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Problem (Naimark, 1951)

If A is a C*-algebra with only one irreducible representation up to
unitary equivalence, is A necessarily isomorphic to K(H) for some
Hilbert space H?

Definition

A counterexample to Naimark’s Problem is a C*-algebra with only
one irreducible representation up to unitarily equivalence which is
not isomorphic to any K(H).
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There exists a sequence of sets {Sg};_,, such that Sg C 3, and
for any S C Xy the set {3 : SN B = Sg} is stationary.

The Diamond Principle is true in Godel’s constructible universe
and implies CH, hence it is independent from ZFC.

Theorem (Akemann-Weaver, 2004)

Assume <y. There exists a counterexample to Naimark’s Problem.
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Characterizing counterexamples to Naimark's Problem

Assume A is a counterexample to Naimark's Problem. Which
properties must A satisfy?

@ A must be simple
@ A can't be type | (Kaplanski, 1951)
@ A can't be separable (Rosenberg, 1953)

RENELS

A counterexample to Naimark’s Problem would also guarantee the
failure of Glimm’s Theorem on type | C*-algebras in the
nonseparable setting.
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The action of U(A) on S(A)

Let A be a unital counterexample to Naimark's Problem. Consider
the action of the unitaries of A on the state space of A:

V: U(A) x S(A) — S(A)
(u, ) — ¢ o Adu

On the one hand the action, when restricted to the pure state
space P(A), is transitive.
On the other hand all traces are fixed points of the action W:

T(u*au) = T(uu*a) = 7(a)

Question
How big can T(A) be?
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Assume <>, and let X be a metrizable Choquet simplex.
© There exists a counterexample to Naimark's Problem A such
that T(A) = X.
© There exists a counterexample to Naimark’s Problem whose
trace space is nonseparable.
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The Akemann-Weaver's Theorem

Theorem (Akemann-Weaver, 2004)

Assume {y. There exists a counterexample to Naimark’s Problem.

We want a nonseparable simple unital C*-algebra A such that
f ~ g forall f,g € P(A). Build a sequence of separable simple
unital C*-algebras and pure states

(Ao, fo) € (A1, ) C - C(Ag, f3) € C (A= Upex, Ag, f)

e B limit: Ag = U,<gA, and fg is the only extension of all £,’s
e 3+ 1: pick a “certain” gg € P(Ag) such that gg » f3 and

build Agy1 so that g’ and f31 are the unique extensions
respectively of gg and f3 and g’ ~ fz41
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Theorem (Kishimoto-Ozawa-Sakai; Akemann-Weaver 2004)

Let A be a separable simple unital C*-algebra. If (f,)nen and
(gn)nen are two sequences of inequivalent pure states on A,
there is an asymptotically inner automorphism « (i.e there is a
path of unitaries (ut)¢c[0,00) SUch that a(a) = lim¢ . Adut(a) for
all a € A) such that f, ~ gn o« for all n € N.

Lemma

Let A be a separable simple unital C*-algebra, and let f and g be
two inequivalent pure states on A. There exists a separable simple
unital C*-algebra B which unitally contains A such that f and g
have unique equivalent extensions to B.

The idea is to put B = A >, Z, where « is the automorphism given
by KOS-AW Theorem such that f ~ g o «.
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Proposition

Given a counterexample to Naimark's Problem A = gy, Ag from
the Akemann-Weaver's construction, there is an embedding
e: T(Ap) — T(A).

Proof:
Let B be a C*-algebra and 7 € T(B). If o € Aut(B), and 7 is
a-invariant (7(a(a)) = 7(a) for all a € B), then

(z o ) (20)

is a trace of B >, Z extending 7. Since every trace is invariant for
inner automorphisms, it is also invariant for asymptotically inner
automorphisms. It is thus possible to iteratively extend any

T € T(Ap) to a trace on A.
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Question

Is there a counterexample to Naimark's Problem A such that T(A)
is nonseparable?
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The trace space of a crossed product

Consider 7 € T(B) and let (7, H,&;) be the GNS representation
associated to 7. If a € Aut(B) and 7 is a-invariant, then the
unique unitary u?, on H; defined as follows, given a a € B

ug(agr) = a(a)(&r)

is such that Adu], = a on 7,(B). Thus « can be extended to all
B(H:). We will denote such extension by a.

Theorem (Thomsen, 1995)

Consider the crossed product B x., Z, B being separable unital.
Suppose furthermore that o is approximately inner. The following
are equivalent:
@ The restriction map r : T(BxyZ) — T(B) is an
homeomorphism.

Q@ o | 7,(B)" is outer for all extremal traces T and all k € Z.
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Two variants of Kishimoto-Ozawa-Sakai Theorem

Theorem

Let A be a separable simple unital C*-algebra. If (f,)nen and
(gn)nen are two sequences of inequivalent pure states on A. Then
there is an asymptotically inner automorphism « such that
fn ~ gnoa for all n € N and one of the following holds:
@ if A is nuclear o | w.(A)" is outer for all k € Z and all
T € 0T(A).

@ o, | n.(A)" is inner for some 7 € OT(A).
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The main result (again)

Assume <>, and let X be a metrizable Choquet simplex.
© There exists a counterexample to Naimark's Problem A such
that T(A) = X.
@ There exists a counterexample to Naimark's Problem whose
trace space is nonseparable.

Thank you!
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