Stochastic Navier-Stokes equations: ideas and results using nonstandard analysis

Nigel J. Cutland
University of York, UK
e-mail: nc507@york.ac.uk

(Joint with Marek Capiński, Jerry Keisler, Kasia Grzesiak, Brendan Enright)

UltraMath 2008
Pisa
June 2008
The STOCHASTIC NAVIER STOKES EQUATIONS (sNSe) in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$) with multiplicative noise:

\[
\begin{cases}
 du = [\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla p] dt + g(t, u)dw_t \\
 \text{div } u = 0
\end{cases}
\]

$u(t, x, \omega) =$ (random) velocity of the fluid at the location $x \in D$ at time t:

$u : [0, \infty) \times D \times \Omega \to \mathbb{R}^d$

$\Omega =$ domain of an underlying probability space.
The STOCHASTIC NAVIER STOKES EQUATIONS (sNSe) in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$) with multiplicative noise:

\[
\begin{cases}
 du = [\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla p] dt + g(t, u) dw_t \\
 \text{div } u = 0
\end{cases}
\]

$u(t, x, \omega) =$ (random) velocity of the fluid at the location $x \in D$ at time t:

$u : [0, \infty) \times D \times \Omega \rightarrow \mathbb{R}^d$

$\Omega =$ domain of an underlying probability space.

Initial condition $u(0) = u_0$ (may be random); boundary condition is either $u(t, x) = 0$ for $x \in \partial D$ (or sometimes periodic for $d = 2$).
The **STOCHASTIC NAVIER STOKES EQUATIONS** (sNSe) in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$) with multiplicative noise:

\[
\begin{cases}
 du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla p \right] dt + g(t, u)dw_t \\
 \text{div} \, u = 0
\end{cases}
\]

\[u(t, x, \omega) = \text{(random) velocity of the fluid at the location } x \in D \text{ at time } t:\]

\[u : [0, \infty) \times D \times \Omega \rightarrow \mathbb{R}^d\]

Ω = domain of an underlying probability space.

Initial condition $u(0) = u_0$ (may be random); boundary condition is either $u(t, x) = 0$ for $x \in \partial D$ (or sometimes periodic for $d = 2$).

First solutions in $d = 3$: Capiński & NJC (1991) using Loeb space methods.
The **STOCHASTIC NAVIER STOKES EQUATIONS** (sNSe) in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$) with multiplicative noise:

$$\begin{cases}
 du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla p \right] dt + g(t, u) dw_t \\
 \text{div } u = 0
\end{cases}$$

$u(t, x, \omega) = \text{(random) velocity of the fluid at the location } x \in D \text{ at time } t$:

$$u : [0, \infty) \times D \times \Omega \to \mathbb{R}^d$$

$\Omega = \text{domain of an underlying probability space}$.

Initial condition $u(0) = u_0$ (may be random); boundary condition is either $u(t, x) = 0$ for $x \in \partial D$ (or sometimes periodic for $d = 2$).

First solutions in $d = 3$: Capiński & NJC (1991) using Loeb space methods. Methods extend to give results on:

- attractors for sNSe
- optimal control theory for sNSe
- nonhomogeneous (i.e. non-constant density) sNSe.
The STOCHASTIC NAVIER STOKES EQUATIONS (sNSe) in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$) with multiplicative noise:

$$
\begin{align*}
\begin{cases}
 du &= \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla p \right] dt + g(t, u) dw_t \\
 \text{div } u &= 0
\end{cases}
\end{align*}
$$

$u(t, x, \omega) =$ (random) velocity of the fluid at the location $x \in D$ at time t:

$$
u : [0, \infty) \times D \times \Omega \rightarrow \mathbb{R}^d$$

$\Omega =$ domain of an underlying probability space.

Initial condition $u(0) = u_0$ (may be random); boundary condition is either $u(t, x) = 0$ for $x \in \partial D$ (or sometimes periodic for $d = 2$).

First solutions in $d = 3$: Capiński & NJC (1991) using Loeb space methods. Methods extend to give results on:

- attractors for sNSe
The **STOCHASTIC NAVIER STOKES EQUATIONS** (sNSe) in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$) with multiplicative noise:

$$
\begin{aligned}
\left\{ \begin{array}{l}
\frac{du}{dt} = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla p \right] dt + g(t, u) dw_t \\
\text{div } u = 0
\end{array} \right.
\end{aligned}
$$

$u(t, x, \omega) =$ (random) velocity of the fluid at the location $x \in D$ at time t:

$$
u : [0, \infty) \times D \times \Omega \rightarrow \mathbb{R}^d$$

$\Omega =$ domain of an underlying probability space.

Initial condition $u(0) = u_0$ (may be random); boundary condition is either $u(t, x) = 0$ for $x \in \partial D$ (or sometimes periodic for $d = 2$).

Methods extend to give results on:

- attractors for sNSe
- optimal control theory for sNSe
The **STOCHASTIC NAVIER STOKES EQUATIONS** (sNSe) in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$) with multiplicative noise:

\[
\begin{aligned}
du &= \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla p \right] dt + g(t, u)dw_t \\
\text{div } u &= 0
\end{aligned}
\]

$u(t, x, \omega) =$ (random) velocity of the fluid at the location $x \in D$ at time t:

\[u : [0, \infty) \times D \times \Omega \rightarrow \mathbb{R}^d\]

$\Omega =$ domain of an underlying probability space.

Initial condition $u(0) = u_0$ (may be random); boundary condition is either $u(t, x) = 0$ for $x \in \partial D$ (or sometimes periodic for $d = 2$).

First solutions in $d = 3$: Capiński & NJC (1991) using Loeb space methods. Methods extend to give results on:

- attractors for sNSe
- optimal control theory for sNSe
- nonhomogeneous (i.e. non-constant density) sNSe.
The STOCHASTIC NAVIER STOKES EQUATIONS (sNSe) in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$) with multiplicative noise:

$$
\begin{cases}
 du = \left[\nu \Delta u - \langle u, \nabla \rangle u + f(t, u) - \nabla p \right] dt + g(t, u)dw_t \\
 \text{div } u = 0
\end{cases}
$$

$u(t, x, \omega) =$ (random) velocity of the fluid at the location $x \in D$ at time t:

$$
u : [0, \infty) \times D \times \Omega \rightarrow \mathbb{R}^d$$

$\Omega =$ domain of an underlying probability space.

