C*-algebras and B-names for Complex Numbers

Andrea Vaccaro

University of Pisa

Gargnano, Scuola Estiva di Logica 2016

Outline

- Set Theory
- Independent problems and Forcing
- Boolean Valued Models
- Generic Absoluteness
- **5** B-names for Complex Numbers and C^* -algebras

First Order Logic

Fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_j : j \in J\} \cup \{c_k : k \in K\}$$

First Order Logic

Fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_j : j \in J\} \cup \{c_k : k \in K\}$$

An \mathcal{L} -structure is a tuple

$$\mathcal{M} = \langle M, R_i^{\mathcal{M}} : i \in I, f_j^{\mathcal{M}} : j \in J, c_k^{\mathcal{M}} : k \in K \rangle$$

First Order Logic

Fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_j : j \in J\} \cup \{c_k : k \in K\}$$

An \mathcal{L} -structure is a tuple

$$\mathcal{M} = \langle M, R_i^{\mathcal{M}} : i \in I, f_j^{\mathcal{M}} : j \in J, c_k^{\mathcal{M}} : k \in K \rangle$$

where:

- M is a non-empty set;
- $R_i^{\mathcal{M}}$ is a subset of M^{n_i} ;
- $f_j^{\mathcal{M}}$ is a function from M^{m_j} to M;
- $c_k^{\mathcal{M}}$ is a element of M.

The truth value of atomic formulas is determined by the interpretation of the symbols in \mathcal{L} .

The truth value of atomic formulas is determined by the interpretation of the symbols in \mathcal{L} . For instance, if R is an n-ary relation symbol:

• $\mathcal{M} \models R(a_1,\ldots,a_n) \Leftrightarrow (a_1,\ldots,a_n) \in R^{\mathcal{M}} \subseteq M^n$.

The truth value of atomic formulas is determined by the interpretation of the symbols in \mathcal{L} . For instance, if R is an n-ary relation symbol:

•
$$\mathcal{M} \models R(a_1,\ldots,a_n) \Leftrightarrow (a_1,\ldots,a_n) \in R^{\mathcal{M}} \subseteq M^n$$
.

The definition for other formulas is given by induction:

- $\mathcal{M} \models \phi \land \psi \Leftrightarrow \mathcal{M} \models \phi$ and $\mathcal{M} \models \psi$;
- $\mathcal{M} \models \neg \phi \Leftrightarrow \mathcal{M} \not\models \phi$;
- $\mathcal{M} \models \exists x \phi(x) \Leftrightarrow \text{there is } a \in M \text{ such that } \mathcal{M} \models \phi(a).$

The truth value of atomic formulas is determined by the interpretation of the symbols in \mathcal{L} . For instance, if R is an n-ary relation symbol:

•
$$\mathcal{M} \models R(a_1,\ldots,a_n) \Leftrightarrow (a_1,\ldots,a_n) \in R^{\mathcal{M}} \subseteq M^n$$
.

The definition for other formulas is given by induction:

- $\mathcal{M} \models \phi \land \psi \Leftrightarrow \mathcal{M} \models \phi \text{ and } \mathcal{M} \models \psi$;
- $\mathcal{M} \models \neg \phi \Leftrightarrow \mathcal{M} \not\models \phi$;
- $\mathcal{M} \models \exists x \phi(x) \Leftrightarrow \text{there is } a \in M \text{ such that } \mathcal{M} \models \phi(a).$

Remark

A structure \mathcal{M} associates to each formula ϕ the value 1 (if $\mathcal{M} \models \phi$) or the value 0 (if $\mathcal{M} \not\models \phi$)

Let $\mathcal{L} = \{\cdot, c_1\}$ where \cdot is a binary function symbol and c_1 is a constant symbol.

Let $\mathcal{L} = \{\cdot, c_1\}$ where \cdot is a binary function symbol and c_1 is a constant symbol.

Example

$$\langle \mathbb{Q},\cdot^\mathbb{Q},1\rangle$$

Let $\mathcal{L} = \{\cdot, c_1\}$ where \cdot is a binary function symbol and c_1 is a constant symbol.

Example

$$\langle \mathbb{Q},\cdot^\mathbb{Q},1
angle$$

- $\phi_1 \equiv \forall xyz[(x \cdot y) \cdot z = x \cdot (y \cdot z)]$
- $\phi_2 \equiv \forall x \exists y (x \cdot y = y \cdot x = c_1)$
- $\bullet \ \phi_3 \equiv \forall x (x \cdot c_1 = c_1 \cdot x = c_1)$

Let $\mathcal{L} = \{\cdot, c_1\}$ where \cdot is a binary function symbol and c_1 is a constant symbol.

Example

$$\langle \mathbb{Q},\cdot^\mathbb{Q},1
angle$$

- $\phi_1 \equiv \forall xyz[(x \cdot y) \cdot z = x \cdot (y \cdot z)]$
- $\phi_2 \equiv \forall x \exists y (x \cdot y = y \cdot x = c_1)$
- $\phi_3 \equiv \forall x(x \cdot c_1 = c_1 \cdot x = c_1)$

Let $T = {\phi_1, \phi_2, \phi_3}$ be the **theory of groups**.

