Ultraproducts in Functional Analysis

Marius Junge

Pisa, June 2008
General Remarks

Ultraproduct techniques are used in many branches of functional analysis (Banach spaces and operator algebras). More important than the ultrafilters are the spaces constructed with the help of ultrafilters. The new spaces look locally like the old one.
General Remarks

- Ultraproduct techniques are used in many branches of functional analysis
Ultraproduct techniques are used in many branches of functional analysis (Banach spaces and operator algebras).
General Remarks

- Ultraproduct techniques are used in many branches of functional analysis (Banach spaces and operator algebras).
- More important than the ultrafilters are the spaces constructed with the help of ultrafilters.
General Remarks

- Ultraproduct techniques are used in many branches of functional analysis (Banach spaces and operator algebras).
- More important than the ultrafilters are the spaces constructed with the help of ultrafilters.
- The new spaces look locally like the old one.
The spaces

Let \((X_i)\) be a family of Banach spaces and
\[B = \{ (x_i) : x_i \in X_i, \sup_i \|x_i\| < \infty \} \]
be the set of bounded sections.

Let \(U\) be an ultrafilter and
\[N = \{ (x_i) : \lim_i, U \|x_i\|_{X_i} = 0 \} \]
Then \(\prod_i, U X_i / N\) equipped with the norm
\[\| (x_i) + N \| = \lim_i, U \|x_i\|_{X_i} \]
is again a Banach space.
The spaces

Let \((X_i)\) be a family of Banach spaces and
The spaces

Let \((X_i)\) be a family of Banach spaces and

\[B = \{(x_i) : x_i \in X_i, \sup_i \|x_i\| < \infty\} \]

be the set of bounded sections.
The spaces

Let \((X_i)\) be a family of Banach spaces and

\[B = \{ (x_i) : x_i \in X_i, \sup_i \| x_i \| < \infty \} \]

be the set of bounded sections. Let \(\mathcal{U}\) be an ultrafilter and

\[N = \{ (x_i) : \lim_{i, \mathcal{U}} \| x_i \| x_i = 0 \} . \]
The spaces

Let \((X_i)\) be a family of Banach spaces and

\[
B = \{(x_i) : x_i \in X_i, \sup_i \|x_i\| < \infty\}
\]

be the set of bounded sections. Let \(\mathcal{U}\) be an ultrafilter and

\[
N = \{(x_i) : \lim_{i,\mathcal{U}} \|x_i\| x_i = 0\}.
\]

Then
The spaces

Let \((X_i)\) be a family of Banach spaces and

\[B = \{(x_i) : x_i \in X_i, \sup_i \|x_i\| < \infty\} \]

be the set of bounded sections. Let \(\mathcal{U}\) be an ultrafilter and

\[N = \{(x_i) : \lim_{i, \mathcal{U}} \|x_i\| = 0\}. \]

Then

\[\prod_{i, \mathcal{U}} X_i / N \]

equipped with the norm
The spaces

Let \((X_i)\) be a family of Banach spaces and

\[
B = \{ (x_i) : x_i \in X_i, \sup_i \|x_i\| < \infty \}
\]

be the set of bounded sections. Let \(\mathcal{U}\) be an ultrafilter and

\[
N = \{ (x_i) : \lim_{i, \mathcal{U}} \|x_i\| X_i = 0 \}.
\]

Then

\[
\prod_{i, \mathcal{U}} X_i / N
\]

equipped with the norm

\[
\|(x_i) + N\| = \lim_{i, \mathcal{U}} X_i
\]

is again a Banach space.
Examples

$X_i = \mathcal{L}(\Omega, \mu_i)$. Then $\prod_i X_i = \mathcal{L}(\Omega, \mu)$ for some large measure space Ω, μ. X_i lattices, then the ultraproduct is also a lattice. X_i Banach algebras, then the ultraproduct is a Banach algebra.
Examples

- $X_i = L_p(\Omega, \mu_i)$.
Examples

- $X_i = L_p(\Omega, \mu_i)$. Then

$$\prod_{i} X_i = L_p(\Omega, \mu)$$

for some large measure space Ω, μ.
Examples

- $X_i = L_p(\Omega, \mu_i)$. Then

 $$\prod_{i} X_i = L_p(\Omega, \mu)$$

 for some large measure space Ω, μ.

- X_i lattices, then the ultrap product is also a lattice.
Examples

- \(X_i = L_p(\Omega, \mu_i) \). Then

\[
\prod_{i} X_i = L_p(\Omega, \mu)
\]

for some large measure space \(\Omega, \mu \).

- \(X_i \) lattices, then the ultraproduct is also a lattice.

- \(X_i \) Banach algebras, then the ultraproduct is a Banach algebra.
Examples

- \(X_i = L_p(\Omega, \mu_i) \). Then
 \[
 \prod_{i} X_i = L_p(\Omega, \mu)
 \]
 for some large measure space \(\Omega, \mu \).

- \(X_i \) lattices, then the ultraprodut is also a lattice.

- \(X_i \) Banach algebras, then the ultraprodut is a Banach algebra.

- ...
Factorization theory and ultra products

Theorem (Kwapien)

Let X be a Banach space and $C > 0$ a constant such that

$$
\left(\sum_i \left\| \sum_j a_{ij} x_j \right\|_X^2 \right)^{1/2} \leq C \left\| a \right\|_\ell^2 \rightarrow _\ell^2 \left(\sum_i \left\| x_i \right\|_X^2 \right)^{1/2}.
$$

Then there is scalar product (\cdot, \cdot) such that

$$
\left\| x \right\| \leq (x, x)^{1/2} \leq C \left\| x \right\|.
$$

Hernandez: Similar results for (quotient of subspaces) of L^p spaces, even in the vector-valued setting.

Tools:
1) Use Grothendieck’s theory of tensor norms (trace duality) to show the result first for finite dimensional spaces.
2) Use that Hilbert spaces are stable under ultraproducts.
Factorization theory and ultra products

Theorem (Kwapien) Let X be a Banach space and $C > 0$ a constant such that

$$
\left(\sum_i \left\| \sum_j a_{ij} x_j \right\|^2_X \right)^{1/2} \leq C \left\| a \right\|_{\ell^2 \to \ell^2} \left(\sum_i \left\| x_i \right\|^2_X \right)^{1/2}.
$$

Then there is scalar product (\cdot, \cdot) such that

$$
\left\| x \right\| \leq (x, x)^{1/2} \leq C \left\| x \right\|.
$$

Hernandez: Similar results for (quotient of subspaces) of L^p spaces, even in the vector-valued setting.