Initial condition $u(0) = u_0$ (may be random); boundary condition is either $u(t, x) = 0$ for $x \in \partial D$ (or sometimes periodic for $d = 2$).

First solutions in $d = 3$: Capiński & NJC (1991) using Loeb space methods. Methods extend to give results on:
- attractors for sNSe
- optimal control theory for sNSe
- nonhomogeneous (i.e. non-constant density) sNSe.

Aim of the talk: to sketch informally the Loeb space approach and what can be achieved in these areas.
Mathematical Formulation - Hilbert space setting
Set $\mathcal{H} = \{ u \in C_0^\infty(D, \mathbb{R}^d) : \text{div } u = 0 \}$ with norms $|u|$ and $\|u\|$ derived from

$$(u, v) = \sum_{j=1}^{d} \int_{D} u^j(x)v^j(x)dx, \quad \langle (u, v) \rangle = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_j}, \frac{\partial v}{\partial x_j} \right)$$

H = closure of \mathcal{H} in the norm $|u|$ and V is the closure in norm $|u| + \|u\|$.
Mathematical Formulation - Hilbert space setting

Set $\mathcal{H} = \{ u \in C_0^\infty(D, \mathbb{R}^d) : \text{div } u = 0 \}$ with norms $|u|$ and $\|u\|$ derived from

$$
(u, v) = \sum_{j=1}^{d} \int_D u^j(x)v^j(x)dx, \quad ((u, v)) = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_j}, \frac{\partial v}{\partial x_j} \right)
$$

\mathcal{H} = closure of \mathcal{H} in the norm $|u|$ and \mathcal{V} is the closure in norm $|u| + \|u\|$. \mathcal{H} and \mathcal{V} are Hilbert spaces with scalar products (\cdot, \cdot) and $((\cdot, \cdot))$ resp.
Mathematical Formulation - Hilbert space setting

Set $\mathcal{H} = \{ u \in C_0^\infty(D, \mathbb{R}^d): \text{div } u = 0 \}$ with norms $|u|$ and $\|u\|$ derived from

$$(u, v) = \sum_{j=1}^{d} \int_D u^j(x)v^j(x)dx, \quad ((u, v)) = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_j}, \frac{\partial v}{\partial x_j} \right)$$

\mathcal{H} = closure of \mathcal{H} in the norm $|u|$ and \mathbf{V} is the closure in norm $|u| + \|u\|$. \mathcal{H} and \mathbf{V} are Hilbert spaces with scalar products (\cdot, \cdot) and $((\cdot, \cdot))$ resp. A = self adjoint extension of the projection of $-\Delta$ in \mathcal{H}; A has an orthonormal basis $\{e_k\}$ of eigenfunctions with eigenvalues $0 < \lambda_k \uparrow \infty$.
Mathematical Formulation - Hilbert space setting

Set $\mathcal{H} = \{ u \in C_0^\infty(D,\mathbb{R}^d) : \text{div } u = 0 \}$ with norms $|u|$ and $\|u\|$ derived from

$$(u, v) = \sum_{j=1}^{d} \int_D u^j(x)v^j(x)dx, \quad ((u, v)) = \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_j}, \frac{\partial v}{\partial x_j} \right)$$

\mathcal{H} = closure of \mathcal{H} in the norm $|u|$ and \mathcal{V} is the closure in norm $|u| + \|u\|$.

\mathcal{H} and \mathcal{V} are Hilbert spaces with scalar products (\cdot, \cdot) and $((\cdot, \cdot))$ resp.

A = self adjoint extension of the projection of $-\Delta$ in \mathcal{H}; A has an orthonormal basis $\{e_k\}$ of eigenfunctions with eigenvalues $0 < \lambda_k \nearrow \infty$.

$\mathcal{H}_m = \text{span}\{e_1, \ldots, e_m\} \subset \mathcal{V}$.

Mathematical Formulation - Hilbert space setting
Set $\mathcal{H} = \{ u \in C^\infty_0(D, \mathbb{R}^d): \text{div } u = 0 \}$ with norms $|u|$ and $\|u\|$ derived from

$$(u, v) = \sum_{j=1}^d \int_D u^j(x)v^j(x)dx, \quad ((u, v)) = \sum_{j=1}^d \left(\frac{\partial u}{\partial x_j}, \frac{\partial v}{\partial x_j} \right)$$

$\mathcal{H} =$ closure of \mathcal{H} in the norm $|u|$ and \mathcal{V} is the closure in norm $|u| + \|u\|$.
\mathcal{H} and \mathcal{V} are Hilbert spaces with scalar products (\cdot, \cdot) and $((\cdot, \cdot))$ resp.
$A =$ self adjoint extension of the projection of $-\Delta$ in \mathcal{H}; A has an orthonormal basis $\{e_k\}$ of eigenfunctions with eigenvalues $0 < \lambda_k \to \infty$.
$\mathcal{H}_m = \text{span}\{e_1, \ldots, e_m\} \subset \mathcal{V}$.
The operator $B(u)$ is defined by $B(u)w = (\langle u, \nabla \rangle u, w)$.
Mathematical Formulation - Hilbert space setting

Set \(\mathcal{H} = \{ u \in C_0^\infty(D, \mathbb{R}^d) : \text{div} \ u = 0 \} \) with norms \(|u|\) and \(|u|\) derived from

\[
(u, v) = \sum_{j=1}^d \int_D u^j(x)v^j(x)dx,
\]

\[
((u, v)) = \sum_{j=1}^d \left(\frac{\partial u}{\partial x_j}, \frac{\partial v}{\partial x_j} \right)
\]

\(\mathcal{H} \) = closure of \(\mathcal{H} \) in the norm \(|u|\) and \(\mathbf{V} \) is the closure in norm \(|u| + \|u\|\).