Let $\mathcal{L} = \{\cdot, c_1\}$ where \cdot is a binary function symbol and c_1 is a constant symbol.

Example

$$\langle \mathbb{Q},\cdot^\mathbb{Q},1
angle$$

- $\phi_1 \equiv \forall xyz[(x \cdot y) \cdot z = x \cdot (y \cdot z)]$
- $\phi_2 \equiv \forall x \exists y (x \cdot y = y \cdot x = c_1)$
- $\bullet \ \phi_3 \equiv \forall x (x \cdot c_1 = c_1 \cdot x = c_1)$

Let $T = {\phi_1, \phi_2, \phi_3}$ be the **theory of groups**. We write

$$\langle \mathbb{Q}, \cdot^{\mathbb{Q}}, 1 \rangle \models T$$

meaning that $\langle \mathbb{Q}, \cdot \mathbb{Q}, 1 \rangle \models \phi_i$ for $1 \leq i \leq 3$.

ZFC

We work in the first order axiomatization of set theory ZFC, the language is $\mathcal{L}=\{\in\}.$

ZFC

We work in the first order axiomatization of set theory ZFC, the language is $\mathcal{L} = \{\in\}$.

Definition (ZFC)

- Axiom of Extensionality
- Axiom of Pairing
- Axiom of Union
- Axiom of Power Set
- Axiom of Infinity
- Axiom Schema of Separation
- Axiom Schema of Replacement
- Axiom of Regularity
- Axiom of Choice

The universe of sets V

$$V_0 = \emptyset$$

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_eta = igcup_{lpha < eta} V_lpha$$
 if eta is a limit ordinal

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_eta = igcup_{lpha < eta} V_lpha$$
 if eta is a limit ordinal

$$V = \bigcup_{\alpha \in \mathsf{ON}} V_{\alpha}$$

The universe of sets V is obtained iteratively as follows:

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_{\beta} = \bigcup_{\alpha < \beta} V_{\alpha}$$
 if β is a limit ordinal

$$V = \bigcup_{\alpha \in \mathsf{ON}} V_{\alpha}$$

 $\langle V, \in \rangle$ is a first order model of ZFC in the language $\{\in\}$.

The universe of sets V is obtained iteratively as follows:

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \mathcal{P}(V_{\alpha})$$

$$V_{eta} = \bigcup_{lpha < eta} V_{lpha} \ ext{if} \ eta \ ext{is a limit ordinal}$$

$$V = \bigcup_{\alpha \in \mathsf{ON}} V_{\alpha}$$

 $\langle V, \in \rangle$ is a first order model of ZFC in the language $\{\in\}$.

Remark

V is built step by step iterating the power-set operation.

Definition

We write $T \models \phi$ if every model \mathcal{M} of T verifies

$$\mathcal{M} \models \phi$$

Definition

We write $T \models \phi$ if every model \mathcal{M} of T verifies

$$\mathcal{M} \models \phi$$

Theorem (Completeness)

$$T \models \phi \iff T \vdash \phi$$

Definition

We write $T \models \phi$ if every model \mathcal{M} of T verifies

$$\mathcal{M} \models \phi$$

Theorem (Completeness)

$$T \models \phi \iff T \vdash \phi$$

Let T be the theory of groups. Consider

$$\psi \equiv \forall xy(x \cdot y = y \cdot x)$$

Definition

We write $T \models \phi$ if every model \mathcal{M} of T verifies

$$\mathcal{M} \models \phi$$

Theorem (Completeness)

$$T \models \phi \iff T \vdash \phi$$

Let T be the theory of groups. Consider

$$\psi \equiv \forall xy(x \cdot y = y \cdot x)$$
$$T \not\models \neg \psi$$

Definition

We write $T \models \phi$ if every model \mathcal{M} of T verifies

$$\mathcal{M} \models \phi$$

Theorem (Completeness)

$$T \models \phi \iff T \vdash \phi$$

Let T be the theory of groups. Consider

$$\psi \equiv \forall xy(x \cdot y = y \cdot x)$$
$$T \not\models \neg \psi$$
$$T \not\models \psi$$

Definition

We write $T \models \phi$ if every model \mathcal{M} of T verifies

$$\mathcal{M} \models \phi$$

Theorem (Completeness)

$$T \models \phi \iff T \vdash \phi$$

Definition

A formula ϕ is **independent** from a theory T if

$$T \not\models \phi \land T \not\models \neg \phi$$

In order to prove that a certain formula ϕ is independent from ZFC:

In order to prove that a certain formula ϕ is independent from ZFC:

• Consider $\langle V_1, E_1 \rangle, \langle V_2, E_2 \rangle$ two $\{\in\}$ -structures which are models of ZFC;

In order to prove that a certain formula ϕ is independent from ZFC:

- Consider $\langle V_1, E_1 \rangle, \langle V_2, E_2 \rangle$ two $\{\in\}$ -structures which are models of ZFC;
- Show that

$$\langle V_1, E_1 \rangle \models \phi$$

 $\langle V_2, E_2 \rangle \models \neg \phi$

In order to prove that a certain formula ϕ is independent from ZFC:

- Consider $\langle V_1, E_1 \rangle, \langle V_2, E_2 \rangle$ two $\{\in\}$ -structures which are models of ZFC;
- Show that

$$\langle V_1, E_1 \rangle \models \phi$$

 $\langle V_2, E_2 \rangle \models \neg \phi$

Example

- Continuum Hypothesis (Gödel 1940, Cohen 1963);
- Whitehead problem (Shelah 1974);
- Existence of outer automorhpisms in the Calkin Algebra (Phillips-Weaver 2006, Farah 2010).

Boolean Algebras

A boolean algebra $\langle B, \leq, \wedge, \vee, \neg, 0_B, 1_B \rangle$ is a complemented bounded distributive lattice.

Boolean Algebras

A boolean algebra $\langle B,\leq,\wedge,\vee,\neg,0_B,1_B\rangle$ is a complemented bounded distributive lattice.

Example

$$\langle \mathcal{P}(X), \subseteq, \cap, \cup, A \to A^c, \emptyset, X \rangle$$

Boolean Algebras

A boolean algebra $\langle B,\leq,\wedge,\vee,\neg,0_B,1_B\rangle$ is a complemented bounded distributive lattice.

Example

$$\langle \mathcal{P}(X), \subseteq, \cap, \cup, A \to A^c, \emptyset, X \rangle$$

Example

$$\mathsf{MALG} = \langle \mathcal{M}/\mathcal{N}, \subseteq /_{\mathcal{N}}, \cap /_{\mathcal{N}}, \cup /_{\mathcal{N}}, [A] \to [\mathit{I} \setminus \mathit{A}]_{\mathcal{N}}, [\emptyset]_{\mathcal{N}}, [\mathit{I}]_{\mathcal{N}} \rangle$$

- \mathcal{M} is the family Lebesgue measurable subset of I = [0, 1]
- ullet $\mathcal N$ is the family of null measure sets of $\mathcal N$

Boolean Algebras

A boolean algebra $\langle B, \leq, \wedge, \vee, \neg, 0_B, 1_B \rangle$ is a complemented bounded distributive lattice.

Example

$$\langle \mathcal{P}(X), \subseteq, \cap, \cup, A \to A^c, \emptyset, X \rangle$$

Example

$$\mathsf{MALG} = \langle \mathcal{M}/\mathcal{N}, \subseteq /_{\mathcal{N}}, \cap /_{\mathcal{N}}, \cup /_{\mathcal{N}}, [A] \to [\mathit{I} \setminus \mathit{A}]_{\mathcal{N}}, [\emptyset]_{\mathcal{N}}, [\mathit{I}]_{\mathcal{N}} \rangle$$

- \mathcal{M} is the family Lebesgue measurable subset of I = [0, 1]
- ullet ${\cal N}$ is the family of null measure sets of ${\it I}$

B is **complete** if any $\{x_i : i \in \mathcal{I}\} \subseteq B$ admits supremum $\bigvee_{i \in \mathcal{I}} x_i$ and infimum $\bigwedge_{i \in \mathcal{I}} x_i$.

Boolean Valued Models

Let B be a complete boolean algebra and fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_i : j \in J\} \cup \{c_k : k \in K\}$$

Boolean Valued Models

Let B be a complete boolean algebra and fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_i : j \in J\} \cup \{c_k : k \in K\}$$

A B-valued model is a tuple

$$\mathcal{M} = \langle M, =^{\mathcal{M}}, R_i^{\mathcal{M}} : i \in I, f_i^{\mathcal{M}} : j \in J, c_k^{\mathcal{M}} : k \in K \rangle$$

Boolean Valued Models

Let B be a complete boolean algebra and fix a language

$$\mathcal{L} = \{R_i : i \in I\} \cup \{f_i : j \in J\} \cup \{c_k : k \in K\}$$

A B-valued model is a tuple

$$\mathcal{M} = \langle M, =^{\mathcal{M}}, R_i^{\mathcal{M}} : i \in I, f_i^{\mathcal{M}} : j \in J, c_k^{\mathcal{M}} : k \in K \rangle$$

where:

- M is a non-empty set;
 - $R_i^{\mathcal{M}}$ is a function:

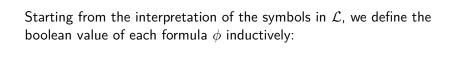
$$R_i^{\mathcal{M}}: \mathcal{M}^{n_i} o \mathsf{B} \ (au_1, \dots, au_{n_i}) \mapsto \llbracket R_i(au_1, \dots, au_{n_i})
Vert_\mathsf{R}^{\mathcal{M}}$$

• $f_i^{\mathcal{M}}$ is a function:

$$f_j^{\mathcal{M}}: M^{m_j+1} \to \mathsf{B}$$

 $(\tau_1, \dots, \tau_{m_j}, \sigma) \mapsto \llbracket f_j(\tau_1, \dots, \tau_{m_j}) = \sigma
brace_\mathsf{B}^{\mathcal{M}}$

• $c_k^{\mathcal{M}}$ is a element of M.



- $\bullet \ \llbracket \phi \wedge \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} \wedge \llbracket \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\bullet \ \llbracket \neg \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \neg \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\llbracket \exists x \phi(x) \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \bigvee_{\tau \in M} \llbracket \phi(\tau) \rrbracket_{\mathsf{B}}^{\mathcal{M}}$

- $\bullet \ \llbracket \phi \wedge \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} \wedge \llbracket \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\bullet \ \llbracket \neg \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \neg \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\llbracket \exists x \phi(x) \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \bigvee_{\tau \in \mathcal{M}} \llbracket \phi(\tau) \rrbracket_{\mathsf{B}}^{\mathcal{M}}$

Remark

A B-valued model $\mathcal M$ associates to each formula ϕ a value in B. First order models are B-valued model for B = $\{0,1\}$.

- $\bullet \ \llbracket \phi \wedge \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} \wedge \llbracket \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\bullet \ \llbracket \neg \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \neg \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\bullet \ \llbracket \exists x \phi(x) \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \bigvee_{\tau \in \mathcal{M}} \llbracket \phi(\tau) \rrbracket_{\mathsf{B}}^{\mathcal{M}}$

Remark

A B-valued model $\mathcal M$ associates to each formula ϕ a value in B. First order models are B-valued model for B = $\{0,1\}$.

Definition

 ϕ is **valid** in \mathcal{M} if $\llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = 1_{\mathsf{B}}$.

- $\bullet \ \llbracket \phi \wedge \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} \wedge \llbracket \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\bullet \ \llbracket \neg \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \neg \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\bullet \ \llbracket \exists x \phi(x) \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \bigvee_{\tau \in M} \llbracket \phi(\tau) \rrbracket_{\mathsf{B}}^{\mathcal{M}}$

Remark

A B-valued model $\mathcal M$ associates to each formula ϕ a value in B. First order models are B-valued model for B = $\{0,1\}$.

Definition

 ϕ is **valid** in \mathcal{M} if $\llbracket \phi \rrbracket_{\mathsf{R}}^{\mathcal{M}} = 1_{\mathsf{B}}$.

Theorem (Soundness)

Let $\mathcal L$ be a language, if ϕ is a $\mathcal L$ -formula which is syntactically provable by a $\mathcal L$ -theory T, and T is valid in a B-valued model $\mathcal M$, then $\llbracket \phi \rrbracket_B^{\mathcal M} = 1_B$.

- $\bullet \ \llbracket \phi \wedge \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} \wedge \llbracket \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\bullet \ \llbracket \neg \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \neg \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$
- $\llbracket \exists x \phi(x) \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \bigvee_{\tau \in M} \llbracket \phi(\tau) \rrbracket_{\mathsf{B}}^{\mathcal{M}}$

Remark

A B-valued model $\mathcal M$ associates to each formula ϕ a value in B. First order models are B-valued model for B = $\{0,1\}$.

Definition

 ϕ is **valid** in \mathcal{M} if $\llbracket \phi \rrbracket_{\mathsf{R}}^{\mathcal{M}} = 1_{\mathsf{R}}$.

Theorem (Soundness)

Let \mathcal{L} be a language, if ϕ is a \mathcal{L} -formula which is syntactically provable by a \mathcal{L} -theory T, and T is valid in a B-valued model \mathcal{M} , then $\llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = 1_{\mathsf{B}}$. More in general $\phi \vdash \psi \Rightarrow \llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} \leq \llbracket \psi \rrbracket_{\mathsf{B}}^{\mathcal{M}}$.

Let $B \in V$ a complete boolean algebra and $\mathcal{L} = \{\in\}$. V^B , the **boolean valued universe**, is a boolean valued version of V.

Let $B \in V$ a complete boolean algebra and $\mathcal{L} = \{\in\}$. V^B , the **boolean valued universe**, is a boolean valued version of V. $\mathcal{P}(X) \equiv 2^X$ identifying a subset with its characteristic function.

Let $B \in V$ a complete boolean algebra and $\mathcal{L} = \{\in\}$. V^B , the **boolean valued universe**, is a boolean valued version of V. $\mathcal{P}(X) \equiv 2^X$ identifying a subset with its characteristic function. $\mathcal{P}_B(X) \equiv B^X$ where for $f: X \to B$, f(a) is the boolean value of the concept a belongs to X.