Tools:
1) Use Grothendieck's theory of tensor norms (trace duality) to show the result first for finite dimensional spaces.
2) Use that Hilbert spaces are stable under ultraproducts.
Factorization theory and ultra products

Theorem (Kwapien) Let X be a Banach space and $C > 0$ a constant such that

$$
\left(\sum_i \left(\sum_j a_{ij} x_j \right)^2 \right)^{1/2} \leq C \| a \|_{\ell_2^n \to \ell_2} \left(\sum_i \| x_i \|_X^2 \right)^{1/2}.
$$

Hernandez: Similar results for (quotient of subspaces) of L^p spaces, even in the vector-valued setting.

Tools:
1) Use Grothendieck's theory of tensor norms (trace duality) to show the result first for finite dimensional spaces.
2) Use that Hilbert spaces are stable under ultraproducts.
Factorization theory and ultra products

Theorem (Kwapien) Let X be a Banach space and $C > 0$ a constant such that

$$
\left(\sum_i \left(\sum_j a_{ij} x_j \right)^2 \right)^{1/2} \leq C \|a\|_{\ell_2^n \rightarrow \ell_2^n} \left(\sum_i \|x_i\|^2 \right)^{1/2}.
$$

Then there is scalar product (\cdot, \cdot) such that

$$
\|x\| \leq (x, x)^{1/2} \leq C \|x\|.
$$
Theorem (Kwapien) Let X be a Banach space and $C > 0$ a constant such that

$$
\left(\sum_i \left(\sum_j a_{ij} \|x_j\|_X^2 \right)^{1/2} \right) \leq C \|a\|_{\ell_2^\infty} \left(\sum_i \|x_i\|_X^2 \right)^{1/2}.
$$

Then there is scalar product (\cdot, \cdot) such that

$$
\|x\| \leq (x, x)^{1/2} \leq C \|x\|.
$$

Hernandez: Similar results for (quotient of subspaces) of L_p spaces, even in the vector-valued setting.
Factorization theory and ultra products

Theorem (Kwapien) Let X be a Banach space and $C > 0$ a constant such that

$$\left(\sum_i \left(\sum_j a_{ij} x_j \right)^2 \right)^{1/2} \leq C \| a \|_{\ell^2_2 \to \ell^2_2} \left(\sum_i \| x_i \|^2_X \right)^{1/2}.$$

Then there is scalar product $(\ , \)$ such that

$$\| x \| \leq (x, x)^{1/2} \leq C \| x \|.$$

Hernandez: Similar results for (quotient of subspaces) of L_p spaces, even in the vector-valued setting.

Tools: 1) Use Grothendieck’s theory of tensor norms (trace duality) to show the result first for finite dimensional spaces.
Theorem (Kwapien) Let X be a Banach space and $C > 0$ a constant such that

$$
\left(\sum_i \left\| \sum_j a_{ij} x_j \right\|_X^2 \right)^{1/2} \leq C \|a\|_{\ell_2^n \rightarrow \ell_2^n} \left(\sum_i \|x_i\|_X^2 \right)^{1/2}.
$$

Then there is scalar product $(\ ,\)$ such that

$$
\|x\| \leq (x, x)^{1/2} \leq C \|x\|.
$$

Hernandez: Similar results for (quotient of subspaces) of L_p spaces, even in the vector-valued setting.

Tools: 1) Use Grothendieck’s theory of tensor norms (trace duality) to show the result first for finite dimensional spaces. 2) Use that Hilbert spaces are stable under ultraproducts.
More local theory

Remark: More results in this direction,
More local theory

Remark: More results in this direction, due to Maurey, Pisier, Krivine (72-74):

Let ℓ_n^p be \mathbb{R}^n equipped with the norm $\|x\|_p = \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p}$.

Let X be an infinite dimensional Banach space and $p \geq 2$ be the infimum over all q such that

$$\left(\sum_{k} \|x_k\|_q^q\right)^{1/q} \leq C \sup_{\epsilon_k = \pm 1} \|\sum_{k} \epsilon_k x_k\|_X.$$

for some constant C_q. Then X contains copies of ℓ_n^p of arbitrary dimension.
More local theory

Remark: More results in this direction, due to Maurey, Pisier, Krivine (72-74): Let ℓ^n_p be \mathbb{R}^n equipped with the norm

$$
\|x\|_p = \left(\sum_{k=1}^{n} |x_k|^p \right)^{\frac{1}{p}}.
$$
Remark: More results in this direction, due to Maurey, Pisier, Krivine (72-74): Let ℓ^n_p be \mathbb{R}^n equipped with the norm

$$
\|x\|_p = \left(\sum_{k=1}^{n} |x_k|^p \right)^{\frac{1}{p}}.
$$

Let X be an infinite dimensional Banach space and $p \geq 2$ be the infimum over all q such that

$$
\left(\sum_k \|x_k\|_X^q \right)^{\frac{1}{q}} \leq C \sup_{\varepsilon_k = \pm 1} \| \sum_k \varepsilon_k x_k \|_X.
$$

for some constant C_q.
More local theory

Remark: More results in this direction, due to Maurey, Pisier, Krivine (72-74): Let ℓ_p^n be \mathbb{R}^n equipped with the norm

$$\|x\|_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}.$$

Let X be a infinite dimensional Banach space and $p \geq 2$ be the infimum over all q such that

$$\left(\sum_k \|x_k\|_X^q\right)^{\frac{1}{q}} \leq C \sup_{\varepsilon_k = \pm 1} \|\sum_k \varepsilon_k x_k\|_X.$$

for some constant C_q. Then X contains copy's of ℓ_p^n of arbitrary dimension.
Local properties

Let $X_i = X$ for all i. Then $Y = \prod U X$ is called a ultrapower.

Let $E \subset X$ be a finite dimensional subspace and $\varepsilon > 0$. Then there exist a finite dimensional subspace $E_\varepsilon \subset X$ and a linear isomorphism such that $\|u\|\|u - 1\| \leq (1 + \varepsilon)$.