\(\mathcal{H} \) and \(\mathbf{V} \) are Hilbert spaces with scalar products \((\cdot, \cdot)\) and \(((\cdot, \cdot))\) resp.

\(A \) = self adjoint extension of the projection of \(-\Delta\) in \(\mathcal{H} \); \(A \) has an orthonormal basis \(\{e_k\} \) of eigenfunctions with eigenvalues \(0 < \lambda_k \to \infty \).

\(\mathcal{H}_m = \text{span}\{e_1, \ldots, e_m\} \subset \mathbf{V} \).

The operator \(B(u) \) is defined by \(B(u)w = (\langle u, \nabla \rangle u, w) \).

The sNSe are now formulated as a stochastic differential equation in \(\mathcal{H} \):

\[
du = [-\nu Au - B(u) + f(t, u)]dt + g(t, u)dw_t
\]

Initially regard this as an equation in \(\mathbf{V}' \) (the dual of \(\mathbf{V} \)) although it turns out that solutions live in \(\mathcal{H} \) (and in fact in \(\mathbf{V} \) for almost all times).
\[du = [-\nu Au - B(u) + f(t, u)]dt + g(t, u)dw_t \] (1)

The equation is understood as a weak integral equation:

\[u(t) = u_0 + \int_0^t [\nu Au(s) - B(u(s)) + f(s, u(s))]ds + \int_0^t g(s, u(s))dw_s \]

the first \(\int \) = Bochner integral; the second \(\int \) = Ichikawa’s extension of the Itô integral to Hilbert spaces; evaluated by testing against functions in \(\mathbf{V} \).
\[du = [-\nu Au - B(u) + f(t, u)]dt + g(t, u)dw_t \]

(1)

The equation is understood as a \textit{weak integral equation}:

\[u(t) = u_0 + \int_0^t \left[\nu Au(s) - B(u(s)) + f(s, u(s)) \right] ds + \int_0^t g(s, u(s))dw_s \]

the first \(\int \) = Bochner integral; the second \(\int \) = Ichikawa's extension of the Itô integral to Hilbert spaces; evaluated by testing against functions in \(V \). The noise \(w: [0, \infty) \times \Omega \to H \) is a Wiener process with trace class covariance.
\[du = \left[-\nu Au - B(u) + f(t, u) \right] dt + g(t, u) dw_t \]

(1)

The equation is understood as a \textit{weak integral} equation:

\[u(t) = u_0 + \int_0^t \left[\nu Au(s) - B(u(s)) + f(s, u(s)) \right] ds + \int_0^t g(s, u(s)) dw_s \]

The first \(\int \) = Bochner integral; the second \(\int \) = Ichikawa’s extension of the \(\text{Itô} \) integral to Hilbert spaces; evaluated by testing against functions in \(V \).

The noise \(w : [0, \infty) \times \Omega \to H \) is a Wiener process with trace class covariance.

The coefficients

\[g : [0, \infty) \times V \to L(H, H) \quad \text{and} \quad f : [0, \infty) \times V \to V'. \]

can be quite general - we only need appropriate continuity and growth conditions. (The restriction to \(V \) in the domains is sufficient because solutions will lie in \(V \) for almost all times.)
\[du = \left[-\nu Au - B(u) + f(t, u) \right] dt + g(t, u) dw_t \quad (1) \]

The equation is understood as a \textit{weak integral equation}:

\[u(t) = u_0 + \int_0^t \left[\nu Au(s) - B(u(s)) + f(s, u(s)) \right] ds + \int_0^t g(s, u(s)) dw_s \]

the first \(\int = \) Bochner integral; the second \(\int = \) Ichikawa's extension of the Itô integral to Hilbert spaces; evaluated by testing against functions in \(V \).

The noise \(w : [0, \infty) \times \Omega \rightarrow \mathcal{H} \) is a Wiener process with trace class covariance.

The coefficients

\[g : [0, \infty) \times V \rightarrow L(\mathcal{H}, \mathcal{H}) \quad \text{and} \quad f : [0, \infty) \times V \rightarrow V' \]

can be quite general - we only need appropriate continuity and growth conditions. (The restriction to \(V \) in the domains is sufficient because solutions will lie in \(V \) for almost all times.)

\textbf{Note} The pressure has disappeared, because \(\nabla p = 0 \) in \(V' \).
Basic Existence Theorem

Theorem
For any $u_0 \in H$ and given f, g there is an adapted probability space Ω carrying an H-valued Wiener process w and a (weak) solution of the stochastic Navier–Stokes equations.
Basic Existence Theorem

Theorem

For any $u_0 \in H$ and given f, g there is an adapted probability space Ω carrying an H-valued Wiener process w and a (weak) solution of the stochastic Navier–Stokes equations. That is, an adapted stochastic process $u : [0, \infty) \times \Omega \to H$ such that for a.a. ω
Basic Existence Theorem

Theorem
For any $u_0 \in H$ and given f, g there is an adapted probability space Ω carrying an H-valued Wiener process w and a (weak) solution of the stochastic Navier–Stokes equations. That is, an adapted stochastic process $u : [0, \infty) \times \Omega \to H$ such that for a.a. ω

(i) $u(\cdot, \omega) \in L^2(0, T; V) \cap L^\infty(0, T; H) \cap C(0, T; H_{weak})$ for all $T < \infty$,

(ii) $u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] \, ds + \int_0^t g(s, u(s)) \, dw_s$.
Basic Existence Theorem

