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First Order Logic

Fix a language

L = {Ri : i ∈ I} ∪ {fj : j ∈ J} ∪ {ck : k ∈ K}

An L-structure is a tuple

M = 〈M,RMi : i ∈ I, fMj : j ∈ J , cMk : k ∈ K 〉

where:
M is a non-empty set;
RMi is a subset of Mni ;
fMj is a function from Mmj to M;
cMk is a element of M.
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Tarski’s Semantic

The truth value of atomic formulas is determined by the
interpretation of the symbols in L.

For instance, if R is an n-ary
relation symbol:

M |= R(a1, . . . , an)⇔ (a1, . . . , an) ∈ RM ⊆ Mn.
The definition for other formulas is given by induction:

M |= φ ∧ ψ ⇔M |= φ andM |= ψ;
M |= ¬φ⇔M 6|= φ;
M |= ∃xφ(x)⇔ there is a ∈ M such thatM |= φ(a).

Remark
A structureM associates to each formula φ the value 1 (if
M |= φ) or the value 0 (ifM 6|= φ)
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An Example

Let L = {·, c1} where · is a binary function symbol and c1 is a
constant symbol.

Example

〈Q, ·Q, 1〉

φ1 ≡ ∀xyz [(x · y) · z = x · (y · z)]
φ2 ≡ ∀x∃y(x · y = y · x = c1)
φ3 ≡ ∀x(x · c1 = c1 · x = c1)

Let T = {φ1, φ2, φ3} be the theory of groups. We write

〈Q, ·Q, 1〉 |= T

meaning that 〈Q, ·Q, 1〉 |= φi for 1 ≤ i ≤ 3.
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ZFC

We work in the first order axiomatization of set theory ZFC, the
language is L = {∈}.

Definition (ZFC)
Axiom of Extensionality
Axiom of Pairing
Axiom of Union
Axiom of Power Set
Axiom of Infinity
Axiom Schema of Separation
Axiom Schema of Replacement
Axiom of Regularity
Axiom of Choice
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The Universe of Sets

The universe of sets V

is obtained iteratively as follows:

V0 = ∅

Vα+1 = P(Vα)

Vβ =
⋃
α<β

Vα if β is a limit ordinal

V =
⋃

α∈ON
Vα

〈V ,∈〉 is a first order model of ZFC in the language {∈}.

Remark
V is built step by step iterating the power-set operation.
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Independence

Definition
We write T |= φ if every modelM of T verifies

M |= φ

Theorem (Completeness)

T |= φ ⇐⇒ T ` φ

Definition
A formula φ is independent from a theory T if

T 6|= φ ∧ T 6|= ¬φ



Independence in Set Theory

In order to prove that a certain formula φ is independent from
ZFC:

Consider 〈V1,E1〉, 〈V2,E2〉 two {∈}-structures which are
models of ZFC;
Show that

〈V1,E1〉 |= φ

〈V2,E2〉 |= ¬φ

Example
Continuum Hypothesis (Gödel 1940, Cohen 1963);
Whitehead problem (Shelah 1974);
Existence of outer automorhpisms in the Calkin Algebra
(Phillips-Weaver 2006, Farah 2010).
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Boolean Algebras
A boolean algebra 〈B,≤,∧,∨,¬, 0B, 1B〉 is a complemented
bounded distributive lattice.

Example

〈P(X ),⊆,∩,∪,A→ Ac , ∅,X 〉

Example

MALG = 〈M/N ,⊆ /N ,∩/N ,∪/N , [A]→ [I \ A]N , [∅]N , [I]N 〉

M is the family Lebesgue measurable subset of I = [0, 1]
N is the family of null measure sets of I

B is complete if any {xi : i ∈ I} ⊆ B admits supremum
∨

i∈I xi
and infimum

∧
i∈I xi .
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Boolean Valued Models
Let B be a complete boolean algebra and fix a language

L = {Ri : i ∈ I} ∪ {fj : j ∈ J} ∪ {ck : k ∈ K}

A B-valued model is a tuple

M = 〈M,=M,RMi : i ∈ I, fMj : j ∈ J , cMk : k ∈ K 〉

where:
M is a non-empty set;
RMi is a function:

RMi : Mni → B
(τ1, . . . , τni ) 7→

�Ri (τ1, . . . , τni )
�M

B

fMj is a function:

fMj : Mmj +1 → B

(τ1, . . . , τmj , σ) 7→
�
fj(τ1, . . . , τmj ) = σ

�M
B

cMk is a element of M.
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Starting from the interpretation of the symbols in L, we define the
boolean value of each formula φ inductively:

~φ ∧ ψ�MB = ~φ�MB ∧ ~ψ�MB
~¬φ�MB = ¬ ~φ�MB�∃xφ(x)�MB =

∨
τ∈M
�
φ(τ)�MB

Remark
A B-valued modelM associates to each formula φ a value in B.
First order models are B-valued model for B = {0, 1}.

Definition
φ is valid inM if ~φ�MB = 1B.

Theorem (Soundness)
Let L be a language, if φ is a L-formula which is syntactically
provable by a L-theory T , and T is valid in a B-valued modelM,
then ~φ�MB = 1B. More in general φ ` ψ ⇒ ~φ�MB ≤ ~ψ�MB .
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Boolean Valued Universe

Let B ∈ V a complete boolean algebra and L = {∈}. V B, the
boolean valued universe, is a boolean valued version of V .