Here $\|u\| = \sup_{x \neq 0} \|u(x)\|/\|x\|$.

Definition: If the above is satisfied for Y and X we say that Y is finitely represented in X.

Major open problem in operator algebras: Is the predual of a von Neumann algebra finitely represented in the predual in $B(\ell^2)$?
Local properties

Let $X_i = X$ for all i. Then $Y = \prod_u X$ is called a ultrapower.
Local properties

Let $X_i = X$ for all i. Then $Y = \prod_{\mathcal{U}} X$ is called a ultrapower. Let $E \subseteq X$ be a finite dimensional subspace and $\varepsilon > 0$. Definition: If the above is satisfied for Y and X we say that Y is finitely represented in X.

Major open problem in operator algebras: Is the predual of a von Neumann algebra finitely represented in the predual in $B(\ell_2)$?
Local properties

Let $X_i = X$ for all i. Then $Y = \prod U X$ is called a ultrapower. Let $E \subset X$ be a finite dimensional subspace and $\varepsilon > 0$. Then there exist a finite dimensional subspace $E_\varepsilon \subset X$.
Local properties

Let \(X_i = X \) for all \(i \). Then \(Y = \prod_{\mathcal{U}} X \) is called a ultrapower. Let \(E \subset X \) be a finite dimensional subspace and \(\varepsilon > 0 \). Then there exist a finite dimensional subspace \(E_{\varepsilon} \subset X \) and a linear isomorphism such that

\[
\|u\|\|u^{-1}\| \leq (1 + \varepsilon).
\]
Local properties

Let $X_i = X$ for all i. Then $Y = \prod_u X$ is called a ultrapower. Let $E \subset X$ be a finite dimensional subspace and $\varepsilon > 0$. Then there exist a finite dimensional subspace $E_\varepsilon \subset X$ and a linear isomorphism such that

$$\|u\|\|u^{-1}\| \leq (1 + \varepsilon).$$

Here $\|u\| = \sup_{x \neq 0} \frac{\|u(x)\|}{\|x\|}$.

Local properties

Let $X_i = X$ for all i. Then $Y = \prod \mathcal{U} X$ is called a ultrapower. Let $E \subset X$ be a finite dimensional subspace and $\varepsilon > 0$. Then there exist a finite dimensional subspace $E_\varepsilon \subset X$ and a linear isomorphism such that

$$\|u\|\|u^{-1}\| \leq (1 + \varepsilon).$$

Here $\|u\| = \sup_{x \neq 0} \frac{\|u(x)\|}{\|x\|}$.

Definition: If the above is satisfied for Y and X we say that Y is finitely represented in X.

Major open problem in operator algebras: Is the predual of a von Neumann algebra finitely represented in the predual in $B(\ell^2)$?
Local properties

Let $X_i = X$ for all i. Then $Y = \prod_{\mathcal{U}} X$ is called a ultrapower. Let $E \subset X$ be a finite dimensional subspace and $\varepsilon > 0$. Then there exist a finite dimensional subspace $E_\varepsilon \subset X$ and a linear isomorphism such that

$$\|u\|\|u^{-1}\| \leq (1 + \varepsilon).$$

Here $\|u\| = \sup_{x \neq 0} \frac{\|u(x)\|}{\|x\|}$.

Definition: If the above is satisfied for Y and X we say that Y is finitely represented in X.

Major open problem in operator algebras: Is the predual of a von Neumann algebra finitely represented in the predual in $B(\ell_2)$?
A C*-algebra is a Banach algebra with involution * such that
\[\|x\|^2 = \|xx^*\|. \]
Examples:
- \(A = \text{C}(K), K \) compact.
- \(A = \text{C}_0(K), K \) locally compact.
- \(B(\mathcal{H}) \), the bounded operators on Hilbert space, in particular \(M_n = B(\ell_2^n) \).

Finite dimensional C*-algebras are direct sums of matrix algebras.

Every C*-algebra is contained in some \(B(\mathcal{H}) \).

\(\text{C}\ast(\mathcal{F}_\infty) \), the universal algebra of infinitely many unitaries, \(\mathcal{F}_\infty \) free group in countably many generators.
C\(^*\)-algebras

A \(C\(^*\)\)-algebra is a Banach algebra with involution \(\ast\) such that

\[\|x\|^2 = \|x \ast x\|\]

Examples:

\(A = \mathcal{C}(K), K\) compact.

\(A = \mathcal{C}_0(K), K\) locally compact.

\(B(H), \) the bounded operators on Hilbert space, in particular \(M_n = B(\ell^2_n)\).

Finite dimensional \(C\(^*\)\)-algebras are direct sums of matrix algebras.

Every \(C\(^*\)\)-algebra is contained in some \(B(H)\).

\(C\(^*\)(F_\infty)\), the universal algebra of infinitely many unitaries, \(F_\infty\) free group in countably many generators.
A C^*-algebra is a Banach algebra with involution $*$ such that $\|x\|^2 = \|x^* x\|$.

Examples:

- $A = C(K)$, K compact.
- $A = C_0(K)$, K locally compact.
- $B(H)$, the bounded operators on Hilbert space, in particular $M_n = B(\ell^n_{2})$.
- Finite dimensional C^*-algebras are direct sums of matrix algebras.
- Every C^*-algebra is contained in some $B(H)$.
- $C^*(F_\infty)$, the universal algebra of infinitely many unitaries, F_∞ free group in countably many generators.
\textbf{C*-algebras}

A C*-algebra is a Banach algebra with involution \ast such that $\|x\|^2 = \|x^*x\|$.

Examples:

- $\mathcal{A} = \mathcal{C}(K)$, K compact.
- $\mathcal{A} = \mathcal{C}_0(K)$, K locally compact.
- $\mathcal{B}(\mathcal{H})$, the bounded operators on Hilbert space, in particular $\mathcal{M}_n = \mathcal{B}(\ell^2_n)$.
- Finite dimensional C*-algebras are direct sums of matrix algebras.
- Every C*-algebra is contained in some $\mathcal{B}(\mathcal{H})$.
- $\mathcal{C}(\mathcal{F}_\infty)$, the universal algebra of infinitely many unitaries, \mathcal{F}_∞ free group in countably many generators.
C*-algebras

A C^*-algebra is a Banach algebra with involution $*$ such that $\|x\|^2 = \|x^*x\|$.