Theorem
For any \(u_0 \in H \) and given \(f, g \) there is an adapted probability space \(\Omega \) carrying an \(H \)-valued Wiener process \(w \) and a (weak) solution of the stochastic Navier–Stokes equations.
That is, an adapted stochastic process \(u : [0, \infty) \times \Omega \rightarrow H \) such that for a.a. \(\omega \)
(i) \(u(\cdot, \omega) \in L^2(0, T; V) \cap L^\infty(0, T; H) \cap C(0, T; H_{\text{weak}}) \) for all \(T < \infty \),
(ii) for all \(t \geq 0 \)
\[
 u(t) = u_0 + \int_0^t \left[\nu A u(s) - B(u(s)) + f(s, u(s)) \right] ds + \int_0^t g(s, u(s)) dw_s
\]
The classical approach to solving

\[u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] \, ds + \int_0^t g(s, u(s)) \, dw_s \]
The classical approach to solving

\[u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))]ds + \int_0^t g(s, u(s))dw_s \]

(1) solve an approximate version (the Galerkin approximation) in each finite dimensional space \(H_n \) on a probability space \(\Omega_n \) with Wiener process \(w_n \).
The classical approach to solving

\[u(t) = u_0 + \int_0^t [\nu Au(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s \]

(1) solve an approximate version (the Galerkin approximation) in each finite dimensional space \(H_n \) on a probability space \(\Omega_n \) with Wiener process \(w_n \)
(2) pass to the limit as \(n \to \infty \)
The classical approach to solving

\[u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s \]

(1) solve an approximate version (the Galerkin approximation) in each finite dimensional space \(H_n \) on a probability space \(\Omega_n \) with Wiener process \(w_n \)
(2) pass to the limit as \(n \to \infty \)

This needs specialized compactness theorems and ways to enlarge the spaces \(\Omega_n \) to a “limit” probability space (which may depend on the solution).
The classical approach to solving

$$u(t) = u_0 + \int_0^t [\nu Au(s) - B(u(s)) + f(s, u(s))]ds + \int_0^t g(s, u(s))dw_s$$

(1) solve an approximate version (the Galerkin approximation) in each finite dimensional space H_n on a probability space Ω_n with Wiener process w_n
(2) pass to the limit as $n \to \infty$

This needs specialized compactness theorems and ways to enlarge the spaces Ω_n to a “limit” probability space (which may depend on the solution).

Loeb space methods provide a single space Ω (a Loeb space) and a Wiener process w carrying solutions for all (random) initial conditions and all f, g.

This makes them powerful for discussing attractors and optimal control theory for sNSe. Loeb spaces are saturated and homogeneous.
LOEB SPACE METHODS FOR sNS\(_e\)
LOEB SPACE METHODS FOR sNSe

NONSTANDARD ANALYSIS The hyperreals or nonstandard reals $\mathbb{R} \supsetneq \mathbb{R}$ is a field such that \mathbb{R} contains non-zero infinitesimal numbers; and positive and negative infinite numbers using the following definitions:

Let $x \in \mathbb{R}$. We say that

(i) x is infinitesimal if $|x| < \varepsilon$ for all $\varepsilon > 0$, $\varepsilon \in \mathbb{R}$;

(ii) x is finite if $|x| < r$ for some $r \in \mathbb{R}$;

(iii) x is infinite if $|x| > r$ for all $r \in \mathbb{R}$.

(iv) x and y are infinitely close, denoted by $x \approx y$, if $x - y$ is infinitesimal. (So $x \approx 0$ means that x is infinitesimal.)

One way to construct \mathbb{R} is as an ultrapower of the reals $\mathbb{R} = \mathbb{R}^N$ where U is a nonprincipal ultralfilter (or maximal filter) on N. An example of a non-zero infinitesimal is given by $(1, \frac{1}{2}, \frac{1}{3}, \ldots)$.
LOEB SPACE METHODS FOR sNSe

NONSTANDARD ANALYSIS The hyperreals or nonstandard reals \(*\mathbb{R} \supset \mathbb{R} \) is a field such that \(*\mathbb{R} \) contains non-zero infinitesimal numbers; and positive and negative infinite numbers using the following definitions:

Let \(x \in *\mathbb{R} \). We say that

(i) \(x \) is infinitesimal if \(|x| < \varepsilon \) for all \(\varepsilon > 0, \varepsilon \in \mathbb{R} \);

(ii) \(x \) is finite if \(|x| < r \) for some \(r \in \mathbb{R} \);
LOEB SPACE METHODS FOR sNSe

NONSTANDARD ANALYSIS The hyperreals or nonstandard reals $\mathbb{R}^\ast \supset \mathbb{R}$ is a field such that \mathbb{R}^\ast contains non-zero infinitesimal numbers; and positive and negative infinite numbers using the following definitions:

Let $x \in \mathbb{R}^\ast$. We say that
(i) x is infinitesimal if $|x| < \varepsilon$ for all $\varepsilon > 0$, $\varepsilon \in \mathbb{R}$;
(ii) x is finite if $|x| < r$ for some $r \in \mathbb{R}$;
(iii) x is infinite if $|x| > r$ for all $r \in \mathbb{R}$.

One way to construct \mathbb{R}^\ast is as an ultrapower of the reals $\mathbb{R}^\ast = \mathbb{R}^N \cup U$ where U is a nonprincipal ultrafilter (or maximal filter) on \mathbb{N}. An example of a non-zero infinitesimal is given by $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$.
LOEB SPACE METHODS FOR sNSe

NONSTANDARD ANALYSIS The hyperreals or nonstandard reals \(\mathbb{R} \supset \mathbb{R} \) is a field such that \(\mathbb{R} \) contains non-zero infinitesimal numbers; and positive and negative infinite numbers using the following definitions:

Let \(x \in \mathbb{R} \). We say that

(i) \(x \) is infinitesimal if \(|x| < \varepsilon \) for all \(\varepsilon > 0, \varepsilon \in \mathbb{R} \);

(ii) \(x \) is finite if \(|x| < r \) for some \(r \in \mathbb{R} \);

(iii) \(x \) is infinite if \(|x| > r \) for all \(r \in \mathbb{R} \).

