Andrea Vaccaro

Università di Pisa & York University (Supervisor: Ilijas Farah)

Waterloo, 2017 CMS Winter Meeting

Outline

- Naĭmark's Problem
- Ounterexamples to Naïmark's Problem
- Trace spaces of counterexamples to Naïmark's Problem

Naĭmark's Problem

Every irreducible representation of the algebra of compact operators K(H) is unitarily equivalent to the identity representation.

Naĭmark's Problem

Every irreducible representation of the algebra of compact operators K(H) is unitarily equivalent to the identity representation.

Problem (Naĭmark, 1951)

If A is a C*-algebra with only one irreducible representation up to unitary equivalence, is A necessarily isomorphic to K(H) for some Hilbert space H?

Naĭmark's Problem

Every irreducible representation of the algebra of compact operators K(H) is unitarily equivalent to the identity representation.

Problem (Naĭmark, 1951)

If A is a C*-algebra with only one irreducible representation up to unitary equivalence, is A necessarily isomorphic to K(H) for some Hilbert space H?

Definition

A counterexample to Naĭmark's Problem is a C*-algebra with only one irreducible representation up to unitarily equivalence which is not isomorphic to any K(H).

Consistency of a counterexample to Naïmark's Problem

The Diamond Principle (\diamondsuit)

There exists a sequence of sets $\{S_{\beta}\}_{\beta < \aleph_1}$ such that $S_{\beta} \subseteq \beta$, and for any $S \subseteq \aleph_1$ the set $\{\beta : S \cap \beta = S_{\beta}\}$ is stationary.

Consistency of a counterexample to Naïmark's Problem

The Diamond Principle (\diamondsuit)

There exists a sequence of sets $\{S_{\beta}\}_{\beta < \aleph_1}$ such that $S_{\beta} \subseteq \beta$, and for any $S \subseteq \aleph_1$ the set $\{\beta : S \cap \beta = S_{\beta}\}$ is stationary.

The Diamond Principle is true in Gödel's constructible universe and implies CH, hence it is *independent* from ZFC.

Consistency of a counterexample to Naïmark's Problem

The Diamond Principle (\diamondsuit)

There exists a sequence of sets $\{S_{\beta}\}_{\beta < \aleph_1}$ such that $S_{\beta} \subseteq \beta$, and for any $S \subseteq \aleph_1$ the set $\{\beta : S \cap \beta = S_{\beta}\}$ is stationary.

The Diamond Principle is true in Gödel's constructible universe and implies CH, hence it is *independent* from ZFC.

Theorem (Akemann-Weaver, 2004)

Assume \Diamond . There exists a counterexample to Naĭmark's Problem.

Assume A is a counterexample to Naĭmark's Problem. Which properties must A satisfy?

Assume A is a counterexample to Naı̆mark's Problem. Which properties must A satisfy?

• A must be simple

Assume A is a counterexample to Naı̆mark's Problem. Which properties must A satisfy?

- A must be simple
- A can't be type I (Kaplanski, 1951)

Assume A is a counterexample to Naı̆mark's Problem. Which properties must A satisfy?

- A must be simple
- A can't be type I (Kaplanski, 1951)
- A can't be separable (Rosenberg, 1953)

Assume A is a counterexample to Naı̆mark's Problem. Which properties must A satisfy?

- A must be simple
- A can't be type I (Kaplanski, 1951)
- A can't be separable (Rosenberg, 1953)

Remark

A counterexample to Naĭmark's Problem would also guarantee the failure of Glimm's Theorem on type I C*-algebras in the nonseparable setting.

Let A be a unital counterexample to Naïmark's Problem.

Let A be a unital counterexample to Naĭmark's Problem. Consider the action of the unitaries of A on the state space of A:

$$egin{aligned} \Psi &: U(\mathcal{A}) imes \mathcal{S}(\mathcal{A}) o \mathcal{S}(\mathcal{A}) \ & (u,\phi) \mapsto \phi \circ \operatorname{Ad} u \end{aligned}$$

Let A be a unital counterexample to Naĭmark's Problem. Consider the action of the unitaries of A on the state space of A:

$$\Psi: U(A) imes \mathcal{S}(A) o \mathcal{S}(A) \ (u, \phi) \mapsto \phi \circ \operatorname{Ad} u$$

On the one hand the action, when restricted to the pure state space P(A), is transitive.

Let A be a unital counterexample to Naĭmark's Problem. Consider the action of the unitaries of A on the state space of A:

$$\Psi: U(A) imes \mathcal{S}(A) o \mathcal{S}(A) \ (u, \phi) \mapsto \phi \circ \operatorname{Ad} u$$

On the one hand the action, when restricted to the pure state space P(A), is transitive.