Examples:
- $A = C(K)$, K compact.
C*-algebras

A C*-algebra is a Banach algebra with involution $*$ such that $\|x\|^2 = \|x^*x\|$.

Examples:
- $A = C(K)$, K compact.
- $A = C_0(K)$, K locally compact.
C*-algebras

A C*-algebra is a Banach algebra with involution * such that
\[\|x\|^2 = \|x^*x\| . \]

Examples:

- \(A = C(K) \), \(K \) compact.
- \(A = C_0(K) \), \(K \) locally compact.
- \(B(H) \), the bounded operators on Hilbert space,
A C^*-algebra is a Banach algebra with involution $*$ such that $\|x\|^2 = \|x^*x\|$.

Examples:

- $A = C(K)$, K compact.
- $A = C_0(K)$, K locally compact.
- $B(H)$, the bounded operators on Hilbert space, in particular $M_n = B(\ell^n_2)$.
C*-algebras

A C*-algebra is a Banach algebra with involution * such that $\|x\|^2 = \|x^*x\|$.

Examples:

- $A = C(K)$, K compact.
- $A = C_0(K)$, K locally compact.
- $B(H)$, the bounded operators on Hilbert space, in particular $M_n = B(\ell^2_n)$.
- Finite dimensional C*-algebras are direct sums of matrix algebras.
C*-algebras

A C*-algebra is a Banach algebra with involution * such that
\|x\|^2 = \|x^*x\|.

Examples:

- \(A = C(K), \) \(K \) compact.
- \(A = C_0(K), \) \(K \) locally compact.
- \(B(H), \) the bounded operators on Hilbert space, in particular
 \(M_n = B(\ell^n_2). \)
- Finite dimensional C*-algebras are direct sums of matrix
 algebras.
- Every C*-algebra is contained in some \(B(H). \)
\section*{\textbf{C*-algebras}}

A \textit{C*-algebra} is a Banach algebra with involution \(^*\) such that
\[\|x\|^2 = \|x^*x\|. \]

\textbf{Examples:}

- \(A = C(K), \ K\) compact.

- \(A = C_0(K), \ K\) locally compact.

- \(B(H),\) the bounded operators on Hilbert space, in particular
 \(M_n = B(\ell^2_n).\)

- Finite dimensional \(C^*\)-algebras are direct sums of matrix algebras.

- Every \(C^*\)-algebra is contained in some \(B(H).\)

- \(C^*(F_\infty),\) the universal algebra of infinitely many unitaries,
C*-algebras

A C*-algebra is a Banach algebra with involution * such that
\[\|x\|^2 = \|x^*x\| . \]

Examples:
- \(A = C(K) \), \(K \) compact.
- \(A = C_0(K) \), \(K \) locally compact.
- \(B(H) \), the bounded operators on Hilbert space, in particular \(M_n = B(\ell_2^n) \).
- Finite dimensional C*-algebras are direct sums of matrix algebras.
- Every C*-algebra is contained in some \(B(H) \).
- \(C^*(F_\infty) \), the universal algebra of infinitely many unitaries, \(F_\infty \) free group in countably many generators.
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology:

$$T\xrightarrow{\lambda} \text{WOT} T\text{iff } (h, T\lambda k) \xrightarrow{\lambda} (h, Tk).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples: $B(H)$, $L_\infty(\Omega, \mu)$, $L_\infty(\Omega, \mu; B(H))$ (random matrices).

$X \subset B(H)$ such that $X^* \subset X$, then $X' = \{T : Tx = xT, \forall x \in X\}$ is a vNa.

Let G be a discrete group and $\lambda(g) e_h = e_{gh}$.

Then $VN(G) = \lambda(G)''$ is a von Neumann algebra.
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology:

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples: $B(H)$, $L_\infty(\Omega, \mu)$, $L_\infty(\Omega, \mu; B(H))$ (random matrices).

Let G be a discrete group and $\lambda(g)e^h = e^{gh}$.

Then $VN(G) = \lambda(G)''$ is a von Neumann algebra.
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \longrightarrow_{WOT} T$ if

$$(h, T_\lambda k) \longrightarrow_\lambda (h, Tk).$$
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \rightarrow_{WOT} T$ if

$$(h, T_\lambda k) \rightarrow_\lambda (h, Tk).$$

Motivation: Functional calculus with measurable functions,

$X \subset B(H)$ such that $X^* \subset X$, then $X' = \{T: Tx = xT, \forall x \in X\}$ is a vNa.

Let G be a discrete group and $\lambda(g) e^h = e^{gh}$.

Then $VN(G) = \lambda(G)^{''}$ is a von Neumann algebra.
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \xrightarrow{\text{WOT}} T$ if

$$(h, T_\lambda k) \xrightarrow{\lambda} (h, Tk).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \xrightarrow{WOT} T$ if

$$(h, T_\lambda k) \xrightarrow{\lambda} (h, Tk).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples:
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \rightarrow_{WOT} T$ if

$$(h, T_\lambda k) \rightarrow_\lambda (h, Tk).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples:

- $B(H)$.

- $L^\infty(\Omega, \mu), L^\infty(\Omega, \mu; B(H)))$ (random matrices).

- $X \subset B(H)$ such that $X^* \subset X$, then $X' = \{T: Tx = xT, \forall x \in X\}$ is a vNa.

- Let G be a discrete group and $\lambda(g) e_h = e_{gh}$.

Then $VN(G) = \lambda(G)'' = \{T: Tx = xT, \forall x \in X\}$ is a von Neumann algebra.
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \xrightarrow{WOT} T$ if

$$(h, T_\lambda k) \xrightarrow{\lambda} (h, T k).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples:

- $B(H)$, $L_\infty(\Omega, \mu)$,
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \rightarrow_{WOT} T$ if

$$(h, T_\lambda k) \rightarrow_\lambda (h, Tk).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples:

- $B(H)$. $L_\infty(\Omega, \mu)$. $L_\infty(\Omega, \mu; B(H)))$ (random matrices).
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \longrightarrow_{WOT} T$ if

$$(h, T_\lambda k) \longrightarrow_\lambda (h, T k).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples:

- $B(H)$. $L_\infty(\Omega, \mu)$. $L_\infty(\Omega, \mu; B(H)))$ (random matrices).
- $X \subset B(H)$ such that $X^* \subset X$.

Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \to_{WOT} T$ if

$$(h, T_\lambda k) \to_\lambda (h, Tk).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples:

- $B(H)$, $L_\infty(\Omega, \mu)$, $L_\infty(\Omega, \mu; B(H))$ (random matrices).
- $X \subset B(H)$ such that $X^* \subset X$, then $X' = \{T : Tx - xT = 0, \forall x \in X\}$ is a vNa.
A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \rightarrow_{WOT} T$ if

$$(h, T_\lambda k) \rightarrow_\lambda (h, Tk).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples:

- $B(H)$. $L_\infty(\Omega, \mu)$, $L_\infty(\Omega, \mu; B(H)))$ (random matrices).
- $X \subset B(H)$ such that $X^* \subset X$, then
 $X' = \{T : Tx - xT = 0, \forall x \in X\}$ is a vNa.
- Let G be a discrete group and $\lambda(g)e_h = e_{gh}$.
Von Neumann algebras

A von Neumann algebra is a unital subalgebra of $B(H)$ closed in the weak operator topology: $T_\lambda \to_{WOT} T$ if

$$(h, T_\lambda k) \to_\lambda (h, Tk).$$

Motivation: Functional calculus with measurable functions, spectral theory of unbounded operators.

Examples:

- $B(H)$. $L_\infty(\Omega, \mu)$, $L_\infty(\Omega, \mu; B(H)))$ (random matrices).
- $X \subset B(H)$ such that $X^* \subset X$, then $X' = \{T : Tx - xT = 0, \forall x \in X\}$ is a vNa.
- Let G be a discrete group and $\lambda(g)e_h = e_{gh}$. Then $VN(G) = \lambda(G)^{''}$ is a von Neumann algebra.
Von Neumann algebra ultraprowers

Let N be a von Neumann algebra and τ be a trace, i.e. a positive, normal functional with $\tau(1) = 1$ and $\tau(xy) = \tau(yx)$. Then ultraproduct N_ω in vNa-lit is the quotient of $\ell_\infty(I, N)$ with respect to $I = \{ (x_i) : \lim_{i} \tau(x_i^*x_i) = 0 \}$.

Warning/Remark:
1) I is much larger than $\{ (x_i) : \lim_{i} \| x_i \| = 0 \}$.
2) However, $(N_\omega)^*$ is a two-sided ideal in $\prod U N^*$.
3) The Chang-Keisler theorem for ultraproducts in the vNa-sense is missing.
Let N be a von Neumann algebra and τ be a trace,
Von Neumann algebra ultrapowers

Let N be a von Neumann algebra and τ be a trace, i.e. a positive, normal functional with $\tau(1) = 1$ and $\tau(xy) = \tau(yx)$.
Von Neumann algebra ultraprowers

Let N be a von Neumann algebra and τ be a trace, i.e. a positive, normal functional with $\tau(1) = 1$ and $\tau(xy) = \tau(yx)$. Then ultraproduct $N^{\mathcal{U}}$ (N^{ω} in vNa-lit) is the quotient of $\ell_\infty(I, N)$ with respect to

$$I = \{ (x_i) : \lim_{i, \mathcal{U}} \tau(x_i^* x_i) = 0 \}.$$
Von Neumann algebra ultrapowers

Let N be a von Neumann algebra and τ be a trace, i.e. a positive, normal functional with $\tau(1) = 1$ and $\tau(xy) = \tau(yx)$.

Then ultraproduct $N^U (N^\omega$ in vNa-lit) is the quotient of $\ell_\infty(I, N)$ with respect to

$$I = \{(x_i) : \lim_{i, U} \tau(x_i^* x_i) = 0\}.$$

Warning/Remark: 1) I is much larger than $\{(x_i) : \lim_i \|x_i\| = 0\}$.
Von Neumann algebra ultraprowers

Let N be a von Neumann algebra and τ be a trace, i.e. a positive, normal functional with $\tau(1) = 1$ and $\tau(xy) = \tau(yx)$.

Then ultraproduct $N^\mathcal{U}$ (N^ω in vNa-lit) is the quotient of $\ell_\infty(I, N)$ with respect to

$$I = \{(x_i) : \lim_{i, \mathcal{U}} \tau(x_i^* x_i) = 0\}.$$

Warning/Remark: 1) I is much larger than $\{(x_i) : \lim_i \|x_i\| = 0\}$. 2) However, $(N^\mathcal{U})_*$ is a two-sided ideal in $\prod_{\mathcal{U}} N_*$.
Von Neumann algebra ultraprowers

Let N be a von Neumann algebra and τ be a trace, i.e. a positive, normal functional with $\tau(1) = 1$ and $\tau(xy) = \tau(yx)$.

Then ultraproduct $N^\mathcal{U}$ (N^ω in vNa-lit) is the quotient of $\ell_\infty(I, N)$ with respect to

$$I = \{(x_i) : \lim_{i, \mathcal{U}} \tau(x_i^* x_i) = 0\}.$$

Warning/Remark: 1) I is much larger than $\{(x_i) : \lim_i \|x_i\| = 0\}$.
2) However, $(N^\mathcal{U})^*$ is a two-sided ideal in $\prod_{\mathcal{U}} N^*$.
3) The Chang-Keisler theorem for ultraproducts in the vNa-sense is missing.
Property Γ

N has property Γ if $N' \cap N \neq C$.

Example:

1) Let $R = \bigotimes_{n \in \mathbb{N}} M_2$ the infinite tensor product of 2×2 matrices. Then R has property Γ. Indeed, every von Neumann algebra which is the WOT closure of finite dimensional C^*-algebras, has this property (hyperfinite).

$VN(G)$ is hyperfinite iff G is amenable.

2) Let F_n be the free group in n generators. Then $VN(F_n)$ does not have property Γ (Murray/von Neumann). Hence, $VN(F_n)$ is not hyperfinite.
Property Γ

N has property Γ if

$$N' \cap N^u \neq \mathbb{C}.$$

Example:

1) Let $R = \bigotimes_{n \in \mathbb{N}} M_2$ the infinite tensor product of 2×2 matrices. Then R has property Γ.

Example:

2) Let F_n be the free group in n generators. Then $VN(F_n)$ does not have property Γ (Murray/von Neumann). Hence, $VN(F_n)$ is not hyperfinite.
Property \(\Gamma \)

\(\mathcal{N} \) has property \(\Gamma \) if

\[\mathcal{N}' \cap \mathcal{N}^u \neq \mathbb{C}. \]

Example:

1) Let \(R = \otimes_{n \in \mathbb{N}} M_2 \) the infinite tensor product of \(2 \times 2 \) matrices. Then \(R \) has property \(\Gamma \). Indeed, every von Neumann algebra which is the WOT closure of finite dimensional \(C^* \)-algebras, has this property (hyperfinite).

2) Let \(F_n \) be the free group in \(n \) generators. Then \(\mathcal{VN}(F_n) \) does not have property \(\Gamma \) (Murray/von Neumann). Hence, \(\mathcal{VN}(F_n) \) is not hyperfinite.
Property Γ

N has property Γ if

$$N' \cap N^\mathcal{U} \neq \mathbb{C}.$$

Example:

1) Let $R = \bigotimes_{n \in \mathbb{N}} M_2$ the infinite tensor product of 2×2 matrices. Then R has property Γ. Indeed, every von Neumann algebra which is the WOT closure of finite dimensional C^*-algebras, has this property (hyperfinite). $\text{VN}(G)$ is hyperfinite iff G is amenable.
Property Γ

N has property Γ if

$$N' \cap N^\mathcal{U} \neq C.$$

Example:

1) Let $R = \bigotimes_{n \in \mathbb{N}} M_2$ the infinite tensor product of 2×2 matrices. Then R has property Γ. Indeed, every von Neumann algebra which is the WOT closure of finite dimensional C^*-algebras, has this property (hyperfinite). $VN(G)$ is hyperfinite iff G is amenable.

2) Let F_n be the free group in n generators. Then $VN(F_n)$ does not have property Γ (Murray/von Neumann).
Property Γ

\mathcal{N} has property Γ if

$$\mathcal{N}' \cap \mathcal{N}^\mathcal{U} \neq \mathbb{C}.$$

Example:

1) Let $R = \bigotimes_{n \in \mathbb{N}} M_2$ the infinite tensor product of 2×2 matrices. Then R has property Γ. Indeed, every von Neumann algebra which is the WOT closure of finite dimensional C^*-algebras, has this property (hyperfinite). $VN(G)$ is hyperfinite iff G is amenable.

2) Let F_n be the free group in n generators. Then $VN(F_n)$ does not have property Γ (Murray/von Neumann). Hence, $VN(F_n)$ is not hyperfinite.
More recent results

Recently (03) Christensen, Smith, Sinclair and Pop showed that for factors with property Γ the bounded cohomology groups vanish. Popa showed that for $Q \subset N$, $Q \text{ contains no hyperfinite summand if and only if } Q' \cap (N^* N) \cup U \subset (N^* 1) U$ holds for the free product. This can be used to show that for every sub von Neumann algebra Q of $VN(F_n)$ such that $Q' \cap L(VN(F_n))$ has no atoms, then Q is hyperfinite (due to Ozawa). Popa has very successfully studied deformation/rigidity result in von Neumann algebras.
More recent results

- Recently (03) Christensen, Smith, Sinclair and Pop showed that for factors with property Γ the bounded cohomology groups vanish.

- Popa showed that for $Q \subset N$, Q contains no hyperfinite summand if and only if $Q' \cap (N^*N) \subset (N^*1)$ holds for the free product.

- This can be used to show that for every sub von Neumann algebra Q of $VN(F_n)$ such that $Q' \cap L(VN(F_n))$ has no atoms, then Q is hyperfinite (due to Ozawa).

- Popa has very successfully studied deformation/rigidity result in von Neumann algebras.
More recent results

- Recently (03) Christensen, Smith, Sinclair and Pop showed that for factors with property Γ the bounded cohomology groups vanish.

- Popa showed that for $Q \subset N$, Q contains no hyperfinite summand if and only if

\[Q' \cap (N \ast N)^U \subset (N \ast 1)^U \]

holds for the free product.
More recent results

- Recently (03) Christensen, Smith, Sinclair and Pop showed that for factors with property Γ the bounded cohomology groups vanish.

- Popa showed that for $Q \subset N$, Q contains no hyperfinite summand if and only if

 $$Q' \cap (N \ast N)^U \subset (N \ast 1)^U$$

holds for the free product. This can be used to show that for every sub von Neumann algebra Q of $VN(\mathbb{F}_n)$ such that $Q' \cap L(VN(\mathbb{F}_n))$ has no atoms, then Q is hyperfinite (due to Ozawa).
More recent results

- Recently (03) Christensen, Smith, Sinclair and Pop showed that for factors with property \(\Gamma \) the bounded cohomology groups vanish.

- Popa showed that for \(Q \subset N \), \(Q \) contains no hyperfinite summand if and only if

\[
Q' \cap (N \star N)^U \subset (N \star 1)^U
\]

holds for the free product. This can be used to show that for every sub von Neumann algebra \(Q \) of \(VN(\mathbb{F}_n) \) such that \(Q' \cap L(VN(\mathbb{F}_n)) \) has no atoms, then \(Q \) is hyperfinite (due to Ozawa).

- Popa has very successfully studied deformation/rigidity result in von Neumann algebras.
Embedding in R^U

Problem 1: Let N be a von Neumann algebra with a nice trace. Is there a trace preserving embedding of N in R^U?

Remark: Then the range is automatically complemented with a conditional expectation $E: R^U \to N$, $E(axb) = aE(x)b$, $a, b \in N$, $x \in R^U$.

A good way to understand this is to ask whether for a finite set $x_1, \ldots, x_m \subset N$ there are matrices $y_1, \ldots, y_m \in M_n$ of $n \times n$ matrices such that $|\tau(x_1 \cdot \cdots \cdot x_k) - tr_n(y_1 \cdot \cdots \cdot y_k)| < \varepsilon$?
Embedding in R^U

Problem 1: Let be a von Neumann algebra N with a nice trace. Is there a trace preserving embedding of N in R^U?
Embedding in R^U

Problem 1: Let be a von Neumann algebra N with a nice trace. Is there a trace preserving embedding of N in R^U?