Let $B \in V$ a complete boolean algebra and $\mathcal{L} = \{\in\}$. V^B , the **boolean valued universe**, is a boolean valued version of V. $\mathcal{P}(X) \equiv 2^X$ identifying a subset with its characteristic function. $\mathcal{P}_B(X) \equiv B^X$ where for $f: X \to B$, f(a) is the boolean value of the concept a belongs to X.

Therefore:

$$V_0^{\mathsf{B}} = \emptyset$$
 $V_{lpha+1}^{\mathsf{B}} = \left\{ f: X o \mathsf{B} \mid X \subset V_lpha^{\mathsf{B}}
ight\}$ $V_eta^{\mathsf{B}} = igcup_{lpha < eta} V_lpha^{\mathsf{B}} ext{ if } eta ext{ is a limit ordinal}$ $V^{\mathsf{B}} = igcup_{lpha \in \mathit{ON}} V_lpha^{\mathsf{B}}$

 $V^{\rm B}$ is a B-valued model with the following definitions, given by induction on the rank of the elements:

- $\llbracket \tau \in \sigma \rrbracket = \bigvee_{\chi \in \mathsf{dom}(\sigma)} (\llbracket \tau = \chi \rrbracket \wedge \sigma(\chi));$
- $\llbracket \tau \subseteq \sigma \rrbracket = \bigwedge_{\chi \in \mathsf{dom}(\tau)} (\tau(\chi) \to \llbracket \chi \in \sigma \rrbracket);$
- $\bullet \ \llbracket \tau = \sigma \rrbracket = \llbracket \widetilde{\tau} \subseteq \sigma \rrbracket \land \llbracket \sigma \subseteq \tau \rrbracket.$

 $V^{\rm B}$ is a B-valued model with the following definitions, given by induction on the rank of the elements:

- $\llbracket \tau \in \sigma \rrbracket = \bigvee_{\chi \in \mathsf{dom}(\sigma)} (\llbracket \tau = \chi \rrbracket \wedge \sigma(\chi));$
- $\llbracket \tau \subseteq \sigma \rrbracket = \bigwedge_{\chi \in \mathsf{dom}(\tau)} (\tau(\chi) \to \llbracket \chi \in \sigma \rrbracket);$
- $\bullet \ \llbracket \tau = \sigma \rrbracket = \llbracket \tau \subseteq \sigma \rrbracket \land \llbracket \sigma \subseteq \tau \rrbracket.$

Theorem

Every axiom of ZFC is valid in V^{B} .

 $V^{\rm B}$ is a B-valued model with the following definitions, given by induction on the rank of the elements:

- $\llbracket \tau \in \sigma \rrbracket = \bigvee_{\chi \in \mathsf{dom}(\sigma)} (\llbracket \tau = \chi \rrbracket \wedge \sigma(\chi));$
- $\llbracket \tau \subseteq \sigma \rrbracket = \bigwedge_{\chi \in \mathsf{dom}(\tau)} (\tau(\chi) \to \llbracket \chi \in \sigma \rrbracket);$
- $\llbracket \tau = \sigma \rrbracket = \llbracket \tau \subseteq \sigma \rrbracket \land \llbracket \sigma \subseteq \tau \rrbracket$.

Theorem

Every axiom of ZFC is valid in V^{B} .

Remark

Suppose we can find B complete boolean algebra such that

$$0_{\mathsf{B}} < [\![CH]\!]^{V^{\mathsf{B}}} < 1_{\mathsf{B}}$$

 $V^{\rm B}$ is a B-valued model with the following definitions, given by induction on the rank of the elements:

- $\llbracket \tau \in \sigma \rrbracket = \bigvee_{\chi \in \mathsf{dom}(\sigma)} (\llbracket \tau = \chi \rrbracket \wedge \sigma(\chi));$
- $\llbracket \tau \subseteq \sigma \rrbracket = \bigwedge_{\chi \in \mathsf{dom}(\tau)} (\tau(\chi) \to \llbracket \chi \in \sigma \rrbracket);$
- $\llbracket \tau = \sigma \rrbracket = \llbracket \tau \subseteq \sigma \rrbracket \land \llbracket \sigma \subseteq \tau \rrbracket$.

Theorem

Every axiom of ZFC is valid in V^{B} .

Remark

Suppose we can find B complete boolean algebra such that

$$0_{\mathsf{B}} < [\![CH]\!]^{V^{\mathsf{B}}} < 1_{\mathsf{B}}$$

Then CH is independent from ZFC because

$$\begin{split} \textit{ZFC} \vdash \textit{CH} \Rightarrow \llbracket \textit{CH} \rrbracket^{\textit{V}^{\mathsf{B}}} &= 1_{\mathsf{B}} \\ \textit{ZFC} \vdash \neg \textit{CH} \Rightarrow \llbracket \neg \textit{CH} \rrbracket^{\textit{V}^{\mathsf{B}}} &= 1_{\mathsf{B}} \Rightarrow \llbracket \textit{CH} \rrbracket^{\textit{V}^{\mathsf{B}}} &= 0_{\mathsf{B}} \end{split}$$

Definition

Given B a boolean algebra, a ${\bf ultrafilter}\ G$ is a subset of B such that

- $\bullet \ 1_B \in \textit{G}, \ 0_B \notin \textit{G}$
- if $x \in G$ and $y \in G$ then $x \land y \in G$
- if $x \in G$ and $x \le y$ then $y \in G$
- if $x \notin G$ then $\neg x \in G$

Definition

Given B a boolean algebra, a **ultrafilter** G is a subset of B such that

- $\bullet \ 1_B \in \textit{G}, \ 0_B \notin \textit{G}$
- if $x \in G$ and $y \in G$ then $x \land y \in G$
- if $x \in G$ and $x \le y$ then $y \in G$
- if $x \notin G$ then $\neg x \in G$

Definition (Stone Space)

$$St(B) = \{G \subseteq B : G \text{ is a ultrafilter}\}\$$

Definition

Given B a boolean algebra, a **ultrafilter** G is a subset of B such that

- $1_B \in G$, $0_B \notin G$
- if $x \in G$ and $y \in G$ then $x \land y \in G$
- if $x \in G$ and $x \le y$ then $y \in G$
- if $x \notin G$ then $\neg x \in G$

Definition (Stone Space)

$$St(B) = \{G \subseteq B : G \text{ is a ultrafilter}\}\$$

In V^{B} , given $G \in St(B)$, define the following equivalence relation:

$$\tau \equiv_{\mathcal{G}} \sigma \Leftrightarrow \llbracket \tau = \sigma \rrbracket \in \mathcal{G}$$

Definition

Given B a boolean algebra, a **ultrafilter** G is a subset of B such that

- 1_B ∈ G, 0_B ∉ G
- if $x \in G$ and $y \in G$ then $x \land y \in G$
- if $x \in G$ and $x \le y$ then $y \in G$
- if $x \notin G$ then $\neg x \in G$

Definition (Stone Space)

$$St(B) = \{G \subseteq B : G \text{ is a ultrafilter}\}\$$

In V^{B} , given $G \in St(B)$, define the following equivalence relation:

$$\tau \equiv_{\mathcal{G}} \sigma \Leftrightarrow \llbracket \tau = \sigma \rrbracket \in \mathcal{G}$$

The quotient V^{B}/G has a natural structure of first order model.

Cohen's Forcing Theorem

Theorem (Cohen's Forcing Theorem)

Assume $B \in V$ is a complete boolean algebra and $G \in St(B)$. Then

$$\langle V^{\mathsf{B}}/G, \in_G \rangle \models \mathsf{ZFC}$$

Moreover

$$\langle V^{\mathsf{B}}/G, \in_{\mathsf{G}} \rangle \models \phi([\tau_1]_{\mathsf{G}}, \dots, [\tau_n]_{\mathsf{G}}) \Leftrightarrow \llbracket \phi(\tau_1, \dots, \tau_n) \rrbracket \in \mathsf{G}$$

Cohen's Forcing Theorem

Theorem (Cohen's Forcing Theorem)

Assume $B \in V$ is a complete boolean algebra and $G \in St(B)$. Then

$$\langle V^{\mathrm{B}}/G, \in_{G} \rangle \models \mathsf{ZFC}$$

Moreover

$$\langle V^{\mathsf{B}}/G, \in_{\mathsf{G}} \rangle \models \phi([\tau_1]_{\mathsf{G}}, \dots, [\tau_n]_{\mathsf{G}}) \Leftrightarrow \llbracket \phi(\tau_1, \dots, \tau_n) \rrbracket \in \mathsf{G}$$

Remark

Forcing is a machine which produces first order models of ZFC. The truth value of independent formulas in these models depends on the combinatorial properties of B and on the choice of G.

B-names for Complex Numbers

Definition

 $\sigma \in V^{\mathsf{B}}$ is a B-name for a complex number if

 $[\![\sigma \text{ is a complex number}]\!] = 1_{\mathsf{B}}$

Denote with \mathbb{C}^{B} the set of all B-names for complex numbers.

B-names for Complex Numbers

Definition

 $\sigma \in V^{\mathsf{B}}$ is a B-name for a complex number if

 $[\![\sigma \text{ is a complex number}]\!] = 1_{\mathsf{B}}$

Denote with \mathbb{C}^{B} the set of all B-names for complex numbers.

 \mathbb{C}^{B} is the boolean valued version of the set of the complex numbers.

B-names for Complex Numbers

Definition

 $\sigma \in V^{\mathsf{B}}$ is a B-name for a complex number if

$$[\![\sigma \text{ is a complex number}]\!] = 1_{\mathsf{B}}$$

Denote with \mathbb{C}^{B} the set of all B-names for complex numbers.

 \mathbb{C}^{B} is the boolean valued version of the set of the complex numbers.

$$V \to V^{\mathsf{B}} \to V^{\mathsf{B}}/G$$

 $\mathbb{C} \to \mathbb{C}^{\mathsf{B}} \to \mathbb{C}^{\mathsf{B}}/G$

Theorem

Let B a complete boolean algebra and $G \in St(B)$.

Theorem

Let B a complete boolean algebra and $G \in St(B)$. Then:

$$\langle \mathbb{C},+,\cdot,\overset{-}{,}0,1\rangle \prec_{\Sigma_2} \langle \mathbb{C}^B/\mathit{G},+,\cdot,\overset{-}{,}0,1\rangle$$

Theorem

Let B a complete boolean algebra and $G \in St(B)$. Then:

$$\langle \mathbb{C}, +, \cdot, \overline{}, 0, 1 \rangle \prec_{\Sigma_2} \langle \mathbb{C}^{\mathsf{B}}/G, +, \cdot, \overline{}, 0, 1 \rangle$$

Remark

This means that forcing can be used as a tool to prove theorems within ZFC. To prove that a Σ_2^1 -formula ϕ is true in ZFC, it is not necessary to show that it holds in every model of ZFC. It is enough to find one model of a certain form in which ϕ holds.

Definition

A C^* -algebra $\langle \mathcal{A}, +, \cdot, \|.\|, * \rangle$ is a \mathbb{C} -algebra such that:

Definition

A C^* -algebra $\langle \mathcal{A}, +, \cdot, \|.\|, * \rangle$ is a \mathbb{C} -algebra such that:

- lacktriangledown $\langle \mathcal{A}, +, \|.\|
 angle$ is a Banach space
- **2** $||xz|| \le ||x|| ||z||$
- $(x + y)^* = x^* + y^*$
- $(xy)^* = y^*x^*$
- $x^{**} = x$
- $||x^*x|| = ||x||^2$

Definition

A C^* -algebra $\langle \mathcal{A}, +, \cdot, \|.\|, * \rangle$ is a \mathbb{C} -algebra such that:

- lacktriangledown $\langle \mathcal{A}, +, \|.\|
 angle$ is a Banach space
- **2** $||xz|| \le ||x|| ||z||$
- $(x+y)^* = x^* + y^*$
- $(xy)^* = y^*x^*$
- $x^{**} = x$
- $||x^*x|| = ||x||^2$

Example

• Commutative: $L^{\infty}([0,1])$, C(X) for X compact Hausdorff

Definition

A C^* -algebra $\langle \mathcal{A}, +, \cdot, \|.\|, * \rangle$ is a \mathbb{C} -algebra such that:

- lacktriangledown $\langle \mathcal{A}, +, \|.\|
 angle$ is a Banach space
- $||xz|| \le ||x|| ||z||$
- $(x + y)^* = x^* + y^*$
- $(xy)^* = y^*x^*$
- $(\lambda x)^* = \overline{\lambda} x^*$
- $x^{**} = x$
- $||x^*x|| = ||x||^2$

Example

- Commutative: $L^{\infty}([0,1])$, C(X) for X compact Hausdorff
- Non-commutative: $\mathcal{B}(H)$ for H Hilbert space

The space C(St(B))

On St(B) define the topology generated by $\{\mathcal{O}_a\}_{a\in B}$, where:

$$\mathcal{O}_a = \{G \in St(\mathsf{B}) : a \in G\}$$

On St(B) define the topology generated by $\{\mathcal{O}_a\}_{a\in B}$, where:

$$\mathcal{O}_a = \{G \in St(\mathsf{B}) : a \in G\}$$

Proposition

St(B) is a compact Hausdorff space and $\{\mathcal{O}_a\}_{a\in B}$ is a basis of clopen sets.

On St(B) define the topology generated by $\{\mathcal{O}_a\}_{a\in B}$, where:

$$\mathcal{O}_a = \{G \in St(\mathsf{B}) : a \in G\}$$

Proposition

St(B) is a compact Hausdorff space and $\{\mathcal{O}_a\}_{a\in B}$ is a basis of clopen sets.

We will work with the following commutative C^* -algebra:

$$\mathcal{C}(St(\mathsf{B})) = \{f : St(\mathsf{B}) \to \mathbb{C} : f \text{ is continuous}\}\$$

There are well understood examples of such spaces.

There are well understood examples of such spaces. Let

B = MALG

There are well understood examples of such spaces. Let

$$\mathsf{B} = \mathsf{MALG} = \mathcal{M}/\mathcal{N}$$

There are well understood examples of such spaces. Let

$$B = MALG = \mathcal{M}/\mathcal{N}$$

This is a complete boolean algebra.

There are well understood examples of such spaces. Let

$$B = MALG = \mathcal{M}/\mathcal{N}$$

This is a complete boolean algebra.
Using Gelfand Transform it can be shown that:

Proposition

$$\mathcal{C}(St(\mathsf{MALG})) \cong L^{\infty}([0,1])$$

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} .

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f, g \in \mathcal{C}(St(B))$.

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f,g \in \mathcal{C}(St(B))$. Define

$$\llbracket R(f,g) \rrbracket = \frac{\mathring{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}}}{ (f \times g)^{-1}[R]}$$

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f,g \in \mathcal{C}(St(B))$. Define

$$\llbracket R(f,g) \rrbracket = \frac{\mathring{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}}}{ (f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(St(B))).

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f,g \in \mathcal{C}(St(B))$. Define

$$\llbracket R(f,g) \rrbracket = \frac{\mathring{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}}}{ (f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(St(B))).

• C(St(B)) is a B-valued model for $\mathcal{L} = \{R\}$.

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f,g \in \mathcal{C}(St(B))$. Define

$$\llbracket R(f,g) \rrbracket = \frac{\mathring{\{G \in St(\mathsf{B}) : f(G)Rg(G)\}}}{ (f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(St(B))).

- C(St(B)) is a B-valued model for $\mathcal{L} = \{R\}$.
- The set $\{c_x : x \in \mathbb{C}\}$, where c_x is the constant function with value x, is a copy of \mathbb{C} in $\mathcal{C}(St(B))$.

Let B be a complete boolean algebra and $R \subseteq \mathbb{C} \times \mathbb{C}$ a binary Borel relation on \mathbb{C} . Consider $f,g \in \mathcal{C}(St(B))$. Define

$$\llbracket R(f,g) \rrbracket = \frac{\mathring{\{G \in St(B) : f(G)Rg(G)\}}}{ (f \times g)^{-1}[R]}$$

This set univocally determines an element of B (B \cong RO(St(B))).

- C(St(B)) is a B-valued model for $\mathcal{L} = \{R\}$.
- The set $\{c_x : x \in \mathbb{C}\}$, where c_x is the constant function with value x, is a copy of \mathbb{C} in $\mathcal{C}(St(B))$.

Proposition

 $\mathcal{C}(St(B))$ is a B-valued extension of \mathbb{C} .

$$C^+(St(B)) \cong \mathbb{C}^B$$

Theorem

Fix a set

$$\mathcal{L} = \{R_i : i \in I\} \cup \{F_i : j \in J\}$$

where:

- for $i \in I$, R_i is a Borel subset of \mathbb{C}^{n_i} ;
- for $j \in J$, F_j is a Borel function from \mathbb{C}^{m_j} to \mathbb{C} .

Then

$$\mathcal{C}^+(St(\mathsf{B})) \cong \mathbb{C}^\mathsf{B}$$

as B-valued models in the language \mathcal{L} .

Proposition

Assume G is a V-generic filter on B. Then

$$C^+(St(B))/G \cong C(St(B))/G$$

Proposition

Assume G is a V-generic filter on B. Then

$$C^+(St(B))/G \cong C(St(B))/G$$

Theorem

Let B be a complete boolean algebra and $G \in St(B)$ be V-generic.

Proposition

Assume G is a V-generic filter on B. Then

$$C^+(St(B))/G \cong C(St(B))/G$$

$\mathsf{Theorem}$

Let B be a complete boolean algebra and $G \in St(B)$ be V-generic. Assume R_1, \ldots, R_n are Borel relations on \mathbb{C} and F_1, \ldots, F_m are Borel functions on \mathbb{C} .

Proposition

Assume G is a V-generic filter on B. Then

$$C^+(St(B))/G \cong C(St(B))/G$$

$\mathsf{Theorem}$

Let B be a complete boolean algebra and $G \in St(B)$ be V-generic. Assume R_1, \ldots, R_n are Borel relations on \mathbb{C} and F_1, \ldots, F_m are Borel functions on \mathbb{C} . Then:

$$\langle \mathbb{C}, R_1, \dots, F_m \rangle \prec_{\Sigma_2} \langle \mathbb{C}^{\mathsf{B}}/G, R_1/G, \dots, F_m/G \rangle$$

Proposition

Assume G is a V-generic filter on B. Then

$$C^+(St(B))/G \cong C(St(B))/G$$

$\mathsf{Theorem}$

Let B be a complete boolean algebra and $G \in St(B)$ be V-generic. Assume R_1, \ldots, R_n are Borel relations on \mathbb{C} and F_1, \ldots, F_m are Borel functions on \mathbb{C} . Then:

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle \mathbb{C}^{\mathsf{B}}/G, R_1/G, \ldots, F_m/G \rangle$$

Therefore:

$$\langle \mathbb{C}, R_1, \ldots, F_m \rangle \prec_{\Sigma_2} \langle \mathcal{C}(St(B))/G, R_1/G, \ldots, F_m/G \rangle$$

Grazie per l'attenzione!

Essential bibliography

- [1] Andrea Vaccaro and Matteo Viale, *Generic absoluteness and boolean names for elements of a Polish space*, Boll. Unione Mat. Ital. **10** (2017), no. 3, 293–319. MR3691801
- [2] Matteo Viale, Forcing the truth of a weak form of Schanuel's conjecture, Confluentes Math. 8 (2016), no. 2, 59–83. MR3633221