(iv) \(x \) and \(y \) are infinitely close, denoted by \(x \approx y \), if \(x - y \) is infinitesimal. (So \(x \approx 0 \) means that \(x \) is infinitesimal)
LOEB SPACE METHODS FOR sNSe

NONSTANDARD ANALYSIS The hyperreals or nonstandard reals $\mathbb{R} \supset \mathbb{R}$ is a field such that \mathbb{R} contains non-zero infinitesimal numbers; and positive and negative infinite numbers using the following definitions:

Let $x \in \mathbb{R}$. We say that
(i) x is infinitesimal if $|x| < \varepsilon$ for all $\varepsilon > 0$, $\varepsilon \in \mathbb{R}$;
(ii) x is finite if $|x| < r$ for some $r \in \mathbb{R}$;
(iii) x is infinite if $|x| > r$ for all $r \in \mathbb{R}$.
(iv) x and y are infinitely close, denoted by $x \approx y$, if $x - y$ is infinitesimal. (So $x \approx 0$ means that x is infinitesimal)

One way to construct \mathbb{R} is as an ultrapower of the reals

$$\mathbb{R} = \mathbb{R}^\mathbb{N} \mathcal{U}$$

where \mathcal{U} is a nonprincipal ultrafilter (or maximal filter) on \mathbb{N}.
LOEB SPACE METHODS FOR sNSe

NONSTANDARD ANALYSIS The hyperreals or nonstandard reals \(\mathbb{R} \supset \mathbb{R} \) is a field such that \(\mathbb{R} \) contains non-zero infinitesimal numbers; and positive and negative infinite numbers using the following definitions:

Let \(x \in \mathbb{R} \). We say that
(i) \(x \) is **infinitesimal** if \(|x| < \varepsilon \) for all \(\varepsilon > 0, \varepsilon \in \mathbb{R} \);
(ii) \(x \) is **finite** if \(|x| < r \) for some \(r \in \mathbb{R} \);
(iii) \(x \) is **infinite** if \(|x| > r \) for all \(r \in \mathbb{R} \).
(iv) \(x \) and \(y \) are **infinitely close**, denoted by \(x \approx y \), if \(x - y \) is infinitesimal. (So \(x \approx 0 \) means that \(x \) is infinitesimal)

One way to construct \(\mathbb{R} \) is as an **ultrapower** of the reals

\[
\mathbb{R} = \mathbb{R}^N \mathcal{U}
\]

where \(\mathcal{U} \) is a nonprincipal ultrafilter (or maximal filter) on \(\mathbb{N} \).

An example of a non-zero infinitesimal is given by \((1, \frac{1}{2}, \frac{1}{3}, \ldots) \mathcal{U} \).
Define addition and multiplication on \(*\mathbb{R}\) pointwise (this is safe) and it is then easy to see that

\((\mathbb{R}, +, \times, <)\) is an ordered field.
Define addition and multiplication on \(*\mathbb{R}\) pointwise (this is safe) and it is then easy to see that

\[(*\mathbb{R}, +, \times, <)\] is an ordered field.

A good way to picture \(*\mathbb{R}\) is as follows (note that some features in the diagram are yet to be explained).
\[\text{monad}(r) = \{ x \in {}^\ast\mathbb{R} : x \approx r \} \]

The Hyperreals
Now extend all sets A, functions f and relations R on \mathbb{R} to $\ast \mathbb{R}$ pointwise – with the extensions denoted by $\ast A$, $\ast f$ and $\ast R$.

Examples: $\ast \mathbb{N}$, $\ast \mathbb{Z}$ and $\ast \mathbb{Q}$, the sets of *hypernatural numbers*, *hyperintegers* and *hyperrationals* respectively. We can talk about an infinite (hyper)natural number N.
Properties of \mathbb{R}^* are given systematically by the following:

Theorem (Transfer Principle)

Let φ be any first order statement. Then

$$\varphi \text{ holds in } \mathbb{R} \iff \mathbb{R}^* \text{ holds in } \mathbb{R}^*$$
Properties of \(*\mathbb{R}\) are given systematically by the following:

Theorem (Transfer Principle)

Let φ be any first order statement. Then

\[
\varphi \text{ holds in } \mathbb{R} \iff *\varphi \text{ holds in } *\mathbb{R}
\]

A **first order statement** φ (respectively $*\varphi$): refers to elements of \mathbb{R} (respectively $*\mathbb{R}$), both fixed and variable, and to fixed relations and functions f, R (respectively $*f, *R$), with quantification ($\forall x, \exists y$) only for elements.
Properties of \(*\mathbb{R}\) are given systematically by the following:

Theorem (Transfer Principle)

Let \(\varphi\) be any first order statement. Then

\[
\varphi \text{ holds in } \mathbb{R} \iff \ast\varphi \text{ holds in } \ast\mathbb{R}
\]

A *first order statement* \(\varphi\) (respectively \(*\varphi\)*): refers to elements of \(\mathbb{R}\) (respectively \(*\mathbb{R}\)*), both fixed and variable, and to fixed relations and functions \(f, R\) (respectively \(*f, *R\)*), with quantification \((\forall x, \exists y)\) only for elements.

To get back to \(\mathbb{R}\) from \(*\mathbb{R}\)*:

Theorem (Standard Part Theorem)

If \(x \in *\mathbb{R}\) *is finite, then there is a unique* \(r \in \mathbb{R}\) *such that* \(x \approx r\); *i.e. any finite hyperreal* \(x\) *is uniquely expressible as* \(x = r + \delta\) *with* \(r\) *a standard real and* \(\delta\) *infinitesimal.*
Properties of $\star \mathbb{R}$ are given systematically by the following:

Theorem (Transfer Principle)

Let φ be any first order statement. Then

$$
\varphi \text{ holds in } \mathbb{R} \iff *\varphi \text{ holds in } *\mathbb{R}
$$

A **first order statement** φ (respectively $*\varphi$): refers to elements of \mathbb{R} (respectively $*\mathbb{R}$), both fixed and variable, and to fixed relations and functions f, R (respectively $*f, *R$), with quantification ($\forall x, \exists y$) only for elements.

To get back to \mathbb{R} from $*\mathbb{R}$:

Theorem (Standard Part Theorem)

If $x \in *\mathbb{R}$ is finite, then there is a unique $r \in \mathbb{R}$ such that $x \approx r$; i.e. any finite hyperreal x is uniquely expressible as $x = r + \delta$ with r a standard real and δ infinitesimal.

Definition (Standard Part)

If x is a finite hyperreal the unique real $r \approx x$ is called the **standard part** of x, written $r = \circ x = \text{st}(x)$.
A NONSTANDARD UNIVERSE
Repeat the above construction to give \(*A \) for any mathematical object or structure \(A \); e.g. \(*M \) for a metric space with \(*d : *M \times *M \rightarrow *\mathbb{R} \).
A NONSTANDARD UNIVERSE
Repeat the above construction to give \(*A \) for any mathematical object or structure \(A \); e.g. \(*M \) for a metric space with \(*d : *M \times *M \rightarrow *\mathbb{R} \).
The most economical way to do this is for a whole mathematical universe \(\mathbb{V} \) with \(A \in \mathbb{V} \) for each object \(A \) that might be needed.
A NONSTANDARD UNIVERSE
Repeat the above construction to give \(^*A\) for any mathematical object or structure \(A\); e.g. \(^*M\) for a metric space with \(^*d : *M \times *M \rightarrow *\mathbb{R} \).

The most economical way to do this is for a whole mathematical universe \(\mathbb{V}\) with \(A \in \mathbb{V}\) for each object \(A\) that might be needed. Information about the resulting nonstandard universe \(^*\mathbb{V}\) is given by:

Theorem (The Transfer Principle)

Suppose that \(\varphi\) is a bounded quantifier statement. Then \(\varphi\) holds in \(\mathbb{V}\) if and only if \(^\varphi\) holds in \(^*\mathbb{V}\).*
A NONSTANDARD UNIVERSE

Repeat the above construction to give *A for any mathematical object or structure A; e.g. *M for a metric space with $^*d : ^*M \times ^*M \rightarrow ^*\mathbb{R}$.

The most economical way to do this is for a whole mathematical universe $^*\mathbb{V}$ with $A \in ^*\mathbb{V}$ for each object A that might be needed. Information about the resulting \textit{nonstandard universe} $^*\mathbb{V}$ is given by:

\textbf{Theorem (The Transfer Principle)}

Suppose that φ is a bounded quantifier statement. Then φ holds in \mathbb{V} if and only if $^*\varphi$ holds in $^*\mathbb{V}$.

Elements (objects) belonging to the nonstandard universe $^*\mathbb{V}$ are called \textit{internal}.
A NONSTANDARD UNIVERSE
Repeat the above construction to give *A for any mathematical object or structure A; e.g. *M for a metric space with *d : *M × *M → *R.
The most economical way to do this is for a whole mathematical universe V with $A \in V$ for each object A that might be needed. Information about the resulting nonstandard universe *V is given by:

Theorem (The Transfer Principle)
Suppose that φ is a bounded quantifier statement. Then φ holds in V if and only if *φ holds in *V.

Elements (objects) belonging to the nonstandard universe *V are called internal.

Remark The standard part mapping extends to the “nearstandard” elements of any extension metric (or topological) space *M - in particular the space *H.
A NONSTANDARD UNIVERSE
Repeat the above construction to give \(*A\) for any mathematical object or structure \(A\); e.g. \(*M\) for a metric space with \(*d : *M \times *M \rightarrow *\mathbb{R}\).

The most economical way to do this is for a whole mathematical universe \(\mathbb{V}\) with \(A \in \mathbb{V}\) for each object \(A\) that might be needed. Information about the resulting nonstandard universe \(*\mathbb{V}\) is given by:

Theorem (The Transfer Principle)

Suppose that \(\varphi\) is a bounded quantifier statement. Then \(\varphi\) holds in \(\mathbb{V}\) if and only if \(*\varphi\) holds in \(*\mathbb{V}\).

Elements (objects) belonging to the nonstandard universe \(*\mathbb{V}\) are called *internal*.

Remark The standard part mapping extends to the “nearstandard” elements of any extension metric (or topological) space \(*M\) - in particular the space \(*\mathbb{H}\). It is easy to show that elements \(U\) in \(*\mathbb{H}\) with \(|U|\) finite are nearstandard in the weak topology.
LOEB MEASURES

A *Loeb measure space* is a measure constructed from a nonstandard (i.e. *internal*) measure (essentially it is an *ultraproduct of measures*).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω, are given, μ is a finite internal finitely additive measure on \mathcal{A};

\begin{align*}
\mu(\mathcal{A} \cup \mathcal{B}) &= \mu(\mathcal{A}) + \mu(\mathcal{B}) \quad \text{for disjoint } \mathcal{A}, \mathcal{B} \in \mathcal{A}, \quad \mu(\Omega) \text{ is finite.}
\end{align*}
LOEB MEASURES

A Loeb measure space is a measure constructed from a nonstandard (i.e. internal) measure (essentially it is an ultraproduct of measures).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω, are given, μ is a finite internal finitely additive measure on \mathcal{A}; that is

$$\mu : \mathcal{A} \to \ast [0, \infty)$$

with $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint $A, B \in \mathcal{A}$, and $\mu(\Omega)$ is finite.
LOEB MEASURES

A *Loeb measure space* is a measure constructed from a nonstandard (i.e. *internal*) measure (essentially it is an ultraproduct of measures).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω, are given, μ is a finite internal finitely additive measure on \mathcal{A}; that is

$$\mu : \mathcal{A} \to \star[0, \infty)$$

with $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint $A, B \in \mathcal{A}$, and $\mu(\Omega)$ is finite. Define the mapping

$$\loeb{\mu} : \mathcal{A} \to [0, \infty)$$

by $\loeb{\mu}(A) = \mu(\mu(A))$.

LOEB MEASURES

A *Loeb measure space* is a measure constructed from a nonstandard (i.e. *internal*) measure (essentially it is an *ultraproduct of measures*).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω, are given, μ is a finite internal finitely additive measure on \mathcal{A}; that is

$$
\mu : \mathcal{A} \rightarrow \ast [0, \infty)
$$

with $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint $A, B \in \mathcal{A}$, and $\mu(\Omega)$ is finite. Define the mapping

$$
\circ \mu : \mathcal{A} \rightarrow [0, \infty)
$$

by $\circ \mu(A) = \ast(\mu(A))$. Then $(\Omega, \mathcal{A}, \circ \mu)$ is a *standard finitely additive measure space* but \mathcal{A} is not σ-additive in general.
LOEB MEASURES

A Loeb measure space is a measure constructed from a nonstandard (i.e. internal) measure (essentially it is an ultraproduct of measures).

Suppose that an internal set Ω and an internal algebra \mathcal{A} of subsets of Ω, are given, μ is a finite internal finitely additive measure on \mathcal{A}; that is

$$\mu : \mathcal{A} \rightarrow ^{*}[0, \infty)$$

with $\mu(A \cup B) = \mu(A) + \mu(B)$ for disjoint $A, B \in \mathcal{A}$, and $\mu(\Omega)$ is finite. Define the mapping

$$^\circ \mu : \mathcal{A} \rightarrow [0, \infty)$$

by $^\circ \mu(A) = ^\circ(\mu(A))$. Then $(\Omega, \mathcal{A}, ^\circ \mu)$ is a standard finitely additive measure space but \mathcal{A} is not σ-additive in general.

Theorem (Loeb 1975)

There is a unique σ-additive extension of $^\circ \mu$ to the σ-algebra $\sigma(\mathcal{A})$ generated by \mathcal{A}. The completion of this measure is the Loeb measure corresponding to μ, denoted μ_L and the completion of $\sigma(\mathcal{A})$ is the Loeb σ-algebra, denoted by $L(\mathcal{A})$.
Loeb measures are very rich, even though the internal measures they come from may be very simple (e.g., counting probabilities).
Loeb measures are very rich, even though the internal measures they come from may be very simple (e.g. counting probabilities).

Loeb integration theory relates nonstandard integrals and Loeb integrals.
Loeb measures are very rich, even though the internal measures they come from may be very simple (e.g., counting probabilities).

Loeb integration theory relates nonstandard integrals and Loeb integrals.

Let $F : \Omega \to \ast \mathbb{R}$ be S-integrable. Then $\circ F : \Omega \to \mathbb{R}$ and

$$
\int_{\Omega} F d\mu = \int_{\Omega} \circ F d\mu_L
$$
Loeb measures are very rich, even though the internal measures they come from may be very simple (e.g. counting probabilities).

Loeb integration theory relates nonstandard integrals and Loeb integrals. Let $F : \Omega \to {}^*\mathbb{R}$ be S-integrable. Then $\circ F : \Omega \to \mathbb{R}$ and

$$
\circ \int_\Omega F \, d\mu = \int_\Omega \circ F \, d\mu_L
$$

Similar relationships connect internal (i.e. nonstandard) stochastic integrals to standard stochastic integrals on the Loeb space.
LOEB SPACE SOLUTIONS TO STOCHASTIC NSe

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension N ($N \in ^{\ast}\mathbb{N}$ infinite)

$$dU(\tau) = [-\nu^* AU(\tau) + ^* B_N(U) + ^* f_N(\tau, U(\tau))]d\tau + ^* g_N(\tau, U(\tau))dW_\tau$$

U is an internal stochastic processes $U : ^*[0, T] \times \Omega \to H_N \subset ^*H$ on an internal space $\Omega_0 = (\Omega, \mathcal{A}, \mathcal{P})$ with internal Wiener process W in H_N
LOEB SPACE SOLUTIONS TO STOCHASTIC NSe

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension N ($N \in \mathbb{N}$ infinite)

$$dU(\tau) = [-\nu A U(\tau) + B_N(U) + f_N(\tau, U(\tau))] d\tau + g_N(\tau, U(\tau)) dW_\tau$$

U is an internal stochastic processes $U : [0, T] \times \Omega \rightarrow \mathcal{H}_N \subset \mathcal{H}$ on an internal space $\Omega_0 = (\Omega, \mathcal{A}, \mathcal{P})$ with internal Wiener process W in \mathcal{H}_N

(2) Establish an energy estimate. There is a finite constant E (independent of N) such that

$$\mathbb{E} \left(\sup_{\tau \leq T} |U(\tau)|^2 + \nu \int_0^T \|U(\sigma)\|^2 d\sigma \right) < E$$ \hspace{1cm} \text{(Energy)}

LOEB SPACE SOLUTIONS TO STOCHASTIC NSe

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension N ($N \in *\mathbb{N}$ infinite)

$$dU(\tau) = [-\nu^* AU(\tau) + *B_N(U) + *f_N(\tau, U(\tau))]d\tau + *g_N(\tau, U(\tau))dW_\tau$$

U is an internal stochastic processes $U : *[0, T] \times \Omega \to H_N \subset *H$ on an internal space $\Omega_0 = (\Omega, \mathcal{A}, \mathcal{P})$ with internal Wiener process W in H_N

(2) Establish an energy estimate. There is a finite constant E (independent of N) such that

$$\mathbb{E} \left(\sup_{\tau \leq T} |U(\tau)|^2 + \nu \int_0^T \|U(\sigma)\|^2 d\sigma \right) < E$$

(Energy)

(3) The energy estimate means that for a.a. ω, $|U(\tau)|$ is finite for all $\tau \leq T$ and hence weakly nearstandard. The integral equation for U gives that for a.a. ω, if $\sigma \approx \tau$ then $U(\sigma) \approx U(\tau)$. Hence
LOEB SPACE SOLUTIONS TO STOCHASTIC NSe

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension N ($N \in \mathbb{N}$ infinite)

$$dU(\tau) = [-\nu^* A U(\tau) + B_N(U) + f_N(\tau, U(\tau))] d\tau + g_N(\tau, U(\tau)) dW_\tau$$

U is an internal stochastic processes $U : *[0, T] \times \Omega \rightarrow H_N \subset \mathbb{H}$ on an internal space $\Omega_0 = (\Omega, A, \mathcal{P})$ with internal Wiener process W in H_N

(2) Establish an energy estimate. There is a finite constant E (independent of N) such that

$$E \left(\sup_{\tau \leq T} |U(\tau)|^2 + \nu \int_0^T \|U(\sigma)|^2 d\sigma \right) < E \quad \text{(Energy)}$$

(3) The energy estimate means that for a.a. ω, $|U(\tau)|$ is finite for all $\tau \leq T$ and hence weakly nearstandard. The integral equation for U gives that for a.a. ω, if $\sigma \approx \tau$ then $U(\sigma) \approx U(\tau)$. Hence

(4) Define a standard weakly continuous process $u : [0, T] \times \Omega \rightarrow H$ by

$$u(t, \omega) = \circ U(t, \omega)$$
LOEB SPACE SOLUTIONS TO STOCHASTIC NSe

(1) Use standard SDE methods + Transfer to solve the Galerkin approximation to the sNSe in dimension $N \ (N \in \mathbb{N} \text{ infinite})$

$$dU(\tau) = [-\nu^* A U(\tau) + ^* B_N(U) + ^* f_N(\tau, U(\tau))] d\tau + ^* g_N(\tau, U(\tau)) dW_{\tau}$$

U is an internal stochastic processes $U : [0, T] \times \Omega \to H_N \subset \mathbb{H}$ on an internal space $\Omega_0 = (\Omega, A, \mathcal{P})$ with internal Wiener process W in H_N

(2) Establish an **energy estimate**. There is a **finite** constant E (independent of N) such that

$$\mathbb{E} \left(\sup_{\tau \leq T} |U(\tau)|^2 + \nu \int_0^T ||U(\sigma)||^2 d\sigma \right) < E \quad \text{(Energy)}$$

(3) The energy estimate means that for a.a. ω, $|U(\tau)|$ is finite for all $\tau \leq T$ and hence weakly nearstandard. The integral equation for U gives that for a.a. ω, if $\sigma \approx \tau$ then $U(\sigma) \approx U(\tau)$. Hence

(4) Define a **standard weakly continuous process** $u : [0, T] \times \Omega \to H$ by

$$u(t, \omega) = \circ U(t, \omega)$$

(5) Show that this u solves the sNSe on the Loeb space corresponding to Ω_0 i.e. $\Omega = (\Omega, L(A), \mathcal{P}_L)$ with filtration derived from that on Ω_0
Hence

Theorem (Capiński & NJC (1991))

There is an adapted probability space Ω carrying an H-valued Wiener process w such that for any (L^2-random) $u_0 \in H$ and f, g (continuous with linear growth) there is a (weak) solution of the stochastic Navier–Stokes equations.
Hence

Theorem (Capiński & NJC (1991))

There is an adapted probability space Ω carrying an H-valued Wiener process w such that for any (L^2-random) $u_0 \in H$ and f, g (continuous with linear growth) there is a (weak) solution of the stochastic Navier–Stokes equations. That is, an adapted stochastic process $u : [0, \infty) \times \Omega \to H$ such that for a.a. ω

(i) $u \in L^2(0, T; V) \cap L^\infty(0, T; H) \cap C(0, T; H_{\text{weak}})$ for all $T < \infty$,

(ii) for all $t \geq 0$

$$u(t) = u_0 + \int_0^t [\nu A u(s) - B(u(s)) + f(s, u(s))] ds + \int_0^t g(s, u(s)) dw_s$$
Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS
Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS

For a *deterministic* dynamical system with uniqueness write $S_t \nu = \text{value at time } t$ of the solution with $u(0) = \nu$.

Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS

For a *deterministic* dynamical system with uniqueness write $S_t v = \text{value at time } t \text{ of the solution with } u(0) = v$.

An *attractor* is a compact set $A \subseteq H$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset H$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by $A = \{S_\tau V : V \in B \text{ and } \tau \text{ an infinite time} \}$ where $B \subseteq H$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For stochastic systems there is a variety of notions including

1. *measure attractors* - limiting behaviour of the measure induced on path space (Schmalfuß and others).
2. *stochastic attractors* (Crauel & Flandoli)
3. *process attractors* (NJC & Keisler)
4. *neo-attractors* (NJC & Keisler)

Loeb space methods give new results for each of (2)–(4) for S_N for drift and noise of the form $f(u)$ and $g(u)$.
Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS

For a deterministic dynamical system with uniqueness write $S_t \nu = \text{value at time } t \text{ of the solution with } u(0) = \nu$.

An attractor is a compact set $A \subseteq H$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset H$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

$$A = \{ * S_{\tau} V : V \in B \text{ and } \tau \text{ an infinite time} \}$$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.
Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS

For a deterministic dynamical system with uniqueness write $S_t \nu = \text{value at time } t \text{ of the solution with } u(0) = \nu$.

An attractor is a compact set $A \subseteq H$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset H$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

$$A = \{ * S_\tau \nu : \nu \in B \text{ and } \tau \text{ an infinite time} \}$$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For stochastic systems there is a variety of notions including

\(1\) measure attractors - limiting behaviour of the measure induced on path space (Schmalfuß and others).
\(2\) stochastic attractors (Crauel & Flandoli)
\(3\) process attractors (NJC & Keisler)
\(4\) neo-attractors (NJC & Keisler)

Loeb space methods give new results for each of (2) - (4) for NSS for drift and noise of the form $f(u)$ and $g(u)$.
Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS

For a **deterministic** dynamical system with uniqueness write $S_t v = \text{value at time } t$ of the solution with $u(0) = v$.

An **attractor** is a compact set $A \subseteq H$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset H$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

$$A = \{ *S_\tau V : V \in B \text{ and } \tau \text{ an infinite time} \}$$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For **stochastic systems** there is a variety of notions including

1. **measure attractors** - limiting behaviour of the measure induced on path space (Schmalfuß and others).
Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS

For a **deterministic** dynamical system with uniