightarrow M$ be a smooth curve connecting $f(x)$ to $f(y)$ inside a $\delta_{1}$-ball. Then we can lift the curve $\gamma$ to a curve $\tilde{\gamma}$ such that $\tilde{\gamma}(0)=x, \tilde{\gamma}(1)=y$ and $f \circ \tilde{\gamma}=\gamma$. Then

$$
\operatorname{Length}(\gamma)=\int_{0}^{1}\left\|d f_{\tilde{\gamma}(t)}(\dot{\tilde{\gamma}}(t))\right\| d t \geq \mu \int_{0}^{1}\|\dot{\tilde{\gamma}}(t)\| d t=\mu \operatorname{Length}(\tilde{\gamma}) \geq \mu d(x, y)
$$

Since $d(f(x), f(y))$ is the infimum of the length of curves connecting $f(y)$ to $f(y)$ inside a $\delta_{1}$-ball, we get $d(f(x), f(y)) \geq \mu d(x, y)$, and we are done.
Corollary 2.2.2: If $f: M \rightarrow M$ is a $C^{1}$ expanding map of a compact Riemannian manifold $M$, then any $g \in C^{1}(M, M)$ sufficiently $C^{1}$-close to $f$ is still expanding.
Proof: If $g$ is sufficiently $C^{1}$-close to $f$ there is, by Proposition 2.2.1.(i), a $\mu^{\prime}>1$ such that $\left\|d f_{x}(v)\right\| \geq \mu^{\prime}\|v\|$ for all $x \in M$ and $v \in T_{x} M$, and hence $g$ is expanding by Proposition 2.2.1.(ii).

Now we introduce the standard example of expanding map.
Definition 2.2.2: Let $\pi: \mathbb{R} \rightarrow S^{1}=\mathbb{R} / \mathbb{Z}$ be the usual covering map, and endow $S^{1}$ with the distance induced by $\pi$, that is

$$
d(\pi(s), \pi(t))=|s-t| \quad(\bmod 1)
$$

For $m \in \mathbb{Z}^{*}$ let then $E_{m}: S^{1} \rightarrow S^{1}$ be given by $E_{m}(x)=m x(\bmod 1)$.
Exercise 2.2.2. Given $m \in \mathbb{Z}^{*}$ with $|m| \geq 2$, prove that the map $E_{m}$ is expanding, chaotic, and has $\left|m^{k}-1\right|$ periodic points of period $k$.

Our aim is to prove that the maps $E_{m}$ (and, more generally, all expanding self-maps of class $C^{1}$ of $S^{1}$ ) are $C^{1}$-structurally stable. To achieve this we need the notion of degree of a continuous self-map of $S^{1}$.

Lemma 2.2.3: Let $f: S^{1} \rightarrow S^{1}$ be a continuous self-map of $S^{1}$, and $F: \mathbb{R} \rightarrow \mathbb{R}$ a lift of $f$ to the universal covering $\pi: \mathbb{R} \rightarrow S^{1}$. Then the number $F(x+1)-F(x)$ is an integer independent of $x$ and of the chosen lift.
Proof: We have $\pi(F(x+1))=f(\pi(x+1))=f(\pi(x))=\pi(F(x))$, and so $F(x+1)-F(x)$ is an integer; since it depends continuously on $x$, it is constant. If $\tilde{F}$ is another lift, then we also see that $\tilde{F}-F$ is an integer constant, and thus $\tilde{F}(x+1)-\tilde{F}(x)=F(x+1)-F(x)$.
Definition 2.2.3: If $f: S^{1} \rightarrow S^{1}$ is a continuous self-map of $S^{1}$ and $F: \mathbb{R} \rightarrow \mathbb{R}$ is any lift of $f$, the integer $\operatorname{deg}(f)=F(x+1)-F(x)$ is the degree of $f$.
Remark 2.2.1. It is not difficult to see that if $f_{*}: \pi_{1}\left(S^{1}\right) \rightarrow \pi_{1}\left(S^{1}\right)$ is the endomorphism induced by $f: S^{1} \rightarrow S^{1}$ on the fundamental group, one has $f_{*}(\gamma)=\operatorname{deg}(f) \gamma$ for all $\gamma \in \pi_{1}\left(S^{1}\right)$.
Example 2.2.1. Since a lift of $E_{m}: S^{1} \rightarrow S^{1}$ is the map $\tilde{E}_{m}: \mathbb{R} \rightarrow \mathbb{R}$ given by $\tilde{E}_{m}(x)=m x$, it immediately follows that $\operatorname{deg}\left(E_{m}\right)=m$.

Lemma 2.2.4: The degree is continuous and hence locally constant in the $C^{0}$ topology.
Proof: Let $f$ and $g$ be two continuous self-maps of $S^{1}$ such that $d(f(x), g(x))<1 / 4$ for all $x \in S^{1}$; it suffices to prove that $\operatorname{deg}(f)=\operatorname{deg}(g)$. Let $F$ and $G$ be lifts of $f$ and $g$, with $|F(0)-G(0)|<1 / 4$, and set $\varphi=G-F$. Then

$$
\begin{aligned}
G(t+1)-\varphi(t+1) & =F(t+1)=F(t)+\operatorname{deg}(f)=G(t)-\varphi(t)+\operatorname{deg}(f) \\
& =G(t+1)+\operatorname{deg}(f)-\operatorname{deg}(g)-\varphi(t)
\end{aligned}
$$

So $\operatorname{deg}(g)-\operatorname{deg}(f) \equiv \varphi(t+1)-\varphi(t)$. But $d_{0}(f, g)<1 / 4$ and $|F(0)-G(0)|<1 / 4$ imply $|\varphi(t)|<1 / 4$ for all $t \in \mathbb{R}$; thus $|\varphi(t+1)-\varphi(t)|<1 / 2$, that is $\operatorname{deg}(f)=\operatorname{deg}(g)$.

The degree of a continuous expanding map of the circle is necessarily greater than one in absolute value. More precisely:
Lemma 2.2.5: Let $f: S^{1} \rightarrow S^{1}$ be a continuous expanding map, of constants $\varepsilon_{0}>0$ and $\mu>1$, and let $F: \mathbb{R} \rightarrow \mathbb{R}$ be any lift of $f$. Then:
(i) $F$ is expanding, of constants $\varepsilon_{1} \leq \varepsilon_{0}$ and $\mu$;
(ii) $F$ is strictly monotone;
(iii) we have $|F(s)-F(t)| \geq \mu|s-t|$ for all $s, t \in \mathbb{R}$;
(iv) $|\operatorname{deg}(f)| \geq 2$.

Proof: (i) Choose $\varepsilon_{1} \leq \varepsilon_{0}$ so that every interval $I \subset S^{1}$ of length $\varepsilon_{1}$ is well-covered by $\pi$ (that is, $\pi^{-1}(I)$ is the disjoint union of intervals of length $\varepsilon_{1}$ homeomorphically sent onto $I$ ). In particular, then, $\pi$ restricted to any interval in $\mathbb{R}$ of length $\varepsilon_{1}$ is a homeomorphism preserving the distance. Hence if $s, t \in \mathbb{R}$ are such that $|s-t|<\varepsilon_{1}$ we have $d(\pi(s), \pi(t))=|s-t|<\varepsilon_{0}$, and so

$$
|F(s)-F(t)| \geq d(f(\pi(s)), f(\pi(t))) \geq \mu d(\pi(s), \pi(t))=\mu|s-t|
$$

(ii) If $F$ is not strictly monotone we can find $t_{1}<t_{2}<t_{3}$ such that $F\left(t_{1}\right) \leq F\left(t_{2}\right) \geq F\left(t_{3}\right)$ or $F\left(t_{1}\right) \geq F\left(t_{2}\right) \leq F\left(t_{3}\right)$. Clearly, we can assume that $t_{2}$ is the absolute maximum (or minimum) of $F$ in $\left[t_{1}, t_{3}\right]$. But then we can find $t_{1}^{\prime}<t_{3}^{\prime}$ with $t_{1}^{\prime} \leq t_{2} \leq t_{3}^{\prime}$, as close as we want to $t_{2}$ and such that $F\left(t_{1}^{\prime}\right)=F\left(t_{3}^{\prime}\right)$, and thus $F$ is not expanding.
(iii) Given $s, t \in \mathbb{R}$, subdivide the interval from $s$ to $t$ in a finite number of subintervals of length at most $\varepsilon_{1}$. By (i), the length of the image of each subinterval is at least $\mu$ times the length of the subinterval; moreover, by (ii), the images intersect only in the end points. Therefore the length of the image of the interval from $s$ to $t$ (that is $|F(s)-F(t)|$ ) is at least $\mu$ times the distance from $s$ to $t$.
(iv) $|\operatorname{deg} f|=|F(t+1)-F(t)| \geq \mu|(t+1)-t|=\mu>1$.