Remark: Then the range is automatically complemented with a conditional expectation $E : R^U \to N$, $E(axb) = aE(x)b$, $a, b \in N$, $x \in R^U$.
Embedding in R^u

Problem 1: Let be a von Neumann algebra N with a nice trace. Is there a trace preserving embedding of N in R^u?

Remark: Then the range is automatically complemented with a conditional expectation $E : R^u \to N$, $E(ab) = aE(x)b$, $a, b \in N$, $x \in R^u$.

A good way to understand this is to ask whether for a finite set $x_1, ..., x_m \subset N$ there are matrices $y_1, ..., y_m \in M_n$ of $n \times n$ matrices such that

$$|\tau(x_{i_1} \cdots x_{i_k}) - \frac{tr}{n}(y_{i_1} \cdots y_{i_k})| < \varepsilon?$$
Kirchberg’s theorem

Problem 2:
Let N be an arbitrary von Neumann algebra. Is there an isometric embedding of the predual N^* in $\prod_U B(H)^*$?

Problem 3:
Let N be an arbitrary von Neumann algebra. Is there an embedding in $(\prod_U B(H)^*)^*$ (or $B(H)^{**}$) with a normal conditional expectation $E: \prod_U B(H) \rightarrow N$?

Problem 4:
Is there only one norm on $C^*(F_\infty \otimes C^*(F_\infty)$ which makes the tensor product a C^*-algebra?

Theorem (94) The four problems are all equivalent.
Kirchberg’s theorem

Problem 2: Let N be an arbitrary von Neumann algebra. Is there an isometric embedding of the predual N_* in $\prod_{\mathcal{U}} B(H)_*$?
Kirchberg’s theorem

Problem 2: Let N be an arbitrary von Neumann algebra. Is there an isometric embedding of the predual N^* in $\prod_{\mathcal{U}} B(H)^*$?

Problem 3: Let N be an arbitrary von Neumann algebra. Is there an embedding in $(\prod_{\mathcal{U}} B(H)^*)^*$ (or $B(H)^{**}$) with a normal conditional expectation $E : \prod_{\mathcal{U}} B(H) \to N$?
Kirchberg’s theorem

Problem 2: Let N be an arbitrary von Neumann algebra. Is there an isometric embedding of the predual N_* in $\prod_\mathcal{U} B(H)_*$?

Problem 3: Let N be an arbitrary von Neumann algebra. Is there an embedding in $(\prod_\mathcal{U} B(H)_*)^*$ (or $B(H)^{**}$) with a normal conditional expectation $E : \prod_\mathcal{U} B(H) \to N$?

Problem 4: Is there only one norm on $C^*(F_\infty) \otimes C^*(F_\infty)$ which makes the tensor product a C^*-algebra?
Kirchberg’s theorem

Problem 2: Let N be an arbitrary von Neumann algebra. Is there an isometric embedding of the predual N_* in $\prod \mathcal{U} B(H)_*$?

Problem 3: Let N be an arbitrary von Neumann algebra. Is there an embedding in $(\prod \mathcal{U} B(H)_*)^*$ (or $B(H)^{**}$) with a normal conditional expectation $E : \prod \mathcal{U} B(H) \to N$?

Problem 4: Is there only one norm on $C^*(F_\infty) \otimes C^*(F_\infty)$ which makes the tensor product a C^*-algebra?

Theorem

(94) *The four problems are all equivalent.*
Let N be a von Neumann algebra with trace τ. The L_p spaces is defined by
$$\|x\|_p = \left[\tau(|x|^p)\right]^{1/p},$$
where $|x| = \sqrt{x^*x}$.

Theorem (J. Parcet–NC Rosenthal theorem) Let $X \subset L_1(N)$ be a reflexive subspace, then X is isomorphic to a subspace of $L_p(N)$ for some $p > 1$. Indeed, there exists a positive $d \in L_1(N)$ and $u : X \to L_p$ such that
$$x = d^{1-1/p} u(x) + u(x) d^{1-1/p}.$$

Remark: Many ultra product techniques in the proof + results of Pisier.
L_p spaces

Let N be a von Neumann algebra with trace τ.

Theorem (J. Parcet–NC Rosenthal theorem)

Let $X \subset L_1(N)$ be a reflexive subspace, then X is isomorphic to a subspace of $L_p(N)$ for some $p > 1$. Indeed, there exists a positive $d \in L_1(N)$ and $u : X \to L_p$ such that $x = d^{1 - 1/p} u(x) + u(x)d^{1 - 1/p}$.

Remark: Many ultra product techniques in the proof + results of Pisier.
Let N be a von Neumann algebra with trace τ. The L_p spaces is defined by

$$\|x\|_p = \left[\tau(|x|^p)\right]^{1/p} , \quad |x| = \sqrt{x^*x}.$$
L_p spaces

Let N be a von Neumann algebra with trace τ. The L_p spaces is defined by

$$\|x\|_p = \left[\tau(|x|^p)\right]^{1/p} , \quad |x| = \sqrt{x^*x} .$$

Theorem (J. Parcet–NC Rosenthal theorem)

Let $X \subset L_1(N)$ be a reflexive subspace, then X is isomorphic to subspace of $L_p(N)$ for some $p > 1$.

Remark: Many ultra product techniques in the proof + results of Pisier.
L_p spaces

Let N be a von Neumann algebra with trace τ. The L_p spaces is defined by

$$\|x\|_p = [\tau(|x|^p)]^{1/p}, \quad |x| = \sqrt{x^*x}.$$

Theorem (J. Parcet–NC Rosenthal theorem)

Let $X \subset L_1(N)$ be a reflexive subspace, then X is isomorphic to subspace of $L_p(N)$ for some $p > 1$. Indeed, there exists a positive $d \in L_1(N)$ and $u : X \to L_p$ such that

$$x = d^{1-1/p}u(x) + u(x)d^{1-1/p}.$$
L_p spaces

Let N be a von Neumann algebra with trace τ. The L_p spaces is defined by

$$\|x\|_p = \left[\tau(|x|^p)\right]^{1/p}, \quad |x| = \sqrt{x^*x}.$$

Theorem (J. Parcet–NC Rosenthal theorem)