P(X ) ≡ 2X identifying a subset with its characteristic function.
PB(X ) ≡ BX where for f : X → B, f (a) is the boolean value of
the concept a belongs to X .
Therefore:

V B
0 = ∅

V B
α+1 =

{
f : X → B | X ⊂ V B

α

}
V B
β =

⋃
α<β

V B
α if β is a limit ordinal

V B =
⋃

α∈ON
V B
α
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Boolean Valued Universe
V B is a B-valued model with the following definitions, given by
induction on the rank of the elements:

~τ ∈ σ� =
∨
χ∈dom(σ)(~τ = χ� ∧ σ(χ));

~τ ⊆ σ� =
∧
χ∈dom(τ)(τ(χ)→ ~χ ∈ σ�);

~τ = σ� = ~τ ⊆ σ� ∧ ~σ ⊆ τ�.

Theorem
Every axiom of ZFC is valid in V B.

Remark
Suppose we can find B complete boolean algebra such that

0B < ~CH�V B
< 1B

Then CH is independent from ZFC because

ZFC ` CH⇒ ~CH�V B = 1B

ZFC ` ¬CH⇒ ~¬CH�V B = 1B ⇒ ~CH�V B = 0B
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Ultrafilters
Definition
Given B a boolean algebra, a ultrafilter G is a subset of B such
that

1B ∈ G , 0B < G
if x ∈ G and y ∈ G then x ∧ y ∈ G
if x ∈ G and x ≤ y then y ∈ G
if x < G then ¬x ∈ G

Definition (Stone Space)

St(B) = {G ⊆ B : G is a ultrafilter}

In V B, given G ∈ St(B), define the following equivalence relation:

τ ≡G σ ⇔ ~τ = σ� ∈ G

The quotient V B/G has a natural structure of first order model.
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Cohen’s Forcing Theorem

Theorem (Cohen’s Forcing Theorem)
Assume B ∈ V is a complete boolean algebra and G ∈ St(B).
Then

〈V B/G ,∈G〉 |= ZFC

Moreover

〈V B/G ,∈G〉 |= φ([τ1]G , . . . , [τn]G)⇔ �φ(τ1, . . . , τn)� ∈ G

Remark
Forcing is a machine which produces first order models of ZFC.
The truth value of independent formulas in these models depends
on the combinatorial properties of B and on the choice of G.
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B-names for Complex Numbers

Definition
σ ∈ V B is a B-name for a complex number if

~σ is a complex number� = 1B

Denote with CB the set of all B-names for complex numbers.

CB is the boolean valued version of the set of the complex
numbers.

V → V B → V B/G
C→ CB → CB/G
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Generic Absoluteness

Theorem
Let B a complete boolean algebra and G ∈ St(B). Then:

〈C,+, ·, , 0, 1〉 ≺Σ2 〈C
B/G ,+, ·, , 0, 1〉

Remark
This means that forcing can be used as a tool to prove theorems
within ZFC. To prove that a Σ1

2-formula φ is true in ZFC, it is not
necessary to show that it holds in every model of ZFC. It is enough
to find one model of a certain form in which φ holds.
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C ∗-algebras

Definition
A C∗-algebra 〈A,+, ·, ‖.‖, ∗〉 is a C-algebra such that:

1 〈A,+, ‖.‖〉 is a Banach space
2 ‖xz‖ ≤ ‖x‖‖z‖
3 (x + y)∗ = x∗ + y∗
4 (xy)∗ = y∗x∗
5 (λx)∗ = λx∗
6 x∗∗ = x
7 ‖x∗x‖ = ‖x‖2

Example
Commutative: L∞([0, 1]), C(X ) for X compact Hausdorff
Non-commutative: B(H) for H Hilbert space
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The space C(St(B))

On St(B) define the topology generated by {Oa}a∈B, where:

Oa = {G ∈ St(B) : a ∈ G}

Proposition
St(B) is a compact Hausdorff space and {Oa}a∈B is a basis of
clopen sets.

We will work with the following commutative C∗-algebra:

C(St(B)) = {f : St(B)→ C : f is continuous}
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The space C(St(B))

There are well understood examples of such spaces.

Let
B = MALG =M/N

This is a complete boolean algebra.
Using Gelfand Transform it can be shown that:

Proposition

C(St(MALG)) � L∞([0, 1])
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A Boolean Valued Extension of C

Let B be a complete boolean algebra and R ⊆ C× C a binary
Borel relation on C.

Consider f , g ∈ C(St(B)). Define�R(f , g)� = ˚{G ∈ St(B) : f (G)Rg(G)} = ˚(f × g)−1[R]

This set univocally determines an element of B (B � RO(St(B))).
C(St(B)) is a B-valued model for L = {R}.
The set {cx : x ∈ C}, where cx is the constant function with
value x , is a copy of C in C(St(B)).

Proposition
C(St(B)) is a B-valued extension of C.
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C+(St(B)) � CB

Theorem
Fix a set

L = {Ri : i ∈ I} ∪ {Fj : j ∈ J}

where:
for i ∈ I, Ri is a Borel subset of Cni ;
for j ∈ J, Fj is a Borel function from Cmj to C.

Then
C+(St(B)) � CB

as B-valued models in the language L.



C(St(B)) and generic absoluteness

Proposition
Assume G is a V -generic filter on B. Then

C+(St(B))/G � C(St(B))/G

Theorem
Let B be a complete boolean algebra and G ∈ St(B) be V -generic.
Assume R1, . . . ,Rn are Borel relations on C and F1, . . . ,Fm are
Borel functions on C. Then:

〈C,R1, . . . ,Fm〉 ≺Σ2 〈C
B/G ,R1/G , . . . ,Fm/G〉

Therefore:

〈C,R1, . . . ,Fm〉 ≺Σ2 〈C(St(B))/G ,R1/G , . . . ,Fm/G〉
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Grazie per l’attenzione!
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