Lemma 2.2.6: Let $f: S^{1} \rightarrow S^{1}$ be continuous of degree $m$, with $m \neq 1$. Then $f$ has a lift with a fixed point $p \in[-1 / 2,1 / 2]$.

Proof: Let $F$ be a lift of $f$, and set $H(t)=F(t)-t$. Since

$$
H(1 / 2)-H(-1 / 2)=F(1 / 2)-F(-1 / 2)-1=m-1
$$

there is at least one integer $k$ between $H(-1 / 2)$ and $H(1 / 2)$, and so there is $p \in[-1 / 2,1 / 2]$ so that $H(p)=k$. Replacing $F$ by $F-k$ we get a lift with $F(p)=p$.

Theorem 2.2.7: Every expanding map $f$ of the circle of degree $m$ is topologically conjugate to the map $E_{m}$.
Proof: Let $F$ denote a lift of $f$ with a fixed point $\underset{\tilde{E}}{p} \in[-1 / 2,1 / 2]$ as in the previous lemma, and let $\tilde{E}_{m}$ denote the lift of $E_{m}$ such that $\tilde{E}_{m}(0)=0$, that is, $\tilde{E}_{m}(t)=m t$.

We shall use a technique of proof known as coding. Let us first assume $m$ positive. Set $\Delta_{0}^{0}=[0,1]$, and $\Delta_{j}^{i}=\left[i / m^{j},(i+1) / m^{j}\right]$ for $j \in \mathbb{N}, 0 \leq i \leq m^{j}-1$. Then

$$
\begin{equation*}
\tilde{E}_{m}\left(\frac{i}{m^{j}}\right)=\frac{[i]_{m^{j-1}}}{m^{j-1}} \quad(\bmod 1) \tag{2.2.1}
\end{equation*}
$$

where $[i]_{m^{j-1}}$ denotes the unique integer $i^{\prime}$ between 0 and $m^{j-1}-1$ such that $i^{\prime} \equiv i\left(\bmod m^{j-1}\right)$. The set $\pi(\Sigma)=\left\{\pi\left(i / m^{j}\right)\right\}_{j \in \mathbb{N}, i=0, \ldots, m^{j}-1}$, where $\pi: \mathbb{R} \rightarrow S^{1}$ is the universal covering, is dense in $S^{1}$; we shall define our homemomorphism $h: S^{1} \rightarrow S^{1}$ on this set and then extend it to $S^{1}$ by continuity.

To define $h$ we shall actually define a lift $H:[0,1] \rightarrow[p, p+1]$ proceeding by induction on $j$. For $j=0$ we set $a_{0}^{0}=p, a_{0}^{1}=p+1, H(0)=H(1)=p$ and $\Gamma_{0}^{0}=[p, p+1]$. For $j=1$, since $F(p)=p, F(p+1)=p+m$ and $F$ is strictly monotone, there are uniquely defined points $a_{1}^{0}=p<a_{1}^{1}<\cdots<a_{1}^{m-1}<p+1=a_{1}^{m}$ such that $F\left(a_{1}^{i}\right)=p+i$, for $i=0, \ldots, m$. Set then $H(i / m)=a_{1}^{i}$ and $\Gamma_{1}^{i}=\left[a_{1}^{i}, a_{1}^{i+1}\right]$ for $i=0, \ldots, m-1$. Clearly, we have

$$
f\left(\pi\left(\Gamma_{1}^{i}\right)\right)=\pi\left(F\left(\Gamma_{1}^{i}\right)\right)=\pi([p+i, p+i+1])=S^{1}
$$

and $f$ restricted to $\pi\left(\Gamma_{1}^{i}\right)$ is injective but for the identification at the ends.
Assume, by induction, we have defined points $a_{j-1}^{0}=p<\cdots<a_{j-1}^{m^{j-1}}=p+1$. For $i=0, \ldots, m^{j-1}-1$ there are uniquely defined points

$$
a_{j}^{m i}=a_{j-1}^{i}<a_{j}^{m i+1}<\cdots<a_{j}^{m(i+1)}=a_{j-1}^{i+1}
$$

such that

$$
\begin{equation*}
F\left(a_{j}^{m i+l}\right)=a_{j-1}^{[m i+l]_{m j-1}} \quad(\bmod 1) \tag{2.2.2}
\end{equation*}
$$

Set then $H\left(i / m^{j}\right)=a_{j}^{i}$ and $\Gamma_{j}^{i}=\left[a_{j}^{i}, a_{j}^{i+1}\right]$ for $i=0, \ldots, m^{j}-1$. Clearly, $f^{j}\left(\pi\left(\Gamma_{j}^{i}\right)\right)=S^{1}$, and $f^{j}$ restricted to $\pi\left(\Gamma_{j}^{i}\right)$ is injective but for the identification at the ends.

In other words, we have done the following: we started subdividing $[p, p+m]$ in $m$ interval of length 1 , and we subdivided $[p, p+1]$ using the inverse images via $F$ of those intervals. Then we subdivided each $[p+i, p+i+1]$ as we did in $[p, p+1]$ working modulo 1 ; the inverse images via $F$ provide a subdivision of the first subdivision of $[p, p+1]$, and so on.

In this way the map $H: \Sigma \rightarrow[p, p+1]$ given by $H\left(i / m^{j}\right)=a_{j}^{i}$ is strictly monotone. Since $\Sigma$ is dense in $[0,1]$, we can extend $H$ to a strictly monotone map $H:[0,1] \rightarrow[p, p+1]$ by setting

$$
H(t)=\sup \{H(s) \mid s \in \Sigma, s<t\}
$$

The map $H$ induces an invertible map $h: S^{1} \rightarrow S^{1}$ such that $f \circ h=h \circ E_{m}$, thanks to (2.2.1) and (2.2.2). To end the proof we need to show that $H$ is continuous.

Now $H$ is not continuous only if we have $\sup \{H(s) \mid s \in \Sigma, s<t\}<H(t)$ for some $t \in \Sigma$; so to avoid this it suffices to prove that the set $\left\{a_{j}^{i}\right\}$ is dense in $[p, p+1]$. Since, as already remarked, $f^{j}\left(\pi\left(\Gamma_{j}^{i}\right)\right)=S^{1}$, and $f^{j}$ restricted to $\pi\left(\Gamma_{j}^{i}\right)$ is injective but for the identification at the ends, Lemma 2.2.5 implies that the length of each $\Gamma_{j}^{i}$ does not exceed $\mu^{-j}$ - and this is enough to prove that $\left\{a_{j}^{i}\right\}$ is dense in $[p, p+1]$.

Finally, a very similar agument works if $m$ is negative; the only difference is that the relative order of the $a_{j}^{i}$ will depend on the parity of $j$, exactly as it happens for numbers of the form $i / m^{j}$ with $m$ negative. $\square$
Corollary 2.2.8: Every $C^{1}$ expanding map of the circle is $C^{1}$-structurally stable.
Proof: By Corollary 2.2 .2 , every $g \in C^{1}\left(S^{1}, S^{1}\right)$ which is $C^{1}$-close to an expanding map $f$ of the circle is still expanding and, by Lemma 2.2.4, has the same degree. Therefore we can apply Theorem 2.2 .7 to infer that they are both topologically conjugated to the same $E_{m}$, where $m=\operatorname{deg}(f)$, and we are done.

Exercise 2.2.3. Prove that every expanding map of the circle of degree $m$ is semiconjugate to the shift on $\Omega_{|m|}^{+}$. Hint: use the $|m|$-ary representation.

### 2.3 Recurrence and Smale's horseshoe

As we have seen, a characteristic of chaotic dynamical systems is recurrence: points almost go back to themselves. This happens, for instance, if there is a dense orbit, that is for topologically transitive systems. In this section we shall explore the notion of recurrence a bit further.

Definition 2.3.1: Let $(X, f)$ be a dynamical system. A point $y \in X$ is a $\omega$-limit point of a point $x \in X$ if there is a sequence $k_{j} \rightarrow+\infty$ such that $f^{k_{j}}(x) \rightarrow y$. The set of all $\omega$-limit points of $x$ is denoted by $\omega(x)$ and called its $\omega$-limit set. We shall denote by $\omega(f)$ the closure of the union of all $\omega$-limit sets as $x$ varies in $X$. If $f$ is invertible, the $\alpha$-limit set $\alpha(x)$ of $x \in X$ is the $\omega$-limit set of $x$ with respect to $f^{-1}$. We denote by $\alpha(f)$ the closure of the union of all $\alpha$-limit sets as $x$ varies in $X$.

Definition 2.3.2: A point $x \in X$ is recurrent if $x \in \omega(x)$, that is if $f^{k_{j}}(x) \rightarrow x$ for some sequence $k_{j} \rightarrow+\infty$. If $f$ is invertible, the point $x$ is negatively recurrent if $x \in \alpha(x)$, and fully recurrent if it is both recurrent and negatively recurrent.

Exercise 2.3.1. Using the full shift $\sigma_{2}$ in $\Omega_{2}$, show that there are recurrent points which are not negatively recurrent, and that the set of recurrent points is not closed.

A better notion of recurrence is:
Definition 2.3.3: Let $(X, f)$ be a dynamical system. A point $x \in X$ is non-wandering if for any open neighbourhood $U$ of $x$ there is $N>0$ such that $f^{N}(U) \cap U \neq \varnothing$. The set of all non-wandering point is denoted by $N W(f)$. A point which is not non-wandering is called wandering.
Remark 2.3.1. In a Hausdorff space, a pre-periodic point which is not periodic cannot be recurrent or non-wandering.

Proposition 2.3.1: Let $(X, f)$ be a dynamical system on a Hausdorff space $X$. Then:
(i) If $x \in X$ is non-wandering then for every neighbourhood $U$ of $x$ and $N_{0} \in \mathbb{N}$ there is $N>N_{0}$ such that $f^{N}(U) \cap U \neq \varnothing$.
(ii) $N W(f)$ is closed.
(iii) $N W(f)$ is $f$-invariant. If $f$ is open, $N W(f)$ is completely $f$-invariant.
(iv) If $f$ is invertible, then $N W\left(f^{-1}\right)=N W(f)$.
(v) We have $\omega(f) \cup \alpha(f) \subseteq N W(f)$.
(vi) If $X$ is compact then $N W(f) \neq \varnothing$.
(vii) If $X$ has no isolated points and $f$ is topologically transitive then $N W(f)=X$.

Proof: (i) Assume there are a neighbourhood $U$ of $x$ and $N_{0} \in \mathbb{N}$ so that $f^{N}(U) \cap U=\varnothing$ for all $N>N_{0}$. In particular, $x$ is not periodic, and it cannot be pre-periodic because it is non-wandering by assumption. Hence, being $X$ Hausdorff, for $j=0, \ldots, N_{0}$ we can find a neighbourhood $V_{j}$ of $f^{j}(x)$ such that $V_{h} \cap V_{k}=\varnothing$ if $h \neq k$. Set $V=U \cap \bigcap_{j=0}^{N_{0}} f^{-j}\left(V_{j}\right)$; then $V$ is a neighbourhood of $x$ such that $f^{N}(V) \cap V=\varnothing$ for all $N>0$, and $x$ is wandering.
(ii) It suffices to show that the complement is open. Let $x \notin N W(f)$; then there is an open neighbourhood $U$ of $x$ such that $f^{k}(U) \cap U=\varnothing$ for all $k>0$. But then $U \cap N W(f)=\varnothing$, and $U \subseteq X \backslash N W(f)$, as desired.
(iii) Take $x \in N W(f)$ and let $U$ be a neighbourhood of $f(x)$. Then since $V=f^{-1}(U)$ is a neighbourhood of $x$, there is $N>0$ such that $f^{N}(V) \cap V \neq \varnothing$. Applying $f$ we find $\varnothing \neq f\left(f^{N}(V) \cap V\right) \subseteq f^{N}(U) \cap U$, and thus $f(x) \in N W(f)$. If $f$ is open, a similar argument shows $f^{-1}(N W(f)) \subseteq N W(f)$.
(iv) Take $x \in N W(f)$, and $U$ a neighbourhood of $x$. Then there is $N>0$ such that $f^{N}(U) \cap U \neq \varnothing$; applying $f^{-N}$ we get $f^{-N}(U) \cap U \neq \varnothing$. Then $N W(f) \subseteq N W\left(f^{-1}\right)$, and the other inclusion is completely analogous.
(v) Let $x \in X$, and $y=\lim _{j \rightarrow \infty} f^{k_{j}}(x) \in \omega(x)$; we can assume that $k_{j}$ is increasing. Let $U$ be an open neighbourhood of $y$; then $f^{k_{j}}(x) \in U$ eventually, and so $f^{k_{j+1}-k_{j}}(U) \cap U \neq \varnothing$ eventually. The same argument, if $f$ is invertible, shows that $\alpha(x) \subseteq N W\left(f^{-1}\right)$; the assertion then follows from (ii) and (iv).
(vi) If $X$ is compact then $\omega(x) \neq \varnothing$ for any $x \in X$.
(vii) It follows from Proposition 1.4.3

Periodic points are the easiest example of non-wandering points, but not every dynamical system, even on compact spaces, has periodic points. The next best example of recurrence is found in $f$-invariant minimal subsets (that is, closed $f$-invariant subsets $Y \subseteq X$ such that every orbit is dense in $Y$ ); and they always exist in compact spaces.

Proposition 2.3.2: Let $(X, f)$ be a dynamical system on a compact Hausdorff space $X$. Then there exists an $f$-invariant minimal subset of $X$.

Proof: Let $\mathcal{C}$ be the collection of all not empty closed $f$-invariant subsets of $X$, partially ordered by inclusion. The intersection of any family of closed $f$-invariant subsets is still closed and $f$-invariant; therefore any chain in $\mathcal{C}$ admits a lower bound (not empty by the compactness of $X$ ). We can therefore apply Zorn's lemma to get a minimal element $Y$ of $\mathcal{C}$. Then $Y$ is closed, $f$-invariant and contains no proper $f$-invariant closed subsets; since the closure of an orbit is such a subset, every orbit must be dense in $Y$, and thus $\left.f\right|_{Y}$ is minimal.

Exercise 2.3.2. Prove the previous proposition without using Zorn's lemma.
Exercise 2.3.3. Let $f: X \rightarrow X$ be a homeomorphism of a compact connected metric space $X$ with no isolated points. Assume that periodic points of $f$ are dense and that $f^{k} \neq \mathrm{id}$ for all $k>0$. Prove that $f$ has a nonperiodic recurrent point.

Now we want to study the nonwandering set of the classical example of hyperbolic dynamical system: Smale's horseshoe.

Let $X$ denote a unit square in the plane, and let $\tilde{X}$ be the union of $X$ and two half-disks on opposite sides of the square, $H^{+}$and $H^{-}$(see Figure 1). Then let $f: \tilde{X} \rightarrow \tilde{X}$ be defined as follows: first of all, shrink $X$ in the horizontal direction by a factor $0<\lambda<1 / 4$, shrinking at the same time isotropically the two half-disks by the same factor; then stretch the central rectangle in the vertical direction by a factor $\mu>4$, acting on the two half-disks by a translation only; finally, bend the whole thing in a horseshoe shape and put it inside the original $\tilde{X}$ as shown in Figure 1. We would like to study the dynamics of $f$.


Figura 1 The horseshoe.

First of all, $f\left(H^{-}\right) \subset H^{-}$; since $f$ acts on $H^{-}$by the composition of a linear contraction, a translation and a rotation, $\left.f\right|_{H^{-}}$is a contraction, and so $\left(\left.f\right|_{H^{-}}\right)^{k}$ converges to the unique fixed point $p_{0}$ of $f$ in $H^{-}$by Theorem 1.2.1. Since $f\left(H^{+}\right) \subset H^{-}$, the orbit of every point of $H^{+}$converges to $p_{0}$ too. This means that the orbit of $x \in \tilde{X}$ does not converge to $p_{0}$ if and only if $f^{k}(x) \in X$ for all $k \geq 0$; therefore we have described the dynamics of all points of $\tilde{X}$ but for the points of the closed set $\Lambda^{-}=\bigcap_{k \in \mathbb{N}} f^{-k}(X)$.

Now, it is clear that $f\left(\Lambda^{-}\right) \subseteq \Lambda^{-} \cap f(X) \subset \Lambda^{-}$; therefore every $\omega$-limit set of a point of $\Lambda^{-}$is contained in the closed set $\Lambda=\bigcap_{k \in \mathbb{Z}} f^{k}(\bar{X})$. The set $\Lambda$ is clearly completely $f$-invariant, $\left.f\right|_{\Lambda}$ is a homeomorphism, and the non-trivial dynamics of $f$ is concentrated on $\Lambda$ - in the sense that every orbit not converging to $p_{0}$ is eventually in a neighbourhood of $\Lambda$, and the orbit of every $x \in \Lambda$ is contained in $\Lambda$. Our aim is then to describe the topological structure of $\Lambda$, and to give a model for the dynamics of $\left.f\right|_{\Lambda}$.

Proposition 2.3.3: $\Lambda$ is the product of two Cantor sets (and hence a Cantor set itself), and there is a homeomorphism $h: \Omega_{2} \rightarrow \Lambda$ such that $\left.f\right|_{\Lambda} \circ h=h \circ \sigma_{2}$, that is $\left.f\right|_{\Lambda}$ is conjugated to the full left 2-shift. Furthermore, $N W(f)=\Lambda \cup\left\{p_{0}\right\}$.
Proof: It is easy to see that $f^{-1}(X) \cap X$ is the union of two horizontal rectangles $R_{0}$ and $R_{1}$ (see Figure 1). By induction it is then clear that $\bigcap_{k=0}^{n} f^{-k}(X)$ is the union of $2^{n}$ rectangles $R_{\omega}$, where $s=\left(s_{0}, \ldots, s_{n-1}\right) \in \mathbb{Z}_{2}^{n}$ and $R_{\omega}=\bigcap_{j=0}^{n-1} f^{-j}\left(R_{s_{j}}\right)$. In other words, $s_{j}$ is such that $f^{j}\left(R_{\omega}\right) \subseteq R_{s_{j}}$ for all $j=0, \ldots, n-1$.

Now, the height of every rectangle in $\bigcap_{k=0}^{n} f^{-k}(X)$ is $\mu^{-n}$. This means that for every semi-infinite sequence $\left(s_{0}, s_{1}, \ldots\right) \in \mathbb{Z}_{2}^{\mathbb{N}}$ the intersection $\bigcap_{j \in \mathbb{N}} f^{-j}\left(R_{s_{j}}\right)$ is a single horizontal segment. As a consequence, it is not difficult to see (exercise) that $\Lambda^{-}$is the product of a horizontal segment with a Cantor set.

A completely analogous argument shows that $\Lambda^{+}=\bigcap_{j \in \mathbb{N}} f^{j}(X)$ is the product of a Cantor set with a vertical segment. Then $\Lambda=\Lambda^{+} \cap \Lambda^{-}$is the product of two Cantor sets. Furthermore, we can define a map $h: \Omega_{2} \rightarrow \Lambda$ by setting $h(\mathbf{s})=\bigcap_{j \in \mathbb{Z}} f^{j}\left(R_{s_{-j}}\right)$. The previous discussion shows that $h$ is bijective; furthermore

$$
f(h(\mathbf{s}))=f\left(\bigcap_{j \in \mathbb{Z}} f^{j}\left(R_{s_{-j}}\right)\right)=\bigcap_{j \in \mathbb{Z}} f^{j+1}\left(R_{s_{-j}}\right)=\bigcap_{j \in \mathbb{Z}} f^{j}\left(R_{s_{-(j-1)}}\right)=h\left(\sigma_{2}(\mathbf{s})\right) .
$$

The continuity of $h$ and $h^{-1}$ follows from the fact that $\mathbf{s}$ and $\mathbf{s}^{\prime}$ belong to a symmetric cylinder of rank $r$ if and only if $h(\mathbf{s})$ and $h\left(\mathbf{s}^{\prime}\right)$ belong to a rectangle of sides $\lambda^{r}$ and $\mu^{-r}$ obtained as the intersection $\bigcap_{j=-r}^{r} f^{j}\left(R_{s_{-j}}\right)$.

Finally, we are left to compute $N W(f)$. Clearly, $p_{0}$ is the only nonwandering point outside $\Lambda^{-}$. Since $N W(f)$ is $f$-invariant and $N W(f) \cap X \subseteq \Lambda^{-}$, we have $N W(f) \cap X \subseteq \Lambda$. To prove the converse it suffices to notice that all points of the full 2-shift are nonwandering, because, by Proposition 1.7.5, the full 2 -shift is topologically mixing.
Corollary 2.3.4: $\left.f\right|_{\Lambda}$ is chaotic, topologically mixing and it has $2^{k}$ periodic points of period $k$ for all $k \geq 1$.
Proof: It follows from Propositions 2.3.3 and 1.7.5.

### 2.4 Stability of hyperbolic toral automorphisms

Our aim is to prove structural stability of hyperbolic toral automorphisms using a clever applicatino of the contraction principle. We shall need the following
Exercise 2.4.1. Prove that $C^{0}\left(\mathbb{T}^{n}, \mathbb{T}^{n}\right)$ is locally connected by arcs, and shows that this implies that the homotopy classes (i.e., the arc components) are open, and thus two $C^{0}$-close maps are necessarily homotopic.
Proposition 2.4.1: Let $F_{L}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be a hyperbolic automorphism of $\mathbb{T}^{2}$, and $g: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ any homeomorphism in the same homotopy class of $F_{L}$. Then $F_{L}$ is semiconjugate to $g$ via a uniquely defined semiconjugacy $h$ homotopic to the identity.
Proof: We want a continuous surjective map $h: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ homotopic to the identity such that $h \circ g=F_{L} \circ h$, that is

$$
\begin{equation*}
h=F_{L}^{-1} \circ h \circ g \tag{2.4.1}
\end{equation*}
$$

Now, any map of the torus into itself can be lifted to the universal cover $\mathbb{R}^{2}$; furthermore, a map $\hat{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a lift if and only if there is an endomorphism $A: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ such that $\hat{f}(x+m)=\hat{f}(x)+A(m)$. In particular, the lifts of two homotopic maps (and thus the lift of two $C^{0}$-close maps) must have the same $A$ (why?), and the lift of a map homotopic to the identity is of the form $\hat{h}=\mathrm{id}+\tilde{h}$ with $\tilde{h}$ doubly periodic, that is $\tilde{h}(x+m)=\tilde{h}(x)$ for all $x \in \mathbb{R}^{2}$ and $m \in \mathbb{Z}^{2}$.

Every lift of $F_{L}$ is clearly of the form $L+c$ for a constant $c \in \mathbb{Z}^{2}$. Since we have $h \circ g=F_{L} \circ h$ if and only if $\hat{h} \circ \hat{g}=L \circ \hat{h}+c^{\prime}$ for some constant $c^{\prime} \in \mathbb{Z}^{2}$ (where $\hat{h}$ is a lift of $h$ and $\hat{g}$ is a lift of $g$ ), up to a suitable choice of the lift of $F_{L}$ we see that (2.4.1) has a unique solution homotopic to the identity if and only if

$$
\begin{equation*}
\hat{h} \circ \hat{g}=L \circ \hat{h} \tag{2.4.2}
\end{equation*}
$$

has a unique solution of the form $\hat{h}=\operatorname{id}+\tilde{h}$ with $\tilde{h}$ doubly periodic. So it suffices to look for a unique solution of the latter equation.

Since $g$ is homotopic to $F_{L}$, every lift of $g$ is of the form $L+\tilde{g}$, where $\tilde{g}$ is doubly periodic. Then (2.4.2) becomes

$$
\begin{equation*}
\tilde{h}=L^{-1} \tilde{g}+L^{-1} \tilde{h} \circ(L+\tilde{g}) \tag{2.4.3}
\end{equation*}
$$

So $\tilde{h}$ is the fixed point of an operator on a suitable space of maps. Unfortunately, this operator is not a contraction; but we can bypass this problem by using the structure of $L$.

Let $e_{1}$ and $e_{2}$ be two unit eigenvectors for $L$, with $L e_{j}=\lambda_{j} e_{j}$ and $\left|\lambda_{1}\right|=\left|\lambda_{2}^{-1}\right|>1$. We can then write $\tilde{g}=\tilde{g}_{1} e_{1}+\tilde{g}_{2} e_{2}$, and similarly for $\tilde{h}$. So (2.4.3) is equivalent to

$$
\left\{\begin{array}{l}
\tilde{h}_{1}=\lambda_{1}^{-1} \tilde{g}_{1}+\lambda_{1}^{-1} \tilde{h}_{1} \circ(L+\tilde{g})=\mathcal{F}_{1}\left(\tilde{h}_{1}\right)  \tag{2.4.4}\\
\tilde{h}_{2}=\lambda_{2}^{-1} \tilde{g}_{2}+\lambda_{2}^{-1} \tilde{h}_{2} \circ(L+\tilde{g})
\end{array}\right.
$$

We consider $\mathcal{F}_{1}$ as operator on the Banach space $E$ of doubly periodic functions on $\mathbb{R}^{2}$, endowed with the $\|\cdot\|_{0}$ norm. Now,

$$
\begin{aligned}
\left\|\mathcal{F}_{1}(\tilde{h})-\mathcal{F}_{1}\left(\tilde{h}^{\prime}\right)\right\|_{0} & =\left|\lambda_{1}\right|^{-1} \sup _{x \in \mathbb{R}^{2}}\left|\tilde{h}(L x+\tilde{g}(x))-\tilde{h}^{\prime}(L x+\tilde{g}(x))\right| \\
& \leq\left|\lambda_{1}\right|^{-1} \sup _{x \in \mathbb{R}^{2}}\left|\tilde{h}(x)-\tilde{h}^{\prime}(x)\right|=\left|\lambda_{1}\right|^{-1}\left\|\tilde{h}-\tilde{h}^{\prime}\right\|_{0}
\end{aligned}
$$

therefore $\mathcal{F}_{1}$ is a contraction, and thus it has a unique fixed point $\tilde{h}_{1}$. We can also estimate the norm of $\tilde{h}_{1}$ as follows:

$$
\left\|\tilde{h}_{1}\right\|_{0} \leq \sum_{j=0}^{\infty}\left\|\mathcal{F}_{1}^{j+1}(0)-\mathcal{F}_{1}^{j}(0)\right\|_{0} \leq \frac{1}{\left|\lambda_{1}\right|-1}\left\|\tilde{g}_{1}\right\|_{0}
$$

In particular, $\left\|\tilde{h}_{1}\right\|_{0}$ is small if $\left\|\tilde{g}_{1}\right\|_{0}$ is small, that is if $g$ is $C^{0}$-close to $F_{L}$.
To get $\tilde{h}_{2}$ we use a similar argument. The map $L+\tilde{g}$ is a homeomorphism, because $g$ is; let $S=(L+\tilde{g})^{-1}$. Then the second equation in (2.4.4) becomes

$$
\tilde{h}_{2}=\lambda_{2} \tilde{h}_{2} \circ S-\tilde{g}_{2} \circ S=\mathcal{F}_{2}\left(\tilde{h}_{2}\right)
$$

Then the same computations show that $\mathcal{F}_{2}$ is a contraction with a unique fixed point $\tilde{h}_{2}$ satisfying

$$
\left\|\tilde{h}_{2}\right\|_{0} \leq \frac{1}{\left(1-\left|\lambda_{2}\right|\right)}\left\|\tilde{g}_{2}\right\|_{0}
$$

We are left to proving that the map $h$ is surjective. Since $g$ is surjective, we know that $h\left(\mathbb{T}^{2}\right)$ is a closed connected completely $F_{L}$-invariant subset of $\mathbb{T}^{2}$. Since $F_{L}$ is topologically transitive, if $h\left(\mathbb{T}^{2}\right)$ contains an open set it must be equal to $\mathbb{T}^{2}$, as desired. If, by contradiction, $h\left(\mathbb{T}^{2}\right)$ had empty interior, it must be either a fixed point or an invariant circle. But then $h$ cannot induce the identity in homotopy, and thus it could not be homotopic to the identity, contradiction.

This is not enough for structural stability: we need an actual conjugation. But first we show that if $g$ is sufficiently close to $F_{L}$ we can reverse the argument.
Proposition 2.4.2: Let $F_{L}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be a hyperbolic automorphism. Then for every $C^{1}$ map $g: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ sufficiently $C^{1}$-close to $F_{L}$ there exists a unique continuous map $h: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ homotopic to the identity such that

$$
\begin{equation*}
g \circ h=h \circ F_{L} \tag{2.4.5}
\end{equation*}
$$

Proof: Using the notations introduced in the previous proof, it is easy to see that solving (2.4.5) is equivalent to solving the equation $\mathcal{L}(\tilde{h})=\mathcal{T}(\tilde{h})$ on the space of doubly periodic mappings, where the operators $\mathcal{L}$ and $\mathcal{T}$ are given by $\mathcal{L}(\tilde{h})=\tilde{h} \circ L-L \circ \tilde{h}$ and $\mathcal{T}(\tilde{h})=\tilde{g} \circ(\mathrm{id}+\tilde{h})$.

For transforming this equation in a fixed point equation, we notice that $\mathcal{L}$ is invertible. Indeed, we can write $\mathcal{L}(\tilde{h})=\mathcal{L}_{1}\left(\tilde{h}_{1}\right) e_{1}+\mathcal{L}_{2}\left(\tilde{h}_{2}\right) e_{2}$, where $\mathcal{L}_{j}\left(\tilde{h}_{j}\right)=\tilde{h}_{j} \circ L-\lambda_{j} \tilde{h}_{j}$, and then it is easy to write the inverses of the $\mathcal{L}_{j}$ 's:

$$
\begin{aligned}
& \mathcal{L}_{1}^{-1}\left(\tilde{h}_{1}\right)=-\sum_{n=0}^{\infty} \lambda_{1}^{-(n+1)} \tilde{h}_{1} \circ L^{n} \\
& \mathcal{L}_{2}^{-1}\left(\tilde{h}_{2}\right)=\sum_{n=0}^{\infty} \lambda_{2}^{n} \tilde{h}_{2} \circ L^{-(n+1)}
\end{aligned}
$$

Thus our equation is equivalent to the fixed-point equation $\tilde{h}=\left(\mathcal{L}^{-1} \mathcal{T}\right) \tilde{h}$. Now $\tilde{g}$ is a $C^{1}$ map; therefore

$$
\left\|\mathcal{T}(\tilde{h})-\mathcal{T}\left(\tilde{h}^{\prime}\right)\right\|_{0}=\sup _{x \in \mathbb{R}^{2}}\left|\tilde{g}(x+\tilde{h}(x))-\tilde{g}\left(x+\tilde{h}^{\prime}(x)\right)\right| \leq\|d \tilde{g}\|_{0}\left\|\tilde{h}-\tilde{h}^{\prime}\right\|_{0}
$$

and thus

$$
\left\|\left(\mathcal{L}^{-1} \mathcal{T}\right)(\tilde{h})-\left(\mathcal{L}^{-1} \mathcal{T}\right)\left(\tilde{h}^{\prime}\right)\right\|_{0} \leq\left\|\mathcal{L}^{-1}\right\|\|d \tilde{g}\|_{0}\left\|\tilde{h}-\tilde{h}^{\prime}\right\|_{0}
$$

If $g$ is sufficiently $C^{1}$-close to $F_{L}$ we have $\|d \tilde{g}\|_{0}<\left\|\mathcal{L}^{-1}\right\|^{-1}$, and hence the operator $\mathcal{L}^{-1} \mathcal{T}$ is a contraction, and thus it has a unique fixed point.

Remark 2.4.1. Every continuous map $h: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ homotopic to the identity is necessarily surjective. A way to see this is the following: a non-surjective map has degree zero, whereas a map homotopic to the identity has the same degree as the identity, that is 1 . Thus the map provided by the previous proposition is a semiconjugation.

Theorem 2.4.3: Any hyperbolic automorphism of the 2-torus is $C^{1}$-structurally stable.
Proof: Let $g$ be a $C^{1}$ map $C^{1}$-close to $F_{L}$; in particular, it is homotopic to $F_{L}$. Let $h^{\prime}$ be the semiconjugation provided by Proposition 2.4.1, and $h^{\prime \prime}$ the semiconjugation provided by Proposition 2.4.2. Then $F_{L} \circ h^{\prime}=h^{\prime} \circ g, g \circ h^{\prime \prime}=h^{\prime \prime} \circ F_{L}$ and so

$$
F_{L} \circ\left(h^{\prime} \circ h^{\prime \prime}\right)=\left(h^{\prime} \circ g\right) \circ h^{\prime \prime}=\left(h^{\prime} \circ h^{\prime \prime}\right) \circ F_{L}
$$

In other words, $h^{\prime} \circ h^{\prime \prime}$ commmutes with $F_{L}$, and it is homotopic to the identity. If we prove that it is the identity, it will follow that $h^{\prime \prime}$ is injective, and hence invertible; then $h^{\prime}=\left(h^{\prime \prime}\right)^{-1}$, and we are done.

Therefore to end the proof it suffices to show that a continuous map $h: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ satisfying the fixedpoint equation $h=F_{L}^{-1} \circ h \circ F_{L}$ and homotopic to the identity is the identity. Proceeding as in the previous proofs, we can write a lift of $h$ in the form id $+\tilde{h}$, where $\tilde{h}$ is doubly periodic and satisfies $\tilde{h}=L^{-1} \circ \tilde{h} \circ L$. Writing $\tilde{h}=\tilde{h}_{1} e_{1}+\tilde{h}_{2} e_{2}$, we see that $\tilde{h}_{j}$ is a fixed point of the operator $\mathcal{L}_{j}$ given by

$$
\mathcal{L}_{1}(h)=\frac{1}{\lambda_{1}} h \circ L, \quad \mathcal{L}_{2}(h)=\lambda_{2} h \circ L^{-1}
$$

It is absolutely clear that these operators are contractions; furthermore, the zero function is a fixed point of both. Then the uniqueness of the fixed point implies $\tilde{h} \equiv 0$, and thus $h=\mathrm{id}$.
Exercise 2.4.2. Prove that any hyperbolic automorphism of the $n$-torus is $C^{1}$ strongly structurally stable.
Exercise 2.4.3. Let $f: \tilde{X} \rightarrow \tilde{X}$ be the horseshoe map described in Section 2.3, and let $g: \tilde{X} \rightarrow \mathbb{R}^{2}$ be any $C^{1}$ map sufficiently $C^{1}$ close to $f$. Prove that there is an injective continuous map $h=h_{g}: \Lambda \rightarrow \tilde{X}$ such that $g \circ h_{g}=h_{g} \circ f$. Deduce that $\Lambda_{g}=h_{g}(\Lambda)$ is a closed $g$-invariant set and that $\left.g\right|_{\Lambda_{g}}$ is topologically conjugate to the full left 2-shift $\sigma_{2}$.

### 2.5 Sarkovskii's Theorem

We end this chapter with an interesting result of a different nature, and tipically one-dimensional. We have seen functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with a single fixed point and no other periodic points; for instance, $f(x)=\frac{1}{2} x$. On the other hand, it is easy to see that if $f$ has a periodic point of period 2 , then it must have a fixed point: indeed, if $a_{1}<a_{2}$ are such that $f\left(a_{1}\right)=a_{2}$ and $f\left(a_{2}\right)=a_{1}$, then $f\left(a_{1}\right)-a_{1}<0$ and $f\left(a_{2}\right)-a_{2}>0$, and hence $f$ - id must have a zero in the interval $\left(a_{1}, a_{2}\right)$.

What happens if $f$ has a periodic point of (exact) period 3? The surprising answer is that then $f$ must necessarily have periodic points of any (exact) period! To prove this we shall need a definition and two lemmas.
Definition 2.5.1: Let $f: I \rightarrow \mathbb{R}$ be a continuous function, where $I$ is a closed interval in $\mathbb{R}$. If $J \subseteq \mathbb{R}$ is another closed interval, we shall say that $I$ covers $J$ (and we shall write $I \rightarrow J$ ) if $f(I) \supseteq J$.
Lemma 2.5.1: Let $f: J \rightarrow \mathbb{R}$ be a continuous function defined on an interval $J \subseteq \mathbb{R}$. If $I_{0} \subseteq J$ and $I_{1} \subset \mathbb{R}$ are closed bounded intervals so that $I_{0} \subseteq I_{1}$ and $I_{0} \rightarrow I_{1}$ then $f$ has a fixed point in $I_{0}$.
Proof: Write $I_{0}=[a, b]$ and $I_{1}=[c, d]$ with $c \leq a<b \leq d$. Since $I_{0}$ covers $I_{1}$ we must have either

$$
f(a) \leq c \leq a<b \leq d \leq f(b) \quad \text { or } \quad f(b) \leq c \leq a<b \leq d \leq f(a)
$$

In the first case we have $f(a)-a<0$ and $f(b)-b>0$, in the second case $f(a)-a>0$ and $f(b)-b<0$; in both cases $f$-id must have a zero in $(a, b)$.
Lemma 2.5.2: Let $f: J \rightarrow \mathbb{R}$ be a continuous function defined on an interval $J \subseteq \mathbb{R}$. Let $I_{0}, \ldots, I_{n} \subseteq J$ be a sequence of closed bounded intervals such that $I_{0} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{n}$. Then there exists a closed interval $A_{0} \subseteq I_{0}$ so that $f^{j}\left(A_{0}\right) \subseteq I_{j}$ for $j=0, \ldots, n-1$ and $f^{n}\left(A_{0}\right)=I_{n}$.
Proof: By induction on $n$. For $n=1$, let $f^{-1}\left(I_{1}\right) \cap I_{0}=\bigcup_{\lambda} A_{\lambda}$ be the decomposition in connected components (i.e., closed intervals). If $I_{1}=[a, b]$, let $\Lambda_{b}=\left\{\lambda \mid b \in f\left(A_{\lambda}\right)\right\}$ and $a^{\prime}=\inf \bigcup_{\lambda \in \Lambda_{b}} f\left(A_{\lambda}\right)$. Using the compactness it is easy to see that there exists $\lambda \in \Lambda_{b}$ such that $f\left(A_{\lambda}\right)=\left[a^{\prime}, b\right]$, and it is not difficult to check (exercise) that necessarily $a^{\prime}=a$, so that $A_{\lambda}=A_{0}$ is as desired.