Let $X \subset L_1(N)$ be a reflexive subspace, then X is isomorphic to subspace of $L_p(N)$ for some $p > 1$. Indeed, there exists a positive $d \in L_1(N)$ and $u : X \to L_p$ such that

$$x = d^{1-1/p} u(x) + u(x) d^{1-1/p}.$$

Remark: Many ultra product techniques in the proof
L_p spaces

Let N be a von Neumann algebra with trace τ. The L_p spaces is defined by

$$\|x\|_p = \left[\tau(|x|^p)\right]^{1/p}, \quad |x| = \sqrt{x^*x}.$$

Theorem (J. Parcet–NC Rosenthal theorem)

Let $X \subset L_1(N)$ be a reflexive subspace, then X is isomorphic to a subspace of $L_p(N)$ for some $p > 1$. Indeed, there exists a positive $d \in L_1(N)$ and $u : X \to L_p$ such that

$$x = d^{1-1/p}u(x) + u(x)d^{1-1/p}.$$

Remark: Many ultra product techniques in the proof + results of Pisier.
Theorem (J-NC Fubini theorem)

\[(N_i)\text{ and } (M_j)\] be von Neumann algebras and
\[z = \sum k x_k(i) \otimes y_k(j)\] a finite tensor.

Then
\[\lim i, U_1 \lim j, U_2 \|\sum k x_k i \otimes y_k j\| p = \lim j, U_2 \lim i, U_1 \|\sum k x_k i \otimes y_k j\| p.\]

Exercise:
Proof this for commutative \(N\) and \(M\).

Warning: (Nhany-Raynaud)
\[\lim i, U_1 \lim j, U_2 \| x_i + y_j \| p \neq \lim j, U_1 \lim i, U_1 \| x_i + y_j \| p\] in general.
Theorem (J-NC Fubini theorem)

\((N_i)\) and \((M_j)\) be von Neumann algebras and
\[z = \sum_k x^k(i) \otimes y^k(j) \] a finite tensor.

Warning: (Nhany-Raynaud)
\[\lim_{i, U_1} \lim_{j, U_2} \|x^i + y^j\|_p \neq \lim_{j, U_1} \lim_{i, U_2} \|x^i + y^j\|_p \] in general.
Theorem (J-NC Fubini theorem)

$(N_i) \text{ and } (M_j)$ be von Neumann algebras and

$z = \sum_k x^k(i) \otimes y^k(j) \text{ a finite tensor. Then}$

$$\lim_{i, U_1} \lim_{j, U_2} \| \sum_k x^k_i \otimes y^k_j \|_p = \lim_{j, U_2} \lim_{i, U_1} \| \sum_k x^k_i \otimes y^k_j \|_p.$$
Theorem (J-NC Fubini theorem)

(N_i) and (M_j) be von Neumann algebras and

$z = \sum_k x^k(i) \otimes y^k(j)$ a finite tensor. Then

$$\lim_{i, U_1} \lim_{j, U_2} \| \sum_k x^k_i \otimes y^k_j \|_p = \lim_{j, U_2} \lim_{i, U_1} \| \sum_k x^k_i \otimes y^k_j \|_p.$$

Exercise: Proof this for commutative N and M.
Theorem (J-NC Fubini theorem)

\((N_i)\) and \((M_j)\) be von Neumann algebras and
\(z = \sum_k x^k(i) \otimes y^k(j)\) a finite tensor. Then

\[
\lim_{i,U_1} \lim_{j,U_2} \| \sum_k x^k_i \otimes y^k_j \|_p = \lim_{j,U_2} \lim_{i,U_1} \| \sum_k x^k_i \otimes y^k_j \|_p.
\]

Exercise: Proof this for commutative \(N\) and \(M\).

Warning: (Nhany-Raynaud)

\[
\lim_{i,U_1} \lim_{j,U_2} \| x_i + y_j \|_p \neq \lim_{j,U_2} \lim_{i,U_1} \| x_i + y_j \|_p
\]

in general.
And more

Connes used ultraproduct arguments in the classification of factors, and later in noncommutative geometry to relate singular values and integrals on manifolds. Matrix models and ultraproduct techniques are combined with Speicher's central limit approach to prove Khintchine type inequalities (inequalities for finite dimensional matrices!). Ultraproduct techniques are key for noncommutative stochastic integrals.

Very recently, Paulsen discovered a relation between certain properties of ultraproducts and the longstanding open Kadison Singer problem! Thanks for listening!
And more

- Connes used ultraprocess arguments in the classification of factors,
And more

- Connes used ultraproduct arguments in the classification of factors, and later in noncommutative geometry to related singular values and integrals on manifolds.
And more

- Connes used ultraproduct arguments in the classification of factors, and later in noncommutative geometry to related singular values and integrals on manifolds.

- Matrix models and ultraproduct techniques are combined with Speicher’s central limit approach to prove Khintchine type inequalities.
And more

- Connes used ultraproduct arguments in the classification of factors, and later in noncommutative geometry to related singular values and integrals on manifolds.

- Matrix models and ultraproduct techniques are combined with Speicher’s central limit approach to prove Khintchine type inequalities (inequalities for finite dimensional matrices!).
And more

- Connes used ultraproduct arguments in the classification of factors, and later in noncommutative geometry to related singular values and integrals on manifolds.

- Matrix models and ultraproduct techniques are combined with Speicher’s central limit approach to prove Khintchine type inequalities (inequalities for finite dimensional matrices!).

- Ultraproduct techniques are key for noncommutative stochastic integrals.
Connes used ultraproduct arguments in the classification of factors, and later in noncommutative geometry to related singular values and integrals on manifolds.

Matrix models and ultraproduct techniques are combined with Speicher’s central limit approach to prove Khintchine type inequalities (inequalities for finite dimensional matrices!).

Ultraproduct techniques are key for noncommutative stochastic integrals.

Very recently Paulsen discovered a relation between certain properties of ultraproducts and the longstanding open Kadison Singer problem!
And more

- Connes used ultraproduct arguments in the classification of factors, and later in noncommutative geometry to related singular values and integrals on manifolds.

- Matrix models and ultraproduct techniques are combined with Speicher’s central limit approach to prove Khintchine type inequalities (inequalities for finite dimensional matrices!).

- Ultraproduct techniques are key for noncommutative stochastic integrals.

- Very recently Paulsen discovered a relation between certain properties of ultraproducts and the longstanding open Kadison Singer problem!

Thanks for listening!