Trace spaces of counterexamples to Naǐmark’s Problem

Andrea Vaccaro

Università di Pisa & York University (Supervisor: Ilijas Farah)

Waterloo, 2017 CMS Winter Meeting
Outline

1. Naïmark’s Problem
2. Counterexamples to Naïmark’s Problem
3. Trace spaces of counterexamples to Naïmark’s Problem
Naĭmark’s Problem

Every irreducible representation of the algebra of compact operators $K(H)$ is unitarily equivalent to the identity representation.
Naĭmark’s Problem

Every irreducible representation of the algebra of compact operators $K(H)$ is unitarily equivalent to the identity representation.

Problem (Naĭmark, 1951)

If A is a C*-algebra with only one irreducible representation up to unitary equivalence, is A necessarily isomorphic to $K(H)$ for some Hilbert space H?
Naĭmark’s Problem

Every irreducible representation of the algebra of compact operators $K(H)$ is unitarily equivalent to the identity representation.

Problem (Naĭmark, 1951)

If A is a C*-algebra with only one irreducible representation up to unitary equivalence, is A necessarily isomorphic to $K(H)$ for some Hilbert space H?

Definition

A *counterexample to Naĭmark’s Problem* is a C*-algebra with only one irreducible representation up to unitarily equivalence which is not isomorphic to any $K(H)$.
Consistency of a counterexample to Naĭmark’s Problem

The Diamond Principle (◊)

There exists a sequence of sets \(\{ S_\beta \}_{\beta < \aleph_1} \) such that \(S_\beta \subseteq \beta \), and for any \(S \subseteq \aleph_1 \) the set \(\{ \beta : S \cap \beta = S_\beta \} \) is stationary.
Consistency of a counterexample to Naïmark’s Problem

The Diamond Principle (◊)

There exists a sequence of sets \(\{ S_\beta \}_{\beta < \aleph_1} \) such that \(S_\beta \subseteq \beta \), and for any \(S \subseteq \aleph_1 \) the set \(\{ \beta : S \cap \beta = S_\beta \} \) is stationary.

The Diamond Principle is true in Gödel’s constructible universe and implies CH, hence it is independent from ZFC.
Consistency of a counterexample to Naïmark’s Problem

The Diamond Principle (◊)

There exists a sequence of sets \(\{ S_\beta \}_{\beta < \aleph_1} \) such that \(S_\beta \subseteq \beta \), and for any \(S \subseteq \aleph_1 \) the set \(\{ \beta : S \cap \beta = S_\beta \} \) is stationary.

The Diamond Principle is true in Gödel’s constructible universe and implies CH, hence it is independent from ZFC.

Theorem (Akemann-Weaver, 2004)

Assume ◊. There exists a counterexample to Naïmark’s Problem.
Assume A is a counterexample to Naǐmark’s Problem. Which properties must A satisfy?
Assume A is a counterexample to Na̧ımark’s Problem. Which properties must A satisfy?

- A must be simple

Remark: A counterexample to Na̧ımark’s Problem would also guarantee the failure of Glimm’s Theorem on type I C*-algebras in the nonseparable setting.
Characterizing counterexamples to Naĭmark’s Problem

Assume A is a counterexample to Naĭmark’s Problem. Which properties must A satisfy?

- A must be simple
- A can’t be type I (Kaplanski, 1951)

Remark: A counterexample to Naĭmark’s Problem would also guarantee the failure of Glimm’s Theorem on type I C*-algebras in the nonseparable setting.
Assume A is a counterexample to Naǐmark’s Problem. Which properties must A satisfy?

- A must be simple
- A can’t be type I (Kaplanski, 1951)
- A can’t be separable (Rosenberg, 1953)
Characterizing counterexamples to Naǐmark’s Problem

Assume A is a counterexample to Naǐmark’s Problem. Which properties must A satisfy?

- A must be simple
- A can’t be type I (Kaplanski, 1951)
- A can’t be separable (Rosenberg, 1953)

Remark

A counterexample to Naǐmark’s Problem would also guarantee the failure of Glimm’s Theorem on type I C^*-algebras in the nonseparable setting.
The action of $U(A)$ on $S(A)$

Let A be a unital counterexample to Naĭmark’s Problem.
The action of $U(A)$ on $S(A)$

Let A be a unital counterexample to Naǐmark’s Problem. Consider the action of the unitaries of A on the state space of A:

$$\Psi : U(A) \times S(A) \rightarrow S(A)$$

$$(u, \phi) \mapsto \phi \circ \text{Ad} u$$

Question: How big can $T(A)$ be?
The action of $U(A)$ on $S(A)$

Let A be a unital counterexample to Naǐmark’s Problem. Consider the action of the unitaries of A on the state space of A:

$$
\Psi : U(A) \times S(A) \rightarrow S(A)
$$

$$(u, \phi) \mapsto \phi \circ \text{Ad}u$$

On the one hand the action, when restricted to the pure state space $P(A)$, is transitive.
The action of $U(A)$ on $S(A)$

Let A be a unital counterexample to Naĭmark’s Problem. Consider the action of the unitaries of A on the state space of A:

$$\Psi : U(A) \times S(A) \rightarrow S(A)$$

$$\quad (u, \phi) \mapsto \phi \circ \text{Ad} u$$

On the one hand the action, when restricted to the pure state space $P(A)$, is transitive. On the other hand all traces are fixed points of the action Ψ:

$$\tau(u^*au) = \tau(uu^*a) = \tau(a)$$
The action of $U(A)$ on $S(A)$

Let A be a unital counterexample to Naǐmark’s Problem. Consider the action of the unitaries of A on the state space of A:

$$\Psi : U(A) \times S(A) \to S(A)$$

$$(u, \phi) \mapsto \phi \circ \text{Ad}u$$

On the one hand the action, when restricted to the pure state space $P(A)$, is transitive.

On the other hand all traces are fixed points of the action Ψ:

$$\tau(u^*au) = \tau(uu^*a) = \tau(a)$$

Question

How big can $T(A)$ be?
The main result

Theorem

Assume ♦, and let X be a metrizable Choquet simplex.

1. There exists a counterexample to Naǐmark’s Problem A such that $T(A) \cong X$.

The main result

Theorem

Assume \[\diamondsuit\], and let \(X \) be a metrizable Choquet simplex.

1. There exists a counterexample to Naïmark’s Problem A such that \(T(A) \cong X \).
2. There exists a counterexample to Naïmark’s Problem whose trace space is nonseparable.
The Akemann-Weaver’s Theorem

Theorem (Akemmann-Weaver, 2004)

Assume ♦. There exists a counterexample to Naïmark’s Problem.

We want a nonseparable simple unital C*-algebra A such that $f \sim g$ for all $f, g \in P(A)$.
The Akemann-Weaver’s Theorem

Theorem (Akemann-Weaver, 2004)

Assume ♦. There exists a counterexample to Naïmark’s Problem.

We want a nonseparable simple unital C*-algebra A such that $f \sim g$ for all $f, g \in P(A)$. Build a sequence of separable simple unital C*-algebras and pure states

$$(A_0, f_0) \subseteq (A_1, f_1) \subseteq \cdots \subseteq (A_\beta, f_\beta) \subseteq \cdots \subseteq (A = \bigcup_{\beta < \aleph_1} A_\beta, f)$$
The Akemann-Weaver’s Theorem

Theorem (Akemann-Weaver, 2004)

Assume ♦. There exists a counterexample to Naïmark’s Problem.

We want a nonseparable simple unital C*-algebra A such that $f \sim g$ for all $f, g \in P(A)$. Build a sequence of separable simple unital C*-algebras and pure states

$$(A_0, f_0) \subseteq (A_1, f_1) \subseteq \cdots \subseteq (A_\beta, f_\beta) \subseteq \cdots \subseteq (A = \bigcup_{\beta < \aleph_1} A_\beta, f)$$

- **β limit:** $A_\beta = \bigcup_{\gamma < \beta} A_\gamma$ and f_β is the only extension of all f_γ’s
The Akemann-Weaver’s Theorem

Theorem (Akemann-Weaver, 2004)

Assume ♦. There exists a counterexample to Naïmark’s Problem.

We want a nonseparable simple unital C*-algebra A such that $f \sim g$ for all $f, g \in P(A)$. Build a sequence of separable simple unital C*-algebras and pure states

$$(A_0, f_0) \subseteq (A_1, f_1) \subseteq \cdots \subseteq (A_\beta, f_\beta) \subseteq \cdots \subseteq (A = \bigcup_{\beta < \aleph_1} A_\beta, f)$$

- **β limit:** $A_\beta = \overline{\bigcup_{\gamma < \beta} A_\gamma}$ and f_β is the only extension of all f_γ’s
- **β + 1:** pick a “certain” $g_\beta \in P(A_\beta)$ such that $g_\beta \not\sim f_\beta$ and build $A_{\beta+1}$ so that g' and $f_{\beta+1}$ are the unique extensions respectively of g_β and f_β and $g' \sim f_{\beta+1}$
Kishimoto-Ozawa-Sakai Theorem

Theorem (Kishimoto-Ozawa-Sakai, 2003)

Let A be a separable simple unital C^*-algebra. If f and g are two pure states on A, there is an asymptotically inner automorphism α (i.e. there is a path of unitaries $(u_t)_{t \in [0, \infty)}$ such that $\alpha(a) = \lim_{t \to \infty} A u_t(a)$ for all $a \in A$) such that $f = g \circ \alpha$.
<table>
<thead>
<tr>
<th>Theorem (Kishimoto-Ozawa-Sakai; Akemann-Weaver 2004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let A be a separable simple unital C*-algebra. If $(f_n){n \in \mathbb{N}}$ and $(g_n){n \in \mathbb{N}}$ are two sequences of inequivalent pure states on A, there is an asymptotically inner automorphism α (i.e. there is a path of unitaries $(u_t){t \in [0, \infty)}$ such that $\alpha(a) = \lim{t \to \infty} A u_t(a)$ for all $a \in A$) such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$.</td>
</tr>
</tbody>
</table>
Theorem (Kishimoto-Ozawa-Sakai; Akemann-Weaver 2004)

Let A be a separable simple unital C^*-algebra. If $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are two sequences of inequivalent pure states on A, there is an asymptotically inner automorphism α (i.e., there is a path of unitaries $(u_t)_{t \in [0, \infty)}$ such that $\alpha(a) = \lim_{t \to \infty} A u_t(a)$ for all $a \in A$) such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$.

Lemma

Let A be a separable simple unital C^*-algebra, and let f and g be two inequivalent pure states on A. There exists a separable simple unital C^*-algebra B which unitally contains A such that f and g have unique equivalent extensions to B.

Kishimoto-Ozawa-Sakai Theorem
Kishimoto-Ozawa-Sakai Theorem

Theorem (Kishimoto-Ozawa-Sakai; Akemann-Weaver 2004)

Let A be a separable simple unital C*-algebra. If $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are two sequences of inequivalent pure states on A, there is an asymptotically inner automorphism α (i.e. there is a path of unitaries $(u_t)_{t \in [0, \infty)}$ such that $\alpha(a) = \lim_{t \to \infty} A u_t(a)$ for all $a \in A$) such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$.

Lemma

Let A be a separable simple unital C*-algebra, and let f and g be two inequivalent pure states on A. There exists a separable simple unital C*-algebra B which unitally contains A such that f and g have unique equivalent extensions to B.

The idea is to put $B = A \rtimes_\alpha \mathbb{Z}$, where α is the automorphism given by KOS-AW Theorem such that $f \sim g \circ \alpha$.
The trace space of a counterexample to Naǐmark’s Problem

Proposition

Given a counterexample to Naǐmark’s Problem \(A = \bigcup_{\beta < \aleph_1} A_\beta \) from the Akemann-Weaver’s construction, there is an embedding \(e : T(A_0) \to T(A) \).
Proposition

Given a counterexample to Našmark’s Problem $A = \bigcup_{\beta < \aleph_1} A_\beta$ from the Akemann-Weaver’s construction, there is an embedding $e : T(A_0) \to T(A)$.

Proof:
Let B be a C*-algebra and $\tau \in T(B)$.

The trace space of a counterexample to Našmark’s Problem
The trace space of a counterexample to Naĭmark’s Problem

Proposition

Given a counterexample to Naĭmark’s Problem \(A = \bigcup_{\beta < \aleph_1} A_\beta \) from the Akemann-Weaver’s construction, there is an embedding \(e : T(A_0) \to T(A) \).

Proof:

Let \(B \) be a C*-algebra and \(\tau \in T(B) \). If \(\alpha \in \text{Aut}(B) \), and \(\tau \) is \(\alpha \)-invariant (\(\tau(\alpha(a)) = \tau(a) \) for all \(a \in B \)), then

\[
\tau' \left(\sum_{n \in \mathbb{Z}} a_n u_\alpha^n \right) = \tau(a_0)
\]

is a trace of \(B \rtimes_\alpha \mathbb{Z} \) extending \(\tau \).
The trace space of a counterexample to Naĭmark’s Problem

Proposition

Given a counterexample to Naĭmark’s Problem $A = \bigcup_{\beta < \aleph_1} A_\beta$ from the Akemann-Weaver’s construction, there is an embedding $e : T(A_0) \to T(A)$.

Proof:

Let B be a C*-algebra and $\tau \in T(B)$. If $\alpha \in \text{Aut}(B)$, and τ is α-invariant ($\tau(\alpha(a)) = \tau(a)$ for all $a \in B$), then

$$
\tau' \left(\sum_{n \in \mathbb{Z}} a_n u^n_\alpha \right) = \tau(a_0)
$$

is a trace of $B \rtimes_{\alpha} \mathbb{Z}$ extending τ. Since every trace is invariant for inner automorphisms, it is also invariant for asymptotically inner automorphisms.
The trace space of a counterexample to Naĭmark’s Problem

Proposition

Given a counterexample to Naĭmark’s Problem $A = \bigcup_{\beta < \aleph_1} A_\beta$ from the Akemann-Weaver’s construction, there is an embedding $e : T(A_0) \to T(A)$.

Proof:

Let B be a C*-algebra and $\tau \in T(B)$. If $\alpha \in \text{Aut}(B)$, and τ is α-invariant ($\tau(\alpha(a)) = \tau(a)$ for all $a \in B$), then

$$
\tau' \left(\sum_{n \in \mathbb{Z}} a_n u_{\alpha}^n \right) = \tau(a_0)
$$

is a trace of $B \rtimes_{\alpha} \mathbb{Z}$ extending τ. Since every trace is invariant for inner automorphisms, it is also invariant for asymptotically inner automorphisms. It is thus possible to iteratively extend any $\tau \in T(A_0)$ to a trace on A.
Corollary

Assume ♦. Given any metrizable Choquet simplex X, there is a counterexample to Naïmark’s Problem A such that X can be embedded in $T(A)$.
Corollary

Assume ◊. Given any metrizable Choquet simplex X, there is a counterexample to Naïmark’s Problem A such that X can be embedded in $T(A)$.

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\beta \subseteq \cdots \subseteq A = \bigcup_{\beta < \omega_1} A_\beta$$
Corollary

Assume ♦. Given any metrizable Choquet simplex X, there is a counterexample to Naǐmark’s Problem A such that X can be embedded in $T(A)$.

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\beta \subseteq \cdots \subseteq A = \bigcup_{\beta < \aleph_1} A_\beta$$

$$T(A_0) \overset{e_{0,1}}{\leftrightarrow} T(A_1) \overset{e_{1,2}}{\leftrightarrow} \cdots T(A_\beta) \overset{e_{\beta,\beta+1}}{\leftrightarrow} \cdots \overset{e}{\leftrightarrow} T(A)$$
Corollary

Assume \(\diamond \). Given any metrizable Choquet simplex \(X \), there is a counterexample to Naǐmark’s Problem A such that \(X \) can be embedded in \(T(A) \).

\[
A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\beta \subseteq \cdots \subseteq A = \bigcup_{\beta < \aleph_1} A_\beta
\]

\[
T(A_0) \overset{e_{0,1}}{\iff} T(A_1) \overset{e_{1,2}}{\iff} \cdots T(A_\beta) \overset{e_{\beta,\beta+1}}{\iff} \cdots \overset{e}{\iff} T(A)
\]

- if \(\beta \) is limit ordinal then \(A_\beta = \overline{\bigcup_{\gamma < \beta} A_\gamma} \)
- \(A_{\beta+1} = A_\beta \asymp_\alpha \mathbb{Z} \) for an asymptotically inner \(\alpha \)
Corollary

Assume ♦. Given any metrizable Choquet simplex \(X \), there is a counterexample to Naïmark’s Problem \(A \) such that \(X \) can be embedded in \(T(A) \).

\[
A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\beta \subseteq \cdots \subseteq A = \bigcup_{\beta < \kappa_1} A_\beta
\]

\[
T(A_0) \overset{e_{0,1}}{\iff} T(A_1) \overset{e_{1,2}}{\iff} \cdots T(A_\beta) \overset{e_{\beta,\beta+1}}{\iff} \cdots \overset{e}{\iff} T(A)
\]

- if \(\beta \) is limit ordinal then \(A_\beta = \bigcup_{\gamma < \beta} A_\gamma \)
- \(A_{\beta+1} = A_\beta \preceq_\alpha \mathbb{Z} \) for an asymptotically inner \(\alpha \)

Question

Given any metrizable Choquet simplex \(X \), is there a counterexample to Naïmark’s Problem \(A \) such that \(T(A) \cong X \)?
Corollary

Assume ◇. Given any metrizable Choquet simplex X, there is a counterexample to Naĭmark’s Problem A such that X can be embedded in $T(A)$.

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\beta \subseteq \cdots \subseteq A = \bigcup_{\beta < \aleph_1} A_\beta$$

$$T(A_0) \overset{e_{0,1}}{\underset{r_{0,1}}{\rightleftharpoons}} T(A_1) \overset{e_{1,2}}{\underset{r_{1,2}}{\rightleftharpoons}} \cdots T(A_\beta) \overset{e_{\beta,\beta+1}}{\underset{r_{\beta,\beta+1}}{\rightleftharpoons}} \cdots \overset{e}{\underset{r}{\rightleftharpoons}} T(A)$$

- if β is limit ordinal then $A_\beta = \bigcup_{\gamma < \beta} A_\gamma$
- $A_{\beta+1} = A_\beta \rtimes_\alpha Z$ for an asymptotically inner α

Question

Given any metrizable Choquet simplex X, is there a counterexample to Naĭmark’s Problem A such that $T(A) \cong X$?

Question

Is there a counterexample to Naĭmark’s Problem A such that $T(A)$ is nonseparable?
The trace space of a crossed product

Consider $\tau \in T(B)$ and let $(\pi_\tau, H_\tau, \xi_\tau)$ be the GNS representation associated to τ.

Theorem (Thomsen, 1995)

Consider the crossed product $B \rtimes Z$, B being separable unital. Suppose furthermore that α is approximately inner. The following are equivalent:

1. The restriction map $r: T(B \rtimes Z) \to T(B)$ is an homeomorphism.
2. $\alpha^k \tau \upharpoonright \pi_\tau(B)'$ is outer for all extremal traces τ and all $k \in Z$.

The trace space of a crossed product

Consider $\tau \in T(B)$ and let $(\pi_\tau, H_\tau, \xi_\tau)$ be the GNS representation associated to τ. If $\alpha \in \text{Aut}(B)$ and τ is α-invariant, then the unique unitary u^τ_α on H_τ defined as follows, given a $a \in B$

$$u^\tau_\alpha(a\xi_\tau) = \alpha(a)(\xi_\tau)$$

is such that $\text{Ad} u^\tau_\alpha = \alpha$ on $\pi_\tau(B)$.

Thus α can be extended to all $B(\mathcal{H}_\tau)$. We will denote such extension by α^τ.

Theorem (Thomsen, 1995)

Consider the crossed product $B \rtimes \mathbb{Z}$, B being separable unital. Suppose furthermore that α is approximately inner. The following are equivalent:

1. The restriction map $r: T(B \rtimes \mathbb{Z}) \rightarrow T(B)$ is an homeomorphism.
2. $\alpha^k \tau \mid_{\pi_\tau(B)}$ is outer for all extremal traces τ and all $k \in \mathbb{Z}$.

The trace space of a crossed product

Consider \(\tau \in T(B) \) and let \((\pi_\tau, H_\tau, \xi_\tau)\) be the GNS representation associated to \(\tau \). If \(\alpha \in \text{Aut}(B) \) and \(\tau \) is \(\alpha \)-invariant, then the unique unitary \(u_\alpha^\tau \) on \(H_\tau \) defined as follows, given a \(a \in B \)

\[
u_\alpha^{\tau}(a\xi_\tau) = \alpha(a)(\xi_\tau)
\]

is such that \(\text{Ad} u_\alpha^\tau = \alpha \) on \(\pi_\tau(B) \). Thus \(\alpha \) can be extended to all \(B(H_\tau) \). We will denote such extension by \(\alpha_\tau \).
The trace space of a crossed product

Consider $\tau \in T(B)$ and let $(\pi_\tau, H_\tau, \xi_\tau)$ be the GNS representation associated to τ. If $\alpha \in \text{Aut}(B)$ and τ is α-invariant, then the unique unitary u_α^τ on H_τ defined as follows, given a $a \in B$

$$u_\alpha^\tau(a\xi_\tau) = \alpha(a)(\xi_\tau)$$

is such that $\text{Ad}u_\alpha^\tau = \alpha$ on $\pi_\tau(B)$. Thus α can be extended to all $B(H_\tau)$. We will denote such extension by α_τ.

Theorem (Thomsen, 1995)

Consider the crossed product $B \rtimes_\alpha \mathbb{Z}$, B being separable unital. Suppose furthermore that α is approximately inner. The following are equivalent:

1. The restriction map $r : T(B \rtimes_\alpha \mathbb{Z}) \to T(B)$ is an homeomorphism.
2. $\alpha_k^\tau \upharpoonright \pi_\tau(B)''$ is outer for all extremal traces τ and all $k \in \mathbb{Z}$.
Two variants of Kishimoto-Ozawa-Sakai Theorem

Theorem

Let A be a separable simple unital C*-algebra. If $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are two sequences of inequivalent pure states on A. Then there is an asymptotically inner automorphism α such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$.

1. If A is nuclear, $\alpha_k \mid_{\pi(\tau)(A)''}$ is outer for all $k \in \mathbb{Z}$ and all $\tau \in \partial T(A)$.

2. $\alpha_{\tau} \mid_{\pi(\tau)(A)''}$ is inner for some $\tau \in \partial T(A)$.
Two variants of Kishimoto-Ozawa-Sakai Theorem

Theorem

Let A be a separable simple unital C*-algebra. If $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are two sequences of inequivalent pure states on A. Then there is an asymptotically inner automorphism α such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$ and one of the following holds:

1. **if A is nuclear** $\alpha_k^\tau \upharpoonright \pi_\tau(A)''$ is **outer** for all $k \in \mathbb{Z}$ and all $\tau \in \partial T(A)$.
2. **$\alpha_\tau \upharpoonright \pi_\tau(A)''$ is **inner** for some $\tau \in \partial T(A)$.
The main result (again)

Theorem

Assume ♦, and let X be a metrizable Choquet simplex.

1. There exists a counterexample to Naïmark’s Problem A such that $T(A) \cong X$.
The main result (again)

Theorem

Assume ♦, and let X be a metrizable Choquet simplex.

1. There exists a counterexample to Naďmark’s Problem A such that $T(A) \cong X$.

2. There exists a counterexample to Naďmark’s Problem whose trace space is nonseparable.
The main result (again)

Theorem

Assume \Diamond, and let X be a metrizable Choquet simplex.

1. There exists a counterexample to Naïmark’s Problem A such that $T(A) \cong X$.
2. There exists a counterexample to Naïmark’s Problem whose trace space is nonseparable.

Thank you!
[1] Charles Akemann and Nik Weaver, Consistency of a counterexample to
7522–7525. MR2057719

[2] Ilijas Farah and Ilan Hirshberg, Simple nuclear C*-algebras not isomorphic
to their opposites, Proc. Natl. Acad. Sci. USA 114 (2017), no. 24,
6244–6249. MR3667529

[3] Akitaka Kishimoto, Narutaka Ozawa, and Shôichirô Sakai, Homogeneity of
the pure state space of a separable C*-algebra, Canad. Math. Bull. 46

[4] Andrea Vaccaro, Trace spaces of counterexamples to Naïmark’s Problem,