On the other hand all traces are fixed points of the action $\boldsymbol{\Psi}:$

$$\tau(u^*au) = \tau(uu^*a) = \tau(a)$$

Let A be a unital counterexample to Naĭmark's Problem. Consider the action of the unitaries of A on the state space of A:

$$egin{aligned} \Psi &: U(\mathcal{A}) imes \mathcal{S}(\mathcal{A}) o \mathcal{S}(\mathcal{A}) \ & (u,\phi) \mapsto \phi \circ \operatorname{\mathsf{Ad}} u \end{aligned}$$

On the one hand the action, when restricted to the pure state space P(A), is transitive.

On the other hand all traces are fixed points of the action $\boldsymbol{\Psi}:$

$$au(u^*au) = au(uu^*a) = au(a)$$

Question

How big can T(A) be?

The main result

Theorem

Assume \Diamond , and let X be a metrizable Choquet simplex.

There exists a counterexample to Naĭmark's Problem A such that T(A) ≅ X.

The main result

Theorem

Assume \Diamond , and let X be a metrizable Choquet simplex.

- There exists a counterexample to Naĭmark's Problem A such that T(A) ≅ X.
- There exists a counterexample to Naĭmark's Problem whose trace space is nonseparable.

Theorem (Akemann-Weaver, 2004)

Assume \Diamond . There exists a counterexample to Naĭmark's Problem.

We want a nonseparable simple unital C*-algebra A such that $f \sim g$ for all $f, g \in P(A)$.

Theorem (Akemann-Weaver, 2004)

Assume \Diamond . There exists a counterexample to Naĭmark's Problem.

We want a nonseparable simple unital C*-algebra A such that $f \sim g$ for all $f, g \in P(A)$. Build a sequence of separable simple unital C*-algebras and pure states

$$(A_0, f_0) \subseteq (A_1, f_1) \subseteq \cdots \subseteq (A_\beta, f_\beta) \subseteq \cdots \subseteq (A = \cup_{\beta < \aleph_1} A_\beta, f)$$

Theorem (Akemann-Weaver, 2004)

Assume \Diamond . There exists a counterexample to Naĭmark's Problem.

We want a nonseparable simple unital C*-algebra A such that $f \sim g$ for all $f, g \in P(A)$. Build a sequence of separable simple unital C*-algebras and pure states

$$(A_0, f_0) \subseteq (A_1, f_1) \subseteq \cdots \subseteq (A_\beta, f_\beta) \subseteq \cdots \subseteq (A = \cup_{\beta < \aleph_1} A_\beta, f)$$

• β limit: $A_{\beta} = \overline{\cup_{\gamma < \beta} A_{\gamma}}$ and f_{β} is the only extension of all f_{γ} 's

Theorem (Akemann-Weaver, 2004)

Assume \Diamond . There exists a counterexample to Naĭmark's Problem.

We want a nonseparable simple unital C*-algebra A such that $f \sim g$ for all $f, g \in P(A)$. Build a sequence of separable simple unital C*-algebras and pure states

$$(A_0, f_0) \subseteq (A_1, f_1) \subseteq \cdots \subseteq (A_\beta, f_\beta) \subseteq \cdots \subseteq (A = \cup_{\beta < \aleph_1} A_\beta, f)$$

• β limit: $A_{\beta} = \overline{\cup_{\gamma < \beta} A_{\gamma}}$ and f_{β} is the only extension of all f_{γ} 's

• $\beta + 1$: pick a "certain" $g_{\beta} \in P(A_{\beta})$ such that $g_{\beta} \nsim f_{\beta}$ and build $A_{\beta+1}$ so that g' and $f_{\beta+1}$ are the unique extensions respectively of g_{β} and f_{β} and $g' \sim f_{\beta+1}$

Theorem (Kishimoto-Ozawa-Sakai, 2003)

Let A be a separable simple unital C*-algebra. If f and g are two pure states on A, there is an asymptotically inner automorphism α (i.e there is a path of unitaries $(u_t)_{t \in [0,\infty)}$ such that $\alpha(a) = \lim_{t \to \infty} Adu_t(a)$ for all $a \in A$) such that $f = g \circ \alpha$.