Assume the assertion is true for $n-1$. Then there exists a closed interval $A_{1} \subseteq I_{1}$ such that $f^{j}\left(A_{1}\right) \subseteq I_{j+1}$ for $j=0, \ldots, n-2$ and $f^{n-1}\left(A_{1}\right)=I_{n}$. Since $I_{0}$ covers $A_{1}$, we can find a closed interval $A_{0} \subseteq I_{0}$ such that $f\left(A_{0}\right)=A_{1}$, nad clearly $A_{0}$ is as desired.

Corollary 2.5.3: Let $f: J \rightarrow \mathbb{R}$ be a continuous function defined on an interval $J \subseteq \mathbb{R}$. Let $I_{0}, \ldots, I_{n} \subseteq J$ be a sequence of closed bounded intervals such that $I_{0} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{n} \rightarrow I_{0}$. Then there exists a point $p_{0} \in I_{0}$ of period $n+1$ such that $f^{j}\left(p_{0}\right) \in I_{j}$ for $j=0, \ldots, n$.
Proof: It suffices to apply Lemma 2.5.1 to the interval $A_{0}$ given by Lemma 2.5.2.
Then:
Theorem 2.5.4: Let $I \subseteq \mathbb{R}$ an interval, and $f: I \rightarrow I$ continuous. Assume that $f$ has a point of exact period 3. Then $f$ has periodic points of any exact period.
Proof: Let $a, b, c \in I$ be such that $f(a)=b, f(b)=c$ and $f(c)=a$. Assume that $a<b<c$; the other case $(a>b>c)$ will be analogous.

Put $I_{0}=[a, b]$ and $I_{1}=[b, c]$; we clearly have

$$
\begin{equation*}
I_{0} \rightleftarrows I_{1} \rightleftarrows I_{1} \tag{2.5.1}
\end{equation*}
$$

In particular, $I_{1}$ covers itself under $f$ and $I_{0}$ covers itself under $f^{2}$; therefore Lemma 2.5.1 yields a fixed point of $f$ in $I_{1}$ and a fixed point of $f^{2}$ in $I_{0}$. Since $f\left(I_{0}\right) \cap I_{0}=\{b\}$ and $f(b) \neq b$, the fixed point of $f^{2}$ in $I_{0}$ is a periodic point of $f$ of exact period 2 .

To get a fixed point of exact period $n \geq 3$, we first remark that (2.5.1) yields a sequence

$$
I_{0} \rightarrow I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1} \rightarrow I_{0}
$$

of length $n$ (that is, with $n$ arrows). Lemma 2.5.2 yields an interval $A_{0} \subseteq I_{0}$ such that $f^{j}\left(A_{0}\right) \subseteq I_{1}$ for $j=1, \ldots, n-1$ and $f^{n}\left(A_{0}\right)=I_{0}$, and Lemma 2.5.1 yields a periodic point $p_{0} \in A_{0}$ of period $n$. If we had $f^{j}\left(p_{0}\right)=p_{0}$ for some $1 \leq j \leq n-1$, the orbit of $p_{0}$ should be completely contained in $I_{1}$; in particular, $p_{0} \in I_{0} \cap I_{1}$, that is $p_{0}=b$. But $f^{2}(b)=a \notin I_{1}$, contradiction.

This is just the beginning.
Definition 2.5.2: The Sarkovskii order $\triangleright$ on $\mathbb{N}^{*}$ is defined as follows: writing $h_{1}=2^{l_{1}} p_{1}$ and $h_{2}=2^{l_{2}} q_{2}$ with $p_{1}, p_{2}$ odd numbers, one has

$$
h_{1} \triangleright h_{2} \quad \text { if and only if } \quad \begin{cases}l_{1}<l_{2} & \text { if } p_{1}, p_{2}>1, \text { or } \\ p_{1}<p_{2} & \text { if } p_{1}, p_{2}>1 \text { and } l_{1}=l_{2}, \text { or } \\ p_{1}>p_{2}=1 & \text { if } p_{1}>1 \text { and } p_{2}=1, \text { or } \\ l_{1}>l_{2} & \text { if } p_{1}=p_{2}=1\end{cases}
$$

In other words, the Sarkovskii order is
$3 \triangleright 5 \triangleright 7 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots \triangleright 2^{2} \cdot 3 \triangleright 2^{2} \cdot 5 \triangleright \cdots \triangleright 2^{3} \cdot 3 \triangleright 2^{3} \cdot 5 \triangleright \cdots \cdots \cdot \triangleright 2^{3} \triangleright 2^{2} \triangleright 2 \triangleright 1$.
Then:
Theorem 2.5.5: (Sarkovskii) Let $I \subseteq \mathbb{R}$ an interval, and $f: I \rightarrow I$ continuous. Assume that $f$ has a point of exact period $h$. Then $f$ has periodic points of exact period $k$ for all $k \triangleleft h$.

Proof: It suffices to prove the assertion assuming that $f$ has no periodic points of exact period greater than $h$ in the Sarkovskii order.

Take $x \in I$ of exact period $h$, and let $O^{+}(x)=\left\{x_{1}, \ldots, x_{h}\right\}$, with $x_{1}<\cdots<x_{h}$. The function $f$ acts on $O^{+}(x)$ as a permutation. We clearly have $f\left(x_{h}\right)<x_{h}$ and $f\left(x_{1}\right)>x_{1}$; let $1 \leq j<h$ be the largest index such that $f\left(x_{j}\right)>x_{j}$, and set $I_{1}=\left[x_{j}, x_{j+1}\right]$. We have $f\left(x_{j}\right) \geq x_{j+1}$ and $f\left(x_{j+1}\right) \leq x_{j}$; hence $I_{1}$ covers $I_{1}$. In particular, $f$ has a fixed point in $I_{1}$.

Since $h \neq 2$, we cannot have $f\left(x_{j+1}\right)=x_{j}$ and $f\left(x_{j}\right)=x_{j+1}$; therefore $f\left(I_{1}\right)$ must contain another interval of the form $\left[x_{k}, x_{k+1}\right]$, that we shall call $I_{2}$. Analogously, $f\left(I_{2}\right)$ must contain another interval of the same form, that we shall call $I_{3}$; and so on. Thus we have obtained a sequence

$$
I_{1} \rightleftarrows I_{1} \rightarrow I_{2} \rightarrow I_{3} \rightarrow \cdots
$$

Now let us consider several cases.
(i) $h$ odd. Since $h$ is odd, at least one $x_{k}$ must be sent by $f$ on the opposite side with respect to $I_{1}$, and at least one $x_{k}$ must stay on the same side. This means that sooner or later we must have $f\left(I_{k}\right) \supseteq I_{1}$; let $\ell$ be the minimum integer so that $I_{\ell} \rightarrow I_{1}$. Therefore we have

$$
I_{1} \rightleftarrows I_{1} \rightarrow I_{2} \rightarrow I_{3} \rightarrow \cdots \rightarrow I_{\ell} \rightarrow I_{1}
$$

Now, if $\ell<h-1$ then either

$$
I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{\ell} \rightarrow I_{1} \quad \text { or } \quad I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{\ell} \rightarrow I_{1} \rightarrow I_{1}
$$

yields a periodic point $p$ of odd period $r<h$. Since $I_{1} \cap I_{2}$ has cardinality at most 1 , and if there is an intersection point it has period $h$, the point $p$ must have exact period odd, less than $h$ and greater than 1 , that is exact period greater than $h$ in the Sarkovskii order, against the assumption.

So $\ell=h-1$. Since $\ell$ is minimal, we cannot have $I_{r} \rightarrow I_{s}$ for some $s>r+1$. Therefore the sequence $x_{j}$, $f\left(x_{j}\right), f^{2}\left(x_{j}\right), \ldots, f^{h}\left(x_{j}\right)$ bounces at each step from one side to the other of $I_{1}$; in particular, $I_{h-1}$ must cover all $I_{k}$ with $k$ odd. Then a period $h^{\prime}$ larger (in the standard order) than $h$ is obtained applying Corollary 2.5.3 to a sequence

$$
I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{h-1} \rightarrow I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1}
$$

of length $h^{\prime}$; notice that such a periodic point has exact period $h^{\prime}$ because otherwise one of the points in the orbit would belong to $I_{1} \cap I_{2}$, and they do not travel according to the previous sequence.

To get an even period $2 j$ smaller (in the standard order) than $h$ we apply Corollary 2.5 .3 to the sequence

$$
I_{h-1} \rightarrow I_{h-2 j} \rightarrow I_{h-2 j+1} \rightarrow \cdots \rightarrow I_{h-2} \rightarrow I_{h-1}
$$

which has length $2 j$, and that cannot produce a lower period.
(ii) $h$ even larger than 2. If all $x_{j}$ 's stay on the same side of $I_{1}$ under the action of $f$, we necessarily have $f\left(x_{j}\right)=x_{h}$ and we can take $I_{2}=\left[x_{j-1}, x_{j}\right]$. So $f\left(x_{j-1}\right)<x_{j-1}$ and $I_{2}$ covers $I_{1}$; we have gained a periodic point of period 2. If all $x_{j}$ 's are sent by $f$ on the opposite side of $I_{1}$, we must have $f\left(\left[x_{1}, x_{j}\right]\right) \supseteq\left[x_{j+1}, x_{h}\right]$ and $f\left(\left[x_{j+1}, x_{k}\right]\right) \supseteq\left[x_{1}, x_{j}\right]$, and again we get a point of period 2 . If there are points staying on the same side and points going on the opposite side, then we may repeat the previous argument obtaining a sequence $I_{h-1} \rightarrow I_{h-2} \rightarrow I_{h-1}$, and again a point of period 2 .
(ii.1) $h=2^{m}$ with $m \geq 2$. Put $n=2^{\ell}$ with $1 \leq \ell<m$ and $g=f^{n / 2}$. By assumption, $g$ has a periodic point of exact period $2^{m-\ell+1}$, and hence has a periodic point of exact period 2. Such a point has exact period $2^{l}$ for $f$, and we are done in this case.
(ii.2) $h=2^{m} p$ with $m \geq 1$ and $p \geq 3$ odd. Let $g=f^{2^{m}}$. Then $g$ has a point of exact period $p$ odd; then it has points of exact period $q$ for all odd $q>p$, which means that $f$ has points of exact period $2^{m} q$ for all odd $q>p$; the period must be exact because, by assumption, $f$ has no periodic points of period $2^{l} r$ with $l<m$ and $r$ odd.

Let now $g=f^{p}$. Then $g$ has a point of exact period $2^{m}$, and hence points of exact period $2^{l}$ for all $l \leq m$. Therefore $f$ has points of exact period dividing $2^{l} p$ for $l \leq m$. But since $f$ has no periodic points of period larger (in the Sarkovskii order) of $h$, the only possibility is that the exact period must divide $2^{l}$ - and hence it must be equal to $2^{l}$.

Let us put again $g=f^{2^{m}}$. Then $g$ has a point $x$ of exact period $2^{l} q$ for any $l \geq 1$ and $q \geq 3$ odd. Hence $x$ is a point of period $2^{l+m} q$ for $f$, and hence a point of exact period $2^{s} r$ for $f$, where $s \leq l+m$ and $r$ is an odd divisor of $q$. Since $f$ has no periodic points of period larger (in the Sarkovskii order) of $h$, we necessarily have $s \geq m$. But then $g^{2^{s-m} r}(x)=x$ implies that $2^{l} q$ divides $2^{s-m} r$; therefore $r=q$ and $s-m \geq l$. It follows that $s=l+m$, that is $x$ has exact period $2^{l+m} q$ for $f$, and we are done.

Remark 2.5.1. As a consequence, if $f$ has a periodic point of exact period which is not a power of 2 , then it must have infinite periodic points. In other words, if a continuous function $f: I \rightarrow I$ has finitely many periodic points, all periods must be powers of 2 .
Remark 2.5.2. This theorem is false for continuous maps of $S^{1}$; it suffices to consider rational rotations.
We end this section showing that Sarkovskii's theorem is optimal: if $h \triangleleft k$ there is a continuous map $f: I \rightarrow I$ admitting a periodic point of exact period $h$ and no periodic points of exact period $k$.
Example 2.5.1. Let $f:[1,5] \rightarrow[1,5]$ be piecewise linear such that

$$
f(1)=3, \quad f(3)=4, \quad f(4)=2, \quad f(2)=5, \quad f(5)=1
$$

in particular, $f^{5}(1)=1$; we shall show that $f$ has no periodic points of exact period 3 . First of all,

$$
f^{3}([1,2])=[2,5], \quad f^{3}([2,3])=[3,5], \quad f^{3}([4,5])=[1,4],
$$

and so $\operatorname{Fix}\left(f^{3}\right) \subset[3,4]$. But $f:[3,4] \rightarrow[2,4]$ is decreasing, as well as $f:[2,4] \rightarrow[2,5]$ and $f:[2,5] \rightarrow[1,5]$; therefore $f^{3}:[3,4] \rightarrow[1,5]$ is decreasing too, and thus it has a unique fixed point. Since $f$ has a fixed point in $[3,4]$, it follows that $\operatorname{Fix}\left(f^{3}\right)=\operatorname{Fix}(f)$, and $f$ has no periodic points of exact period 3 .
Exercise 2.5.1. Given $k \geq 2$ find a piecewise linear continuous function $f:[1,2 k+3] \rightarrow[1,2 k+3]$ with a periodic point of exact period $2 k+3$ and no periodic point of exact period $2 k+1$.

To deal with the even periods, we need the following notion.
Definition 2.5.3: Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. The double of $f$ is the continuos function $\hat{f}:[0,1] \rightarrow[0,1]$ given by

$$
\hat{f}(x)= \begin{cases}\frac{2}{3}+\frac{1}{3} f(3 x) & \text { if } 0 \leq x \leq 1 / 3 \\ (f(1)+2)\left(\frac{2}{3}-x\right) & \text { if } 1 / 3 \leq x \leq 2 / 3 \\ x-\frac{2}{3} & \text { if } 2 / 3 \leq x \leq 1\end{cases}
$$

In particular, $\hat{f}([0,1 / 3]) \subseteq[2 / 3,1], \hat{f}([2 / 3,1])=[0,1 / 3]$ and $\left|\hat{f}^{\prime}(x)\right|>1$ for all $x \in(1 / 3,2 / 3)$.

Exercise 2.5.2. Let $\hat{f}:[0,1] \rightarrow[0,1]$ be the double of a continuous function $f:[0,1] \rightarrow[0,1]$.
(i) Prove that $\hat{f}$ has a unique fixed point, which is repelling and belongs to $(1 / 3,2 / 3)$.
(ii) Prove that $\hat{f}$ has no other periodic points in $(1 / 3,2 / 3)$.
(iii) Prove that $x \in[0,1]$ is a periodic point for $f$ of period $k$ if and only if $x / 3$ is a periodic point for $\hat{f}$ of period $2 k$.
(iv) Prove that all periodic points of $\hat{f}$ in $[0,1 / 3] \cup[2 / 3,1]$ have even period.
(v) Prove that if $f$ has a periodic point of exact period $2^{l} q$ and no periodic point of exact period $2^{l} p$ for some $l \geq 0$ and $p<q$, both odd, then $\hat{f}$ has a periodic point of exact period $2^{l+1} q$ and no periodic point of exact period $2^{l+1} p$.
Exercise 2.5.3. Given $l \geq 0$, find a continuous function $f:[0,1] \rightarrow[0,1]$ with a periodic point of exact period $2^{l}$ and no periodic point of exact period $2^{l+1}$.

