Set theoretic aspects of the space of ultrafilters $\beta \mathbb{N}$

Boban Velickovic

Equipe de Logique Université de Paris 7

Outline

Introduction

2) The spaces $\beta\mathbb{N}$ and \mathbb{N}^* under CH

- A characterization of N[∗]
- Continuous images of \mathbb{N}^*
- Autohomeomorphisms of \mathbb{N}^*
- $\bullet\,$ P-points and nonhomogeneity of \mathbb{N}^*
- **3** The space $\beta \mathbb{N}$ and \mathbb{N}^* under $\neg \mathrm{CH}$
 - A characterization of \mathbb{N}^*
 - Continuous images of N^{*}
 - Autohomeomorphisms of \mathbb{N}^*
 - $\bullet~ \mathrm{P}\text{-points}$ and nonhomogeneity of \mathbb{N}^*

・ロト ・ 理ト ・ ヨト ・ ヨト

An alternative to CH

- What is wrong with CH?
- Gaps in $\mathcal{P}(\mathbb{N})/FIN$
- Open Coloring Axiom

Open problems

Outline

Introduction

- The spaces $\beta \mathbb{N}$ and \mathbb{N}^* under CH
 - A characterization of \mathbb{N}^*
 - Continuous images of \mathbb{N}^*
 - Autohomeomorphisms of ℕ^{*}
 - P-points and nonhomogeneity of \mathbb{N}^*
- ${\color{black} 3}$ The space ${\color{black} eta} \mathbb{N}$ and \mathbb{N}^* under $eg \mathrm{CH}$
 - A characterization of \mathbb{N}^*
 - Continuous images of ℕ³
 - Autohomeomorphisms of \mathbb{N}^*
 - P-points and nonhomogeneity of N^{*}

- 4 An alternative to CH
 - What is wrong with CH?
 - Gaps in $\mathcal{P}(\mathbb{N})/FIN$
 - Open Coloring Axiom
- 5 Open problems

Introduction

Start with \mathbb{N} the space of natural numbers with the discrete topology.

Definition

 $\beta \mathbb{N}$ is the Čech-Stone compactification of \mathbb{N} . This is the compactification such that every $f : \mathbb{N} \to [0, 1]$ has a unique continuous extension $\beta f : \beta \mathbb{N} \to [0, 1]$.

$$\begin{array}{ccc} \mathbb{N} & \stackrel{f}{\longrightarrow} & [0,1] \\ & & & \parallel \\ \beta \mathbb{N} & \stackrel{\beta f}{\longrightarrow} & [0,1] \end{array}$$

We will denote by \mathbb{N}^* the Čech-Stone remainder $\beta \mathbb{N} \setminus \mathbb{N}$. $\beta \mathbb{N}$ and \mathbb{N}^* are very interesting topological objects. Jan Van Mill calls them the **three headed monster**.

< □ > < @ > < 글 > < 글 >

Introduction

Start with \mathbb{N} the space of natural numbers with the discrete topology.

Definition

 $\beta \mathbb{N}$ is the Čech-Stone compactification of \mathbb{N} . This is the compactification such that every $f : \mathbb{N} \to [0, 1]$ has a unique continuous extension $\beta f : \beta \mathbb{N} \to [0, 1]$.

$$\begin{array}{ccc} \mathbb{N} & \stackrel{f}{\longrightarrow} & [0,1] \\ & & & \parallel \\ & & & \\ \beta \mathbb{N} & \stackrel{\beta f}{\longrightarrow} & [0,1] \end{array}$$

We will denote by \mathbb{N}^* the Čech-Stone remainder $\beta \mathbb{N} \setminus \mathbb{N}$. $\beta \mathbb{N}$ and \mathbb{N}^* are very interesting topological objects. Jan Van Mill calls them the **three headed monster**.

< = > < @ > < = > < = >

The three heads of $\beta \mathbb{N}$.

- Under the Continuum Hypothesis CH it is **smiling and friendly**. Most questions have easy answers.
- The second head is the **ugly head of independence**. This head always tries to confuse you.
- The last and smallest is the ZFC head of $\beta \mathbb{N}$.

To illustrate this phenomenon we consider autohomeomorphisms of \mathbb{N}^* . Recall that the clopen algebra of \mathbb{N}^* is $\mathcal{P}(\mathbb{N})/FIN$. We move back and forth between \mathbb{N}^* and $\mathcal{P}(\mathbb{N})/FIN$ using Stone duality.

3

Outline

Introduction

- 2) The spaces $\beta\mathbb{N}$ and \mathbb{N}^* under CH
 - A characterization of N[∗]
 - Continuous images of \mathbb{N}^*
 - Autohomeomorphisms of \mathbb{N}^*
 - $\bullet\,$ P-points and nonhomogeneity of \mathbb{N}^*
- ${f 3}$ The space $eta{\mathbb N}$ and ${\mathbb N}^*$ under $eg {
 m CH}$
 - A characterization of \mathbb{N}^*
 - Continuous images of N^{*}
 - Autohomeomorphisms of N^{*}
 - P-points and nonhomogeneity of N^{*}

- 4 An alternative to CH
 - What is wrong with CH?
 - Gaps in $\mathcal{P}(\mathbb{N})/FIN$
 - Open Coloring Axiom
- 5 Open problems

A characterization of N[∗]

Under CH it is possible to give a nice combinatorial characterization of $\mathcal{P}(\mathbb{N})/FIN$. Given two elements a and b of a Boolean algebra \mathcal{B} we say that a and b are **orthogonal** and write $a \perp b$ if $a \wedge b = 0$. We say that two subsets \mathcal{F} and \mathcal{G} of \mathcal{B} are **orthogonal** if $a \perp b$, for every $a \in \mathcal{F}$ and $b \in \mathcal{G}$. We say that x **splits** \mathcal{F} and \mathcal{G} if $a \leq x$, for all $a \in \mathcal{F}$ and $x \perp b$, for all $b \in \mathcal{G}$.

Definition

We say that a Boolean algebra \mathcal{B} satisfies **condition** H_{ω} if for every two countable orthogonal subsets \mathcal{F} and \mathcal{G} of \mathcal{B} there is $x \in \mathcal{B}$ which splits \mathcal{F} and \mathcal{G} .

Theorem $\mathcal{P}(\mathbb{N})/FIN$ satisfies condition H_{ω} .

A characterization of \mathbb{N}^*

Under CH it is possible to give a nice combinatorial characterization of $\mathcal{P}(\mathbb{N})/FIN$. Given two elements a and b of a Boolean algebra \mathcal{B} we say that a and b are **orthogonal** and write $a \perp b$ if $a \wedge b = 0$. We say that two subsets \mathcal{F} and \mathcal{G} of \mathcal{B} are **orthogonal** if $a \perp b$, for every $a \in \mathcal{F}$ and $b \in \mathcal{G}$. We say that x **splits** \mathcal{F} and \mathcal{G} if $a \leq x$, for all $a \in \mathcal{F}$ and $x \perp b$, for all $b \in \mathcal{G}$.

Definition

We say that a Boolean algebra \mathcal{B} satisfies **condition** H_{ω} if for every two countable orthogonal subsets \mathcal{F} and \mathcal{G} of \mathcal{B} there is $x \in \mathcal{B}$ which splits \mathcal{F} and \mathcal{G} .

Theorem

 $\mathcal{P}(\mathbb{N})/FIN$ satisfies condition H_{ω} .

There is a slightly stronger condition.