Theorem (Kishimoto-Ozawa-Sakai; Akemann-Weaver 2004)

Let A be a separable simple unital C*-algebra. If $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are **two sequences of inequivalent pure states** on A, there is an asymptotically inner automorphism α (i.e there is a path of unitaries $(u_t)_{t \in [0,\infty)}$ such that $\alpha(a) = \lim_{t\to\infty} Adu_t(a)$ for all $a \in A$) such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$.

Theorem (Kishimoto-Ozawa-Sakai; Akemann-Weaver 2004)

Let A be a separable simple unital C*-algebra. If $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are **two sequences of inequivalent pure states** on A, there is an asymptotically inner automorphism α (i.e there is a path of unitaries $(u_t)_{t \in [0,\infty)}$ such that $\alpha(a) = \lim_{t \to \infty} Adu_t(a)$ for all $a \in A$) such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$.

Lemma

Let A be a separable simple unital C^* -algebra, and let f and g be two inequivalent pure states on A. There exists a separable simple unital C^* -algebra B which unitally contains A such that f and g have unique equivalent extensions to B.

Theorem (Kishimoto-Ozawa-Sakai; Akemann-Weaver 2004)

Let A be a separable simple unital C*-algebra. If $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are **two sequences of inequivalent pure states** on A, there is an asymptotically inner automorphism α (i.e there is a path of unitaries $(u_t)_{t \in [0,\infty)}$ such that $\alpha(a) = \lim_{t \to \infty} Adu_t(a)$ for all $a \in A$) such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$.

Lemma

Let A be a separable simple unital C^* -algebra, and let f and g be two inequivalent pure states on A. There exists a separable simple unital C^* -algebra B which unitally contains A such that f and g have unique equivalent extensions to B.

The idea is to put $B = A \rtimes_{\alpha} \mathbb{Z}$, where α is the automorphism given by KOS-AW Theorem such that $f \sim g \circ \alpha$.

Proposition

Given a counterexample to Naĭmark's Problem $A = \bigcup_{\beta < \aleph_1} A_\beta$ from the Akemann-Weaver's construction, there is an embedding $e : T(A_0) \rightarrow T(A)$.

Proposition

Given a counterexample to Naĭmark's Problem $A = \bigcup_{\beta < \aleph_1} A_\beta$ from the Akemann-Weaver's construction, there is an embedding $e : T(A_0) \rightarrow T(A)$.

Proof: Let *B* be a C*-algebra and $\tau \in T(B)$.

Proposition

Given a counterexample to Naĭmark's Problem $A = \bigcup_{\beta < \aleph_1} A_\beta$ from the Akemann-Weaver's construction, there is an embedding $e : T(A_0) \rightarrow T(A)$.

Proof:

Let B be a C*-algebra and $\tau \in T(B)$. If $\alpha \in Aut(B)$, and τ is α -invariant $(\tau(\alpha(a)) = \tau(a)$ for all $a \in B$), then

$$\tau'\left(\sum_{n\in\mathbb{Z}}a_nu_\alpha^n\right)=\tau(a_0)$$

is a trace of $B \rtimes_{\alpha} \mathbb{Z}$ extending τ .

Proposition

Given a counterexample to Naĭmark's Problem $A = \bigcup_{\beta < \aleph_1} A_\beta$ from the Akemann-Weaver's construction, there is an embedding $e : T(A_0) \rightarrow T(A)$.

Proof:

Let B be a C*-algebra and $\tau \in T(B)$. If $\alpha \in Aut(B)$, and τ is α -invariant $(\tau(\alpha(a)) = \tau(a)$ for all $a \in B$), then

$$\tau'\left(\sum_{n\in\mathbb{Z}}a_nu_\alpha^n\right)=\tau(a_0)$$

is a trace of $B \rtimes_{\alpha} \mathbb{Z}$ extending τ . Since every trace is invariant for inner automorphisms, it is also invariant for asymptotically inner automorphisms.

Proposition

Given a counterexample to Naĭmark's Problem $A = \bigcup_{\beta < \aleph_1} A_\beta$ from the Akemann-Weaver's construction, there is an embedding $e : T(A_0) \rightarrow T(A)$.

Proof:

Let B be a C*-algebra and $\tau \in T(B)$. If $\alpha \in Aut(B)$, and τ is α -invariant $(\tau(\alpha(a)) = \tau(a)$ for all $a \in B$), then

$$\tau'\left(\sum_{n\in\mathbb{Z}}a_nu_\alpha^n\right)=\tau(a_0)$$

is a trace of $B \rtimes_{\alpha} \mathbb{Z}$ extending τ . Since every trace is invariant for inner automorphisms, it is also invariant for asymptotically inner automorphisms. It is thus possible to iteratively extend any $\tau \in T(A_0)$ to a trace on A.

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_{eta} \subseteq \cdots \subseteq A = \cup_{eta < \aleph_1} A_{eta}$$

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\beta \subseteq \cdots \subseteq A = \bigcup_{\beta < \aleph_1} A_\beta$$
$$T(A_0) \underset{r_{0,1}}{\stackrel{e_{0,1}}{\rightleftharpoons}} T(A_1) \underset{r_{1,2}}{\stackrel{e_{1,2}}{\rightleftharpoons}} \dots T(A_\beta) \underset{r_{\beta,\beta+1}}{\stackrel{e_{\beta,\beta+1}}{\rightleftharpoons}} \dots \underset{r}{\stackrel{e}{\rightleftharpoons}} T(A)$$

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\beta \subseteq \cdots \subseteq A = \bigcup_{\beta < \aleph_1} A_\beta$$
$$T(A_0) \underset{r_{0,1}}{\overset{e_{0,1}}{\rightleftharpoons}} T(A_1) \underset{r_{1,2}}{\overset{e_{1,2}}{\rightleftharpoons}} \dots T(A_\beta) \underset{r_{\beta,\beta+1}}{\overset{e_{\beta,\beta+1}}{\rightleftharpoons}} \dots \underset{r}{\overset{e}{\rightleftharpoons}} T(A)$$

• if
$$\beta$$
 is limit ordinal then $A_{\beta} = \overline{\cup_{\gamma < \beta} A_{\gamma}}$

•
$$A_{eta+1} = A_eta
times_lpha\mathbb{Z}$$
 for an asymptotically inner $lpha$

Assume \Diamond . Given any metrizable Choquet simplex X, there is a counterexample to Naĭmark's Problem A such that X can be embedded in T(A).

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\beta \subseteq \cdots \subseteq A = \bigcup_{\beta < \aleph_1} A_\beta$$
$$T(A_0) \stackrel{e_{0,1}}{\underset{r_{0,1}}{\leftrightarrow}} T(A_1) \stackrel{e_{1,2}}{\underset{r_{1,2}}{\leftrightarrow}} \cdots T(A_\beta) \stackrel{e_{\beta,\beta+1}}{\underset{r_{\beta,\beta+1}}{\leftrightarrow}} \cdots \stackrel{e}{\underset{r}{\leftrightarrow}} T(A)$$

• if
$$\beta$$
 is limit ordinal then $A_{\beta} = \overline{\cup_{\gamma < \beta} A_{\gamma}}$

• $A_{\beta+1} = A_{\beta} \rtimes_{\alpha} \mathbb{Z}$ for an asymptotically inner α

Question

Given any metrizable Choquet simplex X, is there a counterexample to Naĭmark's Problem A such that $T(A) \cong X$?

Assume \Diamond . Given any metrizable Choquet simplex X, there is a counterexample to Naĭmark's Problem A such that X can be embedded in T(A).

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq A_\beta \subseteq \cdots \subseteq A = \bigcup_{\beta < \aleph_1} A_\beta$$
$$T(A_0) \underset{r_{0,1}}{\overset{e_{0,1}}{\leftarrow}} T(A_1) \underset{r_{1,2}}{\overset{e_{1,2}}{\leftarrow}} \cdots T(A_\beta) \underset{r_{\beta,\beta+1}}{\overset{e_{\beta,\beta+1}}{\leftarrow}} \cdots \underset{r}{\overset{e}{\leftarrow}} T(A)$$

• if
$$\beta$$
 is limit ordinal then $A_{\beta} = \overline{\cup_{\gamma < \beta} A_{\gamma}}$

• $A_{\beta+1} = A_{\beta} \rtimes_{\alpha} \mathbb{Z}$ for an asymptotically inner α

Question

Given any metrizable Choquet simplex X, is there a counterexample to Naĭmark's Problem A such that $T(A) \cong X$?

Question

Is there a counterexample to Naı̆mark's Problem A such that T(A) is nonseparable?

Consider $\tau \in T(B)$ and let $(\pi_{\tau}, H_{\tau}, \xi_{\tau})$ be the GNS representation associated to τ .

Consider $\tau \in T(B)$ and let $(\pi_{\tau}, H_{\tau}, \xi_{\tau})$ be the GNS representation associated to τ . If $\alpha \in Aut(B)$ and τ is α -invariant, then the unique unitary u_{α}^{τ} on H_{τ} defined as follows, given a $a \in B$

$$u_{\alpha}^{\tau}(a\xi_{\tau}) = \alpha(a)(\xi_{\tau})$$

is such that $\operatorname{Ad} u_{\alpha}^{\tau} = \alpha$ on $\pi_{\tau}(B)$.

Consider $\tau \in T(B)$ and let $(\pi_{\tau}, H_{\tau}, \xi_{\tau})$ be the GNS representation associated to τ . If $\alpha \in Aut(B)$ and τ is α -invariant, then the unique unitary u_{α}^{τ} on H_{τ} defined as follows, given a $a \in B$

$$u_{\alpha}^{\tau}(a\xi_{\tau}) = \alpha(a)(\xi_{\tau})$$

is such that $\operatorname{Ad} u_{\alpha}^{\tau} = \alpha$ on $\pi_{\tau}(B)$. Thus α can be extended to all $B(H_{\tau})$. We will denote such extension by α_{τ} .

Consider $\tau \in T(B)$ and let $(\pi_{\tau}, H_{\tau}, \xi_{\tau})$ be the GNS representation associated to τ . If $\alpha \in Aut(B)$ and τ is α -invariant, then the unique unitary u_{α}^{τ} on H_{τ} defined as follows, given a $a \in B$

$$u_{\alpha}^{\tau}(a\xi_{\tau}) = \alpha(a)(\xi_{\tau})$$

is such that $\operatorname{Ad} u_{\alpha}^{\tau} = \alpha$ on $\pi_{\tau}(B)$. Thus α can be extended to all $B(H_{\tau})$. We will denote such extension by α_{τ} .

Theorem (Thomsen, 1995)

Consider the crossed product $B \rtimes_{\alpha} \mathbb{Z}$, B being separable unital. Suppose furthermore that α is approximately inner. The following are equivalent:

• The restriction map $r : T(B \rtimes_{\alpha} \mathbb{Z}) \to T(B)$ is an homeomorphism.

2 $\alpha_{\tau}^{k} \upharpoonright \pi_{\tau}(B)''$ is outer for all extremal traces τ and all $k \in \mathbb{Z}$.

Two variants of Kishimoto-Ozawa-Sakai Theorem

Theorem

Let A be a separable simple unital C*-algebra. If $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are two sequences of inequivalent pure states on A. Then there is an asymptotically inner automorphism α such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$

Two variants of Kishimoto-Ozawa-Sakai Theorem

Theorem

Let A be a separable simple unital C*-algebra. If $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ are two sequences of inequivalent pure states on A. Then there is an asymptotically inner automorphism α such that $f_n \sim g_n \circ \alpha$ for all $n \in \mathbb{N}$ and one of the following holds:

- if A is nuclear $\alpha_{\tau}^{k} \upharpoonright \pi_{\tau}(A)''$ is **outer** for all $k \in \mathbb{Z}$ and all $\tau \in \partial T(A)$.
- 2 $\alpha_{\tau} \upharpoonright \pi_{\tau}(A)''$ is inner for some $\tau \in \partial T(A)$.

The main result (again)

Theorem

Assume \Diamond , and let X be a metrizable Choquet simplex.

There exists a counterexample to Naĭmark's Problem A such that T(A) ≅ X.

The main result (again)

Theorem

Assume \Diamond , and let X be a metrizable Choquet simplex.

- There exists a counterexample to Naĭmark's Problem A such that T(A) ≅ X.
- There exists a counterexample to Naïmark's Problem whose trace space is nonseparable.

The main result (again)

Theorem

Assume \Diamond , and let X be a metrizable Choquet simplex.

- There exists a counterexample to Naĭmark's Problem A such that T(A) ≅ X.
- There exists a counterexample to Naïmark's Problem whose trace space is nonseparable.

Thank you!

Bibliography

- Charles Akemann and Nik Weaver, Consistency of a counterexample to Naĭmark's problem, Proc. Natl. Acad. Sci. USA 101 (2004), no. 20, 7522–7525. MR2057719
- [2] Ilijas Farah and Ilan Hirshberg, Simple nuclear C*-algebras not isomorphic to their opposites, Proc. Natl. Acad. Sci. USA 114 (2017), no. 24, 6244–6249. MR3667529
- [3] Akitaka Kishimoto, Narutaka Ozawa, and Shôichirô Sakai, Homogeneity of the pure state space of a separable C*-algebra, Canad. Math. Bull. 46 (2003), no. 3, 365–372. MR1994863
- [4] Andrea Vaccaro, Trace spaces of counterexamples to Naĭmark's Problem, arXiv preprint; arXiv:1711.05845 (2017).