Definition

A Boolean algebra \mathcal{B} satisfies **condition** R_{ω} if for any two orthogonal countable subsets \mathcal{F}, \mathcal{G} of \mathcal{B} and any countable $\mathcal{H} \subseteq \mathcal{B}$ such that for all finite $\mathcal{F}_0 \subseteq \mathcal{F}$ and $\mathcal{G}_0 \subseteq \mathcal{G}$ and $h \in \mathcal{H}$ we have $h \nleq \lor \mathcal{F}_0$ and $h \nleq \lor \mathcal{G}_0$ there exist $x \in \mathcal{B}$ which splits \mathcal{F} and \mathcal{G} and such that $0 < x \land h < x$, for all $h \in \mathcal{H}$.

Lemma

If a Boolean algebra $\mathcal B$ satisfies condition H_{ω} then it satisfies condition R_{ω} .

Corollary $\mathcal{P}(\mathbb{N})/FIN$ satisfies condition R_{ω} .

There is a slightly stronger condition.

Definition

A Boolean algebra \mathcal{B} satisfies **condition** R_{ω} if for any two orthogonal countable subsets \mathcal{F}, \mathcal{G} of \mathcal{B} and any countable $\mathcal{H} \subseteq \mathcal{B}$ such that for all finite $\mathcal{F}_0 \subseteq \mathcal{F}$ and $\mathcal{G}_0 \subseteq \mathcal{G}$ and $h \in \mathcal{H}$ we have $h \nleq \lor \mathcal{F}_0$ and $h \nleq \lor \mathcal{G}_0$ there exist $x \in \mathcal{B}$ which splits \mathcal{F} and \mathcal{G} and such that $0 < x \land h < x$, for all $h \in \mathcal{H}$.

Lemma

If a Boolean algebra \mathcal{B} satisfies condition H_{ω} then it satisfies condition R_{ω} .

Corollary $\mathcal{P}(\mathbb{N})/FIN$ satisfies condition R_{ω} .

Theorem

Assume CH. Then any two Boolean algebras of cardinality at most c satisfying condition H_{ω} are isomorphic.

Proof.

Let \mathcal{B} and \mathcal{C} be two Boolean algebras of cardinality \mathfrak{c} satisfying condition H_{ω} . List \mathcal{B} as $\{b_{\alpha} : \alpha < \omega_1\}$ and \mathcal{C} as $\{c_{\alpha} : \alpha < \omega_1\}$. W.l.o.g. $b_0 = 0$ and $c_0 = 0$. By induction build countable subalgebras \mathcal{B}_{α} and \mathcal{C}_{α} and isomorphisms $\sigma_{\alpha} : \mathcal{B}_{\alpha} \to \mathcal{C}_{\alpha}$ such that

2) if
$$\alpha < \beta$$
 then $\mathcal{B}_{\alpha} \subseteq \mathcal{B}_{\beta}$ and $\mathcal{C}_{\alpha} \subseteq \mathcal{C}_{\beta}$, and $\sigma_{\beta} \upharpoonright \mathcal{B}_{\alpha} = \sigma_{\alpha}$.

To do the inductive step use condition R_{ω} .

This is the well-known Cantor's **back and forth argument**. There is a model theoretic explanation for this result: under CH $\mathcal{P}(\mathbb{N})/FIN$ is the unique saturated model of cardinality \mathfrak{c} of the theory of atomless Boolean algebras.

Theorem

Assume CH. Then any two Boolean algebras of cardinality at most c satisfying condition H_{ω} are isomorphic.

Proof.

Let \mathcal{B} and \mathcal{C} be two Boolean algebras of cardinality \mathfrak{c} satisfying condition H_{ω} . List \mathcal{B} as $\{b_{\alpha} : \alpha < \omega_1\}$ and \mathcal{C} as $\{c_{\alpha} : \alpha < \omega_1\}$. W.l.o.g. $b_0 = 0$ and $c_0 = 0$. By induction build countable subalgebras \mathcal{B}_{α} and \mathcal{C}_{α} and isomorphisms $\sigma_{\alpha} : \mathcal{B}_{\alpha} \to \mathcal{C}_{\alpha}$ such that

2) if
$$\alpha < \beta$$
 then $\mathcal{B}_{\alpha} \subseteq \mathcal{B}_{\beta}$ and $\mathcal{C}_{\alpha} \subseteq \mathcal{C}_{\beta}$, and $\sigma_{\beta} \upharpoonright \mathcal{B}_{\alpha} = \sigma_{\alpha}$.

To do the inductive step use condition R_{ω} .

This is the well-known Cantor's **back and forth argument**. There is a model theoretic explanation for this result: under CH $\mathcal{P}(\mathbb{N})/FIN$ is the unique saturated model of cardinality c of the theory of atomless Boolean algebras.

Let X be a topological space. A subset A of X is C^* -embedded in X if each map $f: A \to [0, 1]$ can be extended to a map $\tilde{f}: X \to [0, 1]$.

Definition

A space X is called an F-space if each cozero set in X is C^* -embedded in X.

Lemma

- (1) X is an F-space iff βX is an F-space.
- 2 A normal space X is an an F-space iff any two disjoint open F_{σ} subsets of X have disjoint closures.
- 3 Each basically disconnected space is an F-space.
- ④ Any closed subspace of a normal F-space is again an F-space.
- If an F-space satisfies the countable chain condition then it is extremely disconnected.

Let X be a topological space. A subset A of X is C^* -embedded in X if each map $f: A \to [0, 1]$ can be extended to a map $\tilde{f}: X \to [0, 1]$.

Definition

A space X is called an F-space if each cozero set in X is C^* -embedded in X.

Lemma

- **1** X is an F-space iff βX is an F-space.
- 2 A normal space X is an an F-space iff any two disjoint open F_{σ} subsets of X have disjoint closures.
- 3 Each basically disconnected space is an F-space.
- ④ Any closed subspace of a normal *F*-space is again an *F*-space.
- If an *F*-space satisfies the countable chain condition then it is extremely disconnected.

Let X be a compact zero dimensional space. The following are equivalent:

- **1** CO(X) satisfies condition H_{ω}
- 2 *X* is an *F*-space and each nonempty G_{δ} subset of *X* has infinite interior.

Corollary

Assume CH. The following are equivalent for a topological space X: $X \approx \mathbb{N}^*$

2 X is a compact, zero dimensional F-space of weight \mathfrak{c} in which every nonempty G_{δ} set has infinite interior.

Sac

Such a space is called a **Parovičenko space**.

Let X be a compact zero dimensional space. The following are equivalent:

- **1** CO(X) satisfies condition H_{ω}
- 2 *X* is an *F*-space and each nonempty G_{δ} subset of *X* has infinite interior.

Corollary

Assume CH. The following are equivalent for a topological space X:

- 1 $X \approx \mathbb{N}^*$
- 2 *X* is a compact, zero dimensional *F*-space of weight c in which every nonempty G_{δ} set has infinite interior.

・ロト (理ト・ヨト・ヨト)

Such a space is called a Parovičenko space.

Let X be a compact zero dimensional space. The following are equivalent:

- **1** CO(X) satisfies condition H_{ω}
- 2 *X* is an *F*-space and each nonempty G_{δ} subset of *X* has infinite interior.

Corollary

Assume CH. The following are equivalent for a topological space X:

- 1 $X \approx \mathbb{N}^*$
- 2 *X* is a compact, zero dimensional *F*-space of weight c in which every nonempty G_{δ} set has infinite interior.

ヘロト 人間 トイヨト イヨト

Such a space is called a **Parovičenko space**.

Theorem

Let X be a locally compact, σ -compact and noncompact space. Then X^* is an F-space and each nonempty G_{δ} in X^* has infinite interior.

Corollary

Let X be a zero-dimensional, locally compact, σ -compact and noncompact space of weight \mathfrak{c} . Then X^* and \mathbb{N}^* are homeomorphic.

Theorem

Let X be a locally compact, σ -compact and noncompact space. Then X^* is an F-space and each nonempty G_{δ} in X^* has infinite interior.

Corollary

Let X be a zero-dimensional, locally compact, σ -compact and noncompact space of weight c. Then X^* and \mathbb{N}^* are homeomorphic.

Continuous images of \mathbb{N}^*

Theorem

Let \mathcal{B} be a Boolean algebra of size at most \aleph_1 . Then \mathcal{B} is embedded into $\mathcal{P}(\mathbb{N})/FIN$.

Theorem

Each compact space of weight at most \aleph_1 is a continuous images of \mathbb{N}^* .

So, under CH each compact space of weight at most \mathfrak{c} is a continuous image of \mathbb{N}^* .

Continuous images of \mathbb{N}^*

Theorem

Let \mathcal{B} be a Boolean algebra of size at most \aleph_1 . Then \mathcal{B} is embedded into $\mathcal{P}(\mathbb{N})/FIN$.

Theorem

Each compact space of weight at most \aleph_1 is a continuous images of \mathbb{N}^* .

So, under CH each compact space of weight at most \mathfrak{c} is a continuous image of \mathbb{N}^* .

Continuous images of \mathbb{N}^*

Theorem

Let \mathcal{B} be a Boolean algebra of size at most \aleph_1 . Then \mathcal{B} is embedded into $\mathcal{P}(\mathbb{N})/FIN$.

Theorem

Each compact space of weight at most \aleph_1 is a continuous images of \mathbb{N}^* .

So, under CH each compact space of weight at most $\mathfrak c$ is a continuous image of $\mathbb N^*.$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

 π is an **almost permutation** of \mathbb{N} if $D = \operatorname{dom}(\pi)$ and $R = \operatorname{ran}(\pi)$ and π is a bijection between D and R. Note that if π is an almost permutation of \mathbb{N} then $\beta\pi \upharpoonright \mathbb{N}^*$ is an autohomeomorphism of \mathbb{N}^* .

Question

Is any autohomeomorphism of \mathbb{N}^* of this form?

Under CH the answer is NO.

Theorem

Assume CH. Then \mathbb{N}^* has exactly $2^{\mathfrak{c}}$ autohomeomorphisms.

Proof.

By the characterization of \mathbb{N}^* we have that $\mathbb{N}^* \approx (\mathbb{N} \times 2^c)^*$. [Here 2^c denotes the Cantor cube of weight c.] 2^c is a topological group of cardinality 2^c and so has 2^c autohomeomorphisms. It follows that \mathbb{N}^* also has 2^c homeomorphisms.

 π is an **almost permutation** of \mathbb{N} if $D = \operatorname{dom}(\pi)$ and $R = \operatorname{ran}(\pi)$ and π is a bijection between D and R. Note that if π is an almost permutation of \mathbb{N} then $\beta \pi \upharpoonright \mathbb{N}^*$ is an autohomeomorphism of \mathbb{N}^* .

Question

Is any autohomeomorphism of \mathbb{N}^* of this form?

Under CH the answer is NO.

Theorem

Assume CH. Then \mathbb{N}^* has exactly $2^{\mathfrak{c}}$ autohomeomorphisms.

Proof.

By the characterization of \mathbb{N}^* we have that $\mathbb{N}^* \approx (\mathbb{N} \times 2^c)^*$. [Here 2^c denotes the Cantor cube of weight c.] 2^c is a topological group of cardinality 2^c and so has 2^c autohomeomorphisms. It follows that \mathbb{N}^* also has 2^c homeomorphisms.

 π is an **almost permutation** of \mathbb{N} if $D = \operatorname{dom}(\pi)$ and $R = \operatorname{ran}(\pi)$ and π is a bijection between D and R. Note that if π is an almost permutation of \mathbb{N} then $\beta \pi \upharpoonright \mathbb{N}^*$ is an autohomeomorphism of \mathbb{N}^* .

Question

Is any autohomeomorphism of \mathbb{N}^* of this form?

Under CH the answer is **NO**.

Theorem

Assume CH. Then \mathbb{N}^* has exactly $2^{\mathfrak{c}}$ autohomeomorphisms.

Proof.

By the characterization of \mathbb{N}^* we have that $\mathbb{N}^* \approx (\mathbb{N} \times 2^c)^*$. [Here 2^c denotes the Cantor cube of weight c.] 2^c is a topological group of cardinality 2^c and so has 2^c autohomeomorphisms. It follows that \mathbb{N}^* also has 2^c homeomorphisms.

ヘロト ヘロト ヘヨト ヘヨト

 π is an **almost permutation** of \mathbb{N} if $D = \operatorname{dom}(\pi)$ and $R = \operatorname{ran}(\pi)$ and π is a bijection between D and R. Note that if π is an almost permutation of \mathbb{N} then $\beta \pi \upharpoonright \mathbb{N}^*$ is an autohomeomorphism of \mathbb{N}^* .

Question

Is any autohomeomorphism of \mathbb{N}^* of this form?

Under CH the answer is **NO**.

Theorem

Assume CH. Then \mathbb{N}^* has exactly $2^{\mathfrak{c}}$ autohomeomorphisms.

Proof.

By the characterization of \mathbb{N}^* we have that $\mathbb{N}^* \approx (\mathbb{N} \times 2^c)^*$. [Here 2^c denotes the Cantor cube of weight c.] 2^c is a topological group of cardinality 2^c and so has 2^c autohomeomorphisms. It follows that \mathbb{N}^* also has 2^c homeomorphisms.

 π is an **almost permutation** of \mathbb{N} if $D = \operatorname{dom}(\pi)$ and $R = \operatorname{ran}(\pi)$ and π is a bijection between D and R. Note that if π is an almost permutation of \mathbb{N} then $\beta \pi \upharpoonright \mathbb{N}^*$ is an autohomeomorphism of \mathbb{N}^* .

Question

Is any autohomeomorphism of \mathbb{N}^* of this form?

Under CH the answer is **NO**.

Theorem

Assume CH. Then \mathbb{N}^* has exactly $2^{\mathfrak{c}}$ autohomeomorphisms.

Proof.

By the characterization of \mathbb{N}^* we have that $\mathbb{N}^* \approx (\mathbb{N} \times 2^c)^*$. [Here 2^c denotes the Cantor cube of weight c.] 2^c is a topological group of cardinality 2^c and so has 2^c autohomeomorphisms. It follows that \mathbb{N}^* also has 2^c homeomorphisms.

P-points and nonhomogeneity of \mathbb{N}^*

Since \mathbb{N} is homogeneous it is natural to ask if \mathbb{N}^* if homogenous as well. We show that under CH it is not. In fact, this result does not need CH.

Definition

A subset K of a topological space X is called a **P-set** if the intersection of countably many neighborhoods of K is a neighborhood of K.

P-points and nonhomogeneity of \mathbb{N}^*

Since \mathbb{N} is homogeneous it is natural to ask if \mathbb{N}^* if homogenous as well. We show that under CH it is not. In fact, this result does not need CH.

Definition

A subset K of a topological space X is called a **P-set** if the intersection of countably many neighborhoods of K is a neighborhood of K.

\mathbb{N}^* cannot be covered by \aleph_1 nowhere dense sets.

Proof.

Let $\{D_{\alpha} : \alpha < \omega_1\}$ be a family of \aleph_1 nowhere dense subsets of \mathbb{N}^* . Build a family $\{C_{\alpha} : \alpha < \omega_1\}$ of \aleph_1 clopen subsets of \mathbb{N}^* such that:

- (1) $C_{\alpha} \cap D_{\alpha} = \emptyset$, for all α ,
- (2) if $\alpha < \beta$ then $C_{\beta} \subseteq C_{\alpha}$.

At limit stages of the construction, use diagonalization, i.e. property H_{ω} . Then $\cap \{C_{\alpha} : \alpha < \omega_1\}$ is disjoint from $\cup \{D_{\alpha} : \alpha < \omega_1\}$.

Corollary

Assume CH. Then \mathbb{N}^* contains P-points.

Proof.

Let \mathcal{A} be the family $\{\overline{U} \setminus U : U \text{ is an open } F_{\sigma} \text{ subset of } \mathbb{N}^*\}$. By CH $|\mathcal{A}| \approx \aleph_1$. Then any point of $\mathbb{N}^* \setminus \bigcup \mathcal{A}$ is a P-point.

イロト 不得 トイヨト イヨト

 \mathbb{N}^* cannot be covered by \aleph_1 nowhere dense sets.

Proof.

Let $\{D_{\alpha} : \alpha < \omega_1\}$ be a family of \aleph_1 nowhere dense subsets of \mathbb{N}^* . Build a family $\{C_{\alpha} : \alpha < \omega_1\}$ of \aleph_1 clopen subsets of \mathbb{N}^* such that:

- 2 if $\alpha < \beta$ then $C_{\beta} \subseteq C_{\alpha}$.

At limit stages of the construction, use diagonalization, i.e. property H_{ω} . Then $\cap \{C_{\alpha} : \alpha < \omega_1\}$ is disjoint from $\bigcup \{D_{\alpha} : \alpha < \omega_1\}$.

Corollary

Assume CH. Then \mathbb{N}^* contains P-points.

Proof.

Let \mathcal{A} be the family $\{\overline{U} \setminus U : U \text{ is an open } F_{\sigma} \text{ subset of } \mathbb{N}^*\}$. By CH $|\mathcal{A}| = \aleph_1$. Then any point of $\mathbb{N}^* \setminus \bigcup \mathcal{A}$ is a P-point.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 \mathbb{N}^* cannot be covered by \aleph_1 nowhere dense sets.

Proof.

Let $\{D_{\alpha} : \alpha < \omega_1\}$ be a family of \aleph_1 nowhere dense subsets of \mathbb{N}^* . Build a family $\{C_{\alpha} : \alpha < \omega_1\}$ of \aleph_1 clopen subsets of \mathbb{N}^* such that:

- 2 if $\alpha < \beta$ then $C_{\beta} \subseteq C_{\alpha}$.

At limit stages of the construction, use diagonalization, i.e. property H_{ω} . Then $\cap \{C_{\alpha} : \alpha < \omega_1\}$ is disjoint from $\bigcup \{D_{\alpha} : \alpha < \omega_1\}$.

Corollary

Assume CH. Then \mathbb{N}^* contains P-points.

Proof.

Let \mathcal{A} be the family $\{\overline{U} \setminus U : U \text{ is an open } F_{\sigma} \text{ subset of } \mathbb{N}^*\}$. By CH $|\mathcal{A}| = \aleph_1$. Then any point of $\mathbb{N}^* \setminus \bigcup \mathcal{A}$ is a P-point.

 \mathbb{N}^* cannot be covered by \aleph_1 nowhere dense sets.

Proof.

Let $\{D_{\alpha} : \alpha < \omega_1\}$ be a family of \aleph_1 nowhere dense subsets of \mathbb{N}^* . Build a family $\{C_{\alpha} : \alpha < \omega_1\}$ of \aleph_1 clopen subsets of \mathbb{N}^* such that:

- 2 if $\alpha < \beta$ then $C_{\beta} \subseteq C_{\alpha}$.

At limit stages of the construction, use diagonalization, i.e. property H_{ω} . Then $\cap \{C_{\alpha} : \alpha < \omega_1\}$ is disjoint from $\bigcup \{D_{\alpha} : \alpha < \omega_1\}$.

Corollary

Assume CH. Then \mathbb{N}^* contains P-points.

Proof.

Let \mathcal{A} be the family $\{\overline{U} \setminus U : U \text{ is an open } F_{\sigma} \text{ subset of } \mathbb{N}^*\}$. By CH $|\mathcal{A}| = \aleph_1$. Then any point of $\mathbb{N}^* \setminus \bigcup \mathcal{A}$ is a P-point.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

3

Theorem

Assume CH. Let $p, q \in \mathbb{N}^*$ be P-points. Then there is an autohomemorphism h of \mathbb{N}^* such that h(p) = q.

Since being a P-point is a topological property and there are obviously points which are not P-points we have the following.

Theorem

Assume CH. Then \mathbb{N}^* is not homogenous.

In fact this is true even without CH.

Theorem

Assume CH. Let $p, q \in \mathbb{N}^*$ be P-points. Then there is an autohomemorphism h of \mathbb{N}^* such that h(p) = q.

Since being a P-point is a topological property and there are obviously points which are not P-points we have the following.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

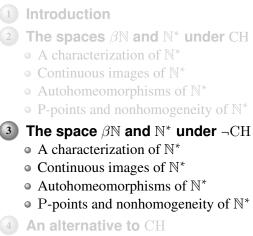
Sac

Theorem

Assume CH. Then \mathbb{N}^* is not homogenous.

In fact this is true even without CH.

Outline



• What is wrong with CH?

- Gaps in $\mathcal{P}(\mathbb{N})/FIN$
- Open Coloring Axiom
- 5 Open problems

If we do not assume CH many of the properties of $\beta \mathbb{N}$ and \mathbb{N}^* may fail and some new properties emerge depending on the model of set theory we are working in. First, we point out that the characterization of $\mathcal{P}(\mathbb{N})/FIN$ fails if CH does not hold.

Theorem

CH is equivalent to the statement that all Boolean algebras of cardinality c which satisfy condition H_{ω} are isomorphic.

If we do not assume CH many of the properties of $\beta \mathbb{N}$ and \mathbb{N}^* may fail and some new properties emerge depending on the model of set theory we are working in. First, we point out that the characterization of $\mathcal{P}(\mathbb{N})/FIN$ fails if CH does not hold.

Theorem

CH is equivalent to the statement that all Boolean algebras of cardinality c which satisfy condition H_{ω} are isomorphic.

Example (A Parovičenko space with a point of character \aleph_1)

We build a strictly decreasing sequence $\{C_{\alpha} : \alpha < \omega_1\}$ of clopen subsets of \mathbb{N}^* . Let $P = \bigcap \{C_{\alpha} : \alpha < \omega_1\}$. Consider the quotient space $S = \mathbb{N}^*/P$ obtained by collapsing P to a single point. One shows easily that S is an F-space. If we let $p = \{P\}$ then $\chi(p, S) = \aleph_1$.

Example (A Parovičenko space in which every point has character c)

Let $2^{\mathfrak{c}}$ be the Cantor cube of weight \mathfrak{c} . Consider the space $T = (\mathbb{N} \times 2^{\mathfrak{c}})^*$, the Čech-Stone remainder of $\mathbb{N} \times 2^{\mathfrak{c}}$. Since $\mathbb{N} \times 2^{\mathfrak{c}}$ is zero-dimensional, σ -compact space of weight \mathfrak{c} it follows that T is a Parovičenko space. For $\alpha < \mathfrak{c}$ and $i \in \{0, 1\}$ let

$$K(\alpha, i) = \{x \in 2^{\mathfrak{c}} : x(\alpha) = i\}$$

and let $L(\alpha, i) = T \cap \mathbb{N} \times K(\alpha, i)$. Let $\mathcal{L} = \{L(\alpha, i) : \alpha < \mathfrak{c}, i \in \{0, 1\}\}$. One can show that the intersection of any uncountable subfamily of \mathcal{L} has empty interior. On the other hand any point of T belongs to \mathfrak{c} many members of \mathcal{L} . It follows that any point of T has character \mathfrak{c} .

Theorem

It is relatively consistent with the standard axioms ZFC of set theory that \mathbb{N}^* is not homeomorphic to $(\mathbb{N} \times 2^{\mathfrak{c}})^*$.

In fact, this holds in the model for Martin's Axiom (MA) plus the negation of CH.

Let $A(\omega)$ be the 1-point compactificaton of the integers, i.e. a converging sequence. The following result follows from some work of Shelah.

Theorem

It is relatively consistent with ZFC that \mathbb{N}^* and $(\mathbb{N} \times A(\omega))^*$ are not homeomorphic.

Theorem

It is relatively consistent with the standard axioms ZFC of set theory that \mathbb{N}^* is not homeomorphic to $(\mathbb{N} \times 2^{\mathfrak{c}})^*$.

In fact, this holds in the model for Martin's Axiom (MA) plus the negation of CH.

Let $A(\omega)$ be the 1-point compactification of the integers, i.e. a converging sequence. The following result follows from some work of Shelah.

Theorem

It is relatively consistent with ZFC that \mathbb{N}^* and $(\mathbb{N} \times A(\omega))^*$ are not homeomorphic.

Theorem

It is relatively consistent with the standard axioms ZFC of set theory that \mathbb{N}^* is not homeomorphic to $(\mathbb{N} \times 2^{\mathfrak{c}})^*$.

In fact, this holds in the model for Martin's Axiom (MA) plus the negation of CH.

Let $A(\omega)$ be the 1-point compactification of the integers, i.e. a converging sequence. The following result follows from some work of Shelah.

Theorem

It is relatively consistent with ZFC that \mathbb{N}^* and $(\mathbb{N} \times A(\omega))^*$ are not homeomorphic.

Theorem

It is relatively consistent with the standard axioms ZFC of set theory that \mathbb{N}^* is not homeomorphic to $(\mathbb{N} \times 2^{\mathfrak{c}})^*$.

In fact, this holds in the model for Martin's Axiom (MA) plus the negation of CH.

Let $A(\omega)$ be the 1-point compactification of the integers, i.e. a converging sequence. The following result follows from some work of Shelah.

Theorem

It is relatively consistent with ZFC that \mathbb{N}^* and $(\mathbb{N} \times A(\omega))^*$ are not homeomorphic.

・ ロ ト ・ 理 ト ・ モ ト ・ モ ト

Theorem

It is relatively consistent with the standard axioms ZFC of set theory that \mathbb{N}^* is not homeomorphic to $(\mathbb{N} \times 2^{\mathfrak{c}})^*$.

In fact, this holds in the model for Martin's Axiom (MA) plus the negation of CH.

Let $A(\omega)$ be the 1-point compactification of the integers, i.e. a converging sequence. The following result follows from some work of Shelah.

Theorem

It is relatively consistent with ZFC that \mathbb{N}^* and $(\mathbb{N} \times A(\omega))^*$ are not homeomorphic.

Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$. We say that \mathcal{F} has **the finite intersection property** if $\cap \mathcal{F}_0$ is infinite, for every finite $\mathcal{F}_0 \subseteq \mathcal{F}$.

Definition

 $P(\mathfrak{c})$ is the statement that for every $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ of size less than \mathfrak{c} , if \mathcal{F} has the finite intersection property then there is an infinite $B \subseteq \mathbb{N}$ such that $B \subseteq \mathfrak{A}$, for all $A \in \mathcal{F}$.

Remark P(c) is a consequence of MA + \neg CH and so is consistent with \neg CH.

Theorem

Assume P(c). Then every compact space of weight less than c is a continuous image of \mathbb{N}^* .

Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$. We say that \mathcal{F} has **the finite intersection property** if $\cap \mathcal{F}_0$ is infinite, for every finite $\mathcal{F}_0 \subseteq \mathcal{F}$.

Definition

 $P(\mathfrak{c})$ is the statement that for every $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ of size less than \mathfrak{c} , if \mathcal{F} has the finite intersection property then there is an infinite $B \subseteq \mathbb{N}$ such that $B \subseteq_* A$, for all $A \in \mathcal{F}$.

Remark P(c) is a consequence of MA + \neg CH and so is consistent with \neg CH.

Theorem

Assume $P(\mathfrak{c})$. Then every compact space of weight less than \mathfrak{c} is a continuous image of \mathbb{N}^* .

Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$. We say that \mathcal{F} has **the finite intersection property** if $\cap \mathcal{F}_0$ is infinite, for every finite $\mathcal{F}_0 \subseteq \mathcal{F}$.

Definition

P(c) is the statement that for every $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ of size less than c, if \mathcal{F} has the finite intersection property then there is an infinite $B \subseteq \mathbb{N}$ such that $B \subseteq_* A$, for all $A \in \mathcal{F}$.

Remark P(c) is a consequence of MA + \neg CH and so is consistent with \neg CH.

Theorem

Assume P(c). Then every compact space of weight less than c is a continuous image of \mathbb{N}^* .

Let $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$. We say that \mathcal{F} has **the finite intersection property** if $\cap \mathcal{F}_0$ is infinite, for every finite $\mathcal{F}_0 \subseteq \mathcal{F}$.

Definition

P(c) is the statement that for every $\mathcal{F} \subseteq \mathcal{P}(\mathbb{N})$ of size less than c, if \mathcal{F} has the finite intersection property then there is an infinite $B \subseteq \mathbb{N}$ such that $B \subseteq_* A$, for all $A \in \mathcal{F}$.

Remark P(c) is a consequence of MA + \neg CH and so is consistent with \neg CH.

Theorem

Assume P(c). Then every compact space of weight less than c is a continuous image of \mathbb{N}^* .

PAR DideRot 4 미 > 4 문 > 4 문 > 4 문 - 오 은

Theorem (Kunen)

It is relatively consistent with $MA + \neg CH$ that there is a Boolean algebra of size c which does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

Let \mathcal{M} be the measure algebra of [0, 1], i.e. \mathcal{B}/\mathcal{I} , where \mathcal{B} is the algebra of Borel subsets of [0, 1] and \mathcal{I} is the ideal of Lebesgue null sets.

Theorem (Dow, Hart)

It is relatively consistent with ZFC that \mathcal{M} does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

In the other direction we have the following.

Theorem (Baumgartner)

It is relatively consistent to have continuum arbitrary large and every Boolean algebra of size at most c embeds into $\mathcal{P}(\mathbb{N})/FIN$.

イロト 不得 トイヨト イヨト

Theorem (Kunen)

It is relatively consistent with $MA + \neg CH$ that there is a Boolean algebra of size \mathfrak{c} which does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

Let \mathcal{M} be the measure algebra of [0, 1], i.e. \mathcal{B}/\mathcal{I} , where \mathcal{B} is the algebra of Borel subsets of [0, 1] and \mathcal{I} is the ideal of Lebesgue null sets.

Theorem (Dow, Hart)

It is relatively consistent with ZFC that \mathcal{M} does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

In the other direction we have the following.

Theorem (Baumgartner)

It is relatively consistent to have continuum arbitrary large and every Boolean algebra of size at most \mathfrak{c} embeds into $\mathcal{P}(\mathbb{N})/FIN$.

Theorem (Kunen)

It is relatively consistent with $MA + \neg CH$ that there is a Boolean algebra of size \mathfrak{c} which does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

Let \mathcal{M} be the measure algebra of [0, 1], i.e. \mathcal{B}/\mathcal{I} , where \mathcal{B} is the algebra of Borel subsets of [0, 1] and \mathcal{I} is the ideal of Lebesgue null sets.

Theorem (Dow, Hart)

It is relatively consistent with ZFC that \mathcal{M} does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

In the other direction we have the following.

Theorem (Baumgartner)

It is relatively consistent to have continuum arbitrary large and every Boolean algebra of size at most \mathfrak{c} embeds into $\mathcal{P}(\mathbb{N})/FIN$.

Theorem (Kunen)

It is relatively consistent with $MA + \neg CH$ that there is a Boolean algebra of size \mathfrak{c} which does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

Let \mathcal{M} be the measure algebra of [0, 1], i.e. \mathcal{B}/\mathcal{I} , where \mathcal{B} is the algebra of Borel subsets of [0, 1] and \mathcal{I} is the ideal of Lebesgue null sets.

Theorem (Dow, Hart)

It is relatively consistent with ZFC that \mathcal{M} does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

In the other direction we have the following.

Theorem (Baumgartner)

It is relatively consistent to have continuum arbitrary large and every Boolean algebra of size at most c embeds into $\mathcal{P}(\mathbb{N})/FIN$.

An autohomeomorphism of \mathbb{N}^* is called **trivial** if it is of the form π^* , for some almost permutation π of \mathbb{N} . Notice that there are only \mathfrak{c} trivial autohomeomorphisms of \mathbb{N}^* . Under CH there are $2^{\mathfrak{c}}$ autohomeomorphisms of \mathbb{N}^* thus there are many nontrivial ones. However we have the following.

Theorem (Shelah)

It is relatively consistent that every autohomeomorphism of \mathbb{N}^* is trivial.

An autohomeomorphism of \mathbb{N}^* is called **trivial** if it is of the form π^* , for some almost permutation π of \mathbb{N} . Notice that there are only \mathfrak{c} trivial autohomeomorphisms of \mathbb{N}^* . Under CH there are $2^{\mathfrak{c}}$ autohomeomorphisms of \mathbb{N}^* thus there are many nontrivial ones. However we have the following.

Theorem (Shelah)

It is relatively consistent that every autohomeomorphism of \mathbb{N}^* is trivial.

We have seen that under CH there are P-points in \mathbb{N}^* . Since there are always non P-points, it follows that \mathbb{N}^* is not homogeneous. Under \neg CH the situation is different.

Theorem (Shelah)

It is relatively consistent with ZFC that there are no P-points in \mathbb{N}^* .

However, one can still show that \mathbb{N}^* is not homogenous without any additional assumptions.

Definition

A point $\mathcal{P} \in \mathbb{N}^*$ is called a **weak** P-**point** if $p \notin \overline{D}$, for any countable $D \subseteq \mathbb{N}^*$.

Theorem (Kunen)

There exist weak P*-points in* \mathbb{N}^* *.*

Corollary

 \mathbb{N}^* is not homogeneous.

We have seen that under CH there are P-points in \mathbb{N}^* . Since there are always non P-points, it follows that \mathbb{N}^* is not homogeneous. Under \neg CH the situation is different.

Theorem (Shelah)

It is relatively consistent with ZFC that there are no P-points in \mathbb{N}^* .

However, one can still show that \mathbb{N}^* is not homogenous without any additional assumptions.

Definition

A point $\mathcal{P} \in \mathbb{N}^*$ is called a **weak** P-**point** if $p \notin \overline{D}$, for any countable $D \subseteq \mathbb{N}^*$.

Theorem (Kunen)

There exist weak P*-points in* \mathbb{N}^* *.*

Corollary

 \mathbb{N}^* is not homogeneous.

We have seen that under CH there are P-points in \mathbb{N}^* . Since there are always non P-points, it follows that \mathbb{N}^* is not homogeneous. Under \neg CH the situation is different.

Theorem (Shelah)

It is relatively consistent with ZFC that there are no P-points in \mathbb{N}^* .

However, one can still show that \mathbb{N}^* is not homogenous without any additional assumptions.

Definition

A point $\mathcal{P} \in \mathbb{N}^*$ is called a weak P-point if $p \notin \overline{D}$, for any countable $D \subseteq \mathbb{N}^*$.

```
Theorem (Kunen)
```

There exist weak P*-points in* \mathbb{N}^* *.*

Corollary

```
\mathbb{N}^* is not homogeneous.
```

We have seen that under CH there are P-points in \mathbb{N}^* . Since there are always non P-points, it follows that \mathbb{N}^* is not homogeneous. Under \neg CH the situation is different.

Theorem (Shelah)

It is relatively consistent with ZFC that there are no P-points in \mathbb{N}^* .

However, one can still show that \mathbb{N}^* is not homogenous without any additional assumptions.

Definition

A point $\mathcal{P} \in \mathbb{N}^*$ is called a weak P-point if $p \notin \overline{D}$, for any countable $D \subseteq \mathbb{N}^*$.

Theorem (Kunen)

There exist weak P*-points in* \mathbb{N}^* *.*

Corollary

 \mathbb{N}^* is not homogeneous.

We have seen that under CH there are P-points in \mathbb{N}^* . Since there are always non P-points, it follows that \mathbb{N}^* is not homogeneous. Under \neg CH the situation is different.

Theorem (Shelah)

It is relatively consistent with ZFC that there are no P-points in \mathbb{N}^* .

However, one can still show that \mathbb{N}^* is not homogenous without any additional assumptions.

Definition

A point $\mathcal{P} \in \mathbb{N}^*$ is called a weak P-point if $p \notin \overline{D}$, for any countable $D \subseteq \mathbb{N}^*$.

Theorem (Kunen)

There exist weak P*-points in* \mathbb{N}^* *.*

Corollary

 \mathbb{N}^* is not homogeneous.

DEROT

Outline

Introduction

- The spaces $\beta \mathbb{N}$ and \mathbb{N}^* under CH
 - A characterization of \mathbb{N}^*
 - Continuous images of \mathbb{N}^*
 - Autohomeomorphisms of ℕ^{*}
 - P-points and nonhomogeneity of \mathbb{N}^*
- ${f 3}$ The space $eta{\mathbb N}$ and ${\mathbb N}^*$ under $eg {
 m CH}$
 - A characterization of \mathbb{N}^*
 - Continuous images of N^{*}
 - Autohomeomorphisms of \mathbb{N}^*
 - P-points and nonhomogeneity of N^{*}

An alternative to CH

- What is wrong with CH?
- Gaps in $\mathcal{P}(\mathbb{N})/FIN$
- Open Coloring Axiom
- Open problems

We have seen that CH resolves essentially all questions about $\beta \mathbb{N}$ and \mathbb{N}^* . So, it is natural to ask.

Why not simply assume ${\rm CH}$ and forget about other models of set theory?

Answers

- Because under CH we miss some of the subtle issues involving N^{*}.
- There are questions about other important mathematical structures which CH does not answer and we do not have an axiom stronger than CH which decides them in a coherent way.

ヘロト ヘロト ヘヨト ヘヨト

We have seen that CH resolves essentially all questions about $\beta \mathbb{N}$ and \mathbb{N}^* . So, it is natural to ask.

Why not simply assume CH and forget about other models of set theory?

Answers

- Because under CH we miss some of the subtle issues involving N*.
- There are questions about other important mathematical structures which CH does not answer and we do not have an axiom stronger than CH which decides them in a coherent way.

We have seen that CH resolves essentially all questions about $\beta \mathbb{N}$ and \mathbb{N}^* . So, it is natural to ask.

Why not simply assume CH and forget about other models of set theory?

Answers

- Because under CH we miss some of the subtle issues involving N*.
- There are questions about other important mathematical structures which CH does not answer and we do not have an axiom stronger than CH which decides them in a coherent way.

We have seen that CH resolves essentially all questions about $\beta \mathbb{N}$ and \mathbb{N}^* . So, it is natural to ask.

Why not simply assume CH and forget about other models of set theory?

Answers

- Because under CH we miss some of the subtle issues involving \mathbb{N}^* .
- There are questions about other important mathematical structures which CH does not answer and we do not have an axiom stronger than CH which decides them in a coherent way.

We have seen that CH resolves essentially all questions about $\beta \mathbb{N}$ and \mathbb{N}^* . So, it is natural to ask.

Why not simply assume CH and forget about other models of set theory?

Answers

- Because under CH we miss some of the subtle issues involving \mathbb{N}^* .
- There are questions about other important mathematical structures which CH does not answer and we do not have an axiom stronger than CH which decides them in a coherent way.

Gaps in $\mathcal{P}(\mathbb{N})/FIN$

A key notion in the study of \mathbb{N}^* is that of a **gap**. Given $A, B \subseteq \mathbb{N}$ we say that A and B are **orthogonal** and write $A \perp B$ if $A \cap B$ is finite. We write $A \subseteq_* B$ if $A \setminus B$ is finite. Given two subfamilies \mathcal{A} and \mathcal{B} of $\mathcal{P}(\mathbb{N})$ we say that $(\mathcal{A}, \mathcal{B})$ is a **pre-gap** if $A \perp B$, for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

```
Definition
```

A pregap $(\mathcal{A}, \mathcal{B})$ is a **gap** iff there does not exist $X \subseteq \mathbb{N}$ such that $A \subseteq_* X$, for all $A \in \mathcal{A}$, and $B \perp X$, for all $B \in \mathcal{B}$.

If \mathcal{A} and \mathcal{B} are totally ordered by \subseteq_* in order type κ and λ respectively we say that $(\mathcal{A}, \mathcal{B})$ is a (κ, λ) -gap.

Gaps in $\mathcal{P}(\mathbb{N})/FIN$

A key notion in the study of \mathbb{N}^* is that of a **gap**. Given $A, B \subseteq \mathbb{N}$ we say that A and B are **orthogonal** and write $A \perp B$ if $A \cap B$ is finite. We write $A \subseteq_* B$ if $A \setminus B$ is finite. Given two subfamilies \mathcal{A} and \mathcal{B} of $\mathcal{P}(\mathbb{N})$ we say that $(\mathcal{A}, \mathcal{B})$ is a **pre-gap** if $A \perp B$, for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Definition

A pregap $(\mathcal{A}, \mathcal{B})$ is a **gap** iff there does not exist $X \subseteq \mathbb{N}$ such that $A \subseteq_* X$, for all $A \in \mathcal{A}$, and $B \perp X$, for all $B \in \mathcal{B}$.

If \mathcal{A} and \mathcal{B} are totally ordered by \subseteq_* in order type κ and λ respectively we say that $(\mathcal{A}, \mathcal{B})$ is a (κ, λ) -gap.

Gaps in $\mathcal{P}(\mathbb{N})/FIN$

A key notion in the study of \mathbb{N}^* is that of a **gap**. Given $A, B \subseteq \mathbb{N}$ we say that A and B are **orthogonal** and write $A \perp B$ if $A \cap B$ is finite. We write $A \subseteq_* B$ if $A \setminus B$ is finite. Given two subfamilies \mathcal{A} and \mathcal{B} of $\mathcal{P}(\mathbb{N})$ we say that $(\mathcal{A}, \mathcal{B})$ is a **pre-gap** if $A \perp B$, for every $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Definition

A pregap $(\mathcal{A}, \mathcal{B})$ is a **gap** iff there does not exist $X \subseteq \mathbb{N}$ such that $A \subseteq_* X$, for all $A \in \mathcal{A}$, and $B \perp X$, for all $B \in \mathcal{B}$.

If \mathcal{A} and \mathcal{B} are totally ordered by \subseteq_* in order type κ and λ respectively we say that $(\mathcal{A}, \mathcal{B})$ is a (κ, λ) -gap.

We saw that $\mathcal{P}(\mathbb{N})$ satisfies condition H_{ω} . This can be rephrased as the following.

Fact

There are no (ω, ω) -gaps in $\mathcal{P}(\mathbb{N})/FIN$.

If one works under \neg CH it is natural to generalize H_{ω} to larger cardinals. However, we have the following.

Theorem (Hausdorff)

There is an (ω_1, ω_1) *-gap in* $\mathcal{P}(\mathbb{N})/FIN$.

Thus, it is not possible to have a similar characterization of \mathbb{N}^* under $\neg CH$.

We saw that $\mathcal{P}(\mathbb{N})$ satisfies condition H_{ω} . This can be rephrased as the following.

Fact

There are no (ω, ω) -gaps in $\mathcal{P}(\mathbb{N})/FIN$.

If one works under \neg CH it is natural to generalize H_{ω} to larger cardinals. However, we have the following.

Theorem (Hausdorff) There is an (u_1, u_2) some in $\mathcal{D}(\mathbb{N})$

Thus, it is not possible to have a similar characterization

Thus, it is not possible to have a similar characterization of \mathbb{N}^* und egcH.

We saw that $\mathcal{P}(\mathbb{N})$ satisfies condition H_{ω} . This can be rephrased as the following.

Fact

There are no (ω, ω) -gaps in $\mathcal{P}(\mathbb{N})/FIN$.

If one works under \neg CH it is natural to generalize H_{ω} to larger cardinals. However, we have the following.

Theorem (Hausdorff)

There is an (ω_1, ω_1) *-gap in* $\mathcal{P}(\mathbb{N})/FIN$.

Thus, it is not possible to have a similar characterization of \mathbb{N}^* under \neg CH.

We saw that $\mathcal{P}(\mathbb{N})$ satisfies condition H_{ω} . This can be rephrased as the following.

Fact

There are no (ω, ω) -gaps in $\mathcal{P}(\mathbb{N})/FIN$.

If one works under \neg CH it is natural to generalize H_{ω} to larger cardinals. However, we have the following.

Theorem (Hausdorff)

There is an (ω_1, ω_1) *-gap in* $\mathcal{P}(\mathbb{N})/FIN$.

Thus, it is not possible to have a similar characterization of \mathbb{N}^* under $\neg \mathrm{CH}.$

Open Coloring Axiom

In various models of set theory one can have a variety of other gaps in $\mathcal{P}(\mathbb{N})$. However, there is an axiom which is relatively consistent with $ZFC + \neg CH$ and gives a coherent and fairly complete of \mathbb{N}^* .

Definition (Open Coloring Axiom)

Let X be a set of reals and

 $[X]^2 = K_0 \cup K_1$

a coloring where K_0 is open in the product topology of $[X]^2$. Then one of the following holds:

- 1) there is an uncountable $H \subseteq X$ such that $[H]^2 \subseteq K_0$, or
- 2) we can write $X = \bigcup \{X_n : n < \omega\}$, with $[X_n]^2 \subseteq K_1$, for all n.

Open Coloring Axiom

In various models of set theory one can have a variety of other gaps in $\mathcal{P}(\mathbb{N})$. However, there is an axiom which is relatively consistent with $ZFC + \neg CH$ and gives a coherent and fairly complete of \mathbb{N}^* .

Definition (Open Coloring Axiom)

Let X be a set of reals and

$$[X]^2 = K_0 \cup K_1$$

a coloring where K_0 is open in the product topology of $[X]^2$. Then one of the following holds:

- **1** there is an uncountable $H \subseteq X$ such that $[H]^2 \subseteq K_0$, or
- 2 we can write $X = \bigcup \{X_n : n < \omega\}$, with $[X_n]^2 \subseteq K_1$, for all n.

One can prove this statement outright if X is Borel or analytic. The strength of OCA comes from allowing X to be arbitrary. It is easy to show that OCA implies \neg CH.

Theorem

If ZFC is consistent then so is the theory ZFC + $MA + \neg CH + OCA$.

One can prove this statement outright if X is Borel or analytic. The strength of OCA comes from allowing X to be arbitrary. It is easy to show that OCA implies \neg CH.

Theorem

If ZFC is consistent then so is the theory $ZFC + MA + \neg CH + OCA$.

One can prove this statement outright if X is Borel or analytic. The strength of OCA comes from allowing X to be arbitrary. It is easy to show that OCA implies \neg CH.

Theorem

If ZFC is consistent then so is the theory $ZFC + MA + \neg CH + OCA$.

One can prove this statement outright if X is Borel or analytic. The strength of OCA comes from allowing X to be arbitrary. It is easy to show that OCA implies \neg CH.

Theorem

If ZFC is consistent then so is the theory $ZFC + MA + \neg CH + OCA$.

Sac

OCA implies that the only nontrivial gaps in $\mathcal{P}(\mathbb{N})/FIN$ are (\aleph_1, \aleph_1) -gaps of the type constructed by Hausdorff.

Theorem

Assume OCA. If κ and λ are regular cardinals and there is a (κ, λ) -gap in $\mathcal{P}(\mathbb{N})/FIN$ then $\kappa = \lambda = \aleph_1$.

Theorem (V.)

 MA_{\aleph_1} + OCA implies that all autohomeomorphisms of \mathbb{N}^* are trivial.

OCA implies that the only nontrivial gaps in $\mathcal{P}(\mathbb{N})/FIN$ are (\aleph_1, \aleph_1) -gaps of the type constructed by Hausdorff.

Theorem

Assume OCA. If κ and λ are regular cardinals and there is a (κ, λ) -gap in $\mathcal{P}(\mathbb{N})/FIN$ then $\kappa = \lambda = \aleph_1$.

Theorem (V.) $MA_{\aleph_1} + OCA$ implies that all autohomeomorphisms of \mathbb{N}^* are trivial. OCA implies that the only nontrivial gaps in $\mathcal{P}(\mathbb{N})/FIN$ are (\aleph_1, \aleph_1) -gaps of the type constructed by Hausdorff.

Theorem

Assume OCA. If κ and λ are regular cardinals and there is a (κ, λ) -gap in $\mathcal{P}(\mathbb{N})/FIN$ then $\kappa = \lambda = \aleph_1$.

Theorem (V.)

 MA_{\aleph_1} + OCA implies that all autohomeomorphisms of \mathbb{N}^* are trivial.

Theorem (Dow, Hart)

OCA implies that the measure algebra \mathcal{M} does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

Theorem (Just)

Assume OCA. If n < m then \mathbb{N}^m is not a continuous image of \mathbb{N}^n .

Many more results on the structure of $\mathcal{P}(\mathbb{N})/\mathcal{I}$, for some analytic ideal \mathcal{I} were obtained by Dow, Farah and other.

Theorem (Dow, Hart)

OCA implies that the measure algebra \mathcal{M} does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

Theorem (Just)

Assume OCA. If n < m then \mathbb{N}^m is not a continuous image of \mathbb{N}^n .

Many more results on the structure of $\mathcal{P}(\mathbb{N})/\mathcal{I}$, for some analytic ideal \mathcal{I} were obtained by Dow, Farah and other.

Theorem (Dow, Hart)

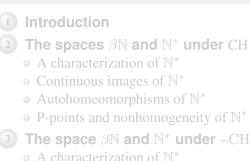
OCA implies that the measure algebra \mathcal{M} does not embed into $\mathcal{P}(\mathbb{N})/FIN$.

Theorem (Just)

Assume OCA. If n < m then \mathbb{N}^m is not a continuous image of \mathbb{N}^n .

Many more results on the structure of $\mathcal{P}(\mathbb{N})/\mathcal{I}$, for some analytic ideal \mathcal{I} were obtained by Dow, Farah and other.

Outline



- Continuous images of ℕ^{*}
- Autohomeomorphisms of \mathbb{N}^*
- P-points and nonhomogeneity of N^{*}

- 4 An alternative to CH
 - What is wrong with CH?
 - Gaps in $\mathcal{P}(\mathbb{N})/FIN$
 - Open Coloring Axiom

Open problems

A map $f : \mathbb{N}^* \to \mathbb{N}^*$ is called **trivial** if there is $\pi : \mathbb{N} \to \beta \mathbb{N}$ such that $f = \pi^*$.

Question 1

Is it possible to construct a nontrivial map $f : \mathbb{N}^* \to \mathbb{N}^*$ without any additonal axioms?

Question 2

Is it possible to construct a nonseparable extremely disconnected image of \mathbb{N}^* without using additional set-theoretic axioms?

A copy of \mathbb{N}^* in a compact space is **nontrivial** if it is nowhere dense and not of the form $\overline{D} \setminus D$, for some countable set D.

Question 3

Is it possible to construct a nontrivial copy of \mathbb{N}^* inside itself without using additional set-theoretic axioms?

A map $f : \mathbb{N}^* \to \mathbb{N}^*$ is called **trivial** if there is $\pi : \mathbb{N} \to \beta \mathbb{N}$ such that $f = \pi^*$.

Question 1

Is it possible to construct a nontrivial map $f : \mathbb{N}^* \to \mathbb{N}^*$ without any additonal axioms?

Question 2

Is it possible to construct a nonseparable extremely disconnected image of \mathbb{N}^* without using additional set-theoretic axioms?

A copy of \mathbb{N}^* in a compact space is **nontrivial** if it is nowhere dense and not of the form $\overline{D} \setminus D$, for some countable set D.

Question 3

Is it possible to construct a nontrivial copy of \mathbb{N}^* inside itself without using additional set-theoretic axioms?

A map $f : \mathbb{N}^* \to \mathbb{N}^*$ is called **trivial** if there is $\pi : \mathbb{N} \to \beta \mathbb{N}$ such that $f = \pi^*$.

Question 1

Is it possible to construct a nontrivial map $f : \mathbb{N}^* \to \mathbb{N}^*$ without any additonal axioms?

Question 2

Is it possible to construct a nonseparable extremely disconnected image of \mathbb{N}^* without using additional set-theoretic axioms?

A copy of \mathbb{N}^* in a compact space is **nontrivial** if it is nowhere dense and not of the form $\overline{D} \setminus D$, for some countable set D.

Question 3

Is it possible to construct a nontrivial copy of \mathbb{N}^* inside itself without using additional set-theoretic axioms?

SQC

A map $f : \mathbb{N}^* \to \mathbb{N}^*$ is called **trivial** if there is $\pi : \mathbb{N} \to \beta \mathbb{N}$ such that $f = \pi^*$.

Question 1

Is it possible to construct a nontrivial map $f : \mathbb{N}^* \to \mathbb{N}^*$ without any additonal axioms?

Question 2

Is it possible to construct a nonseparable extremely disconnected image of \mathbb{N}^* without using additional set-theoretic axioms?

A copy of \mathbb{N}^* in a compact space is **nontrivial** if it is nowhere dense and not of the form $\overline{D} \setminus D$, for some countable set D.

Question 3

Is it possible to construct a nontrivial copy of \mathbb{N}^* inside itself without using additional set-theoretic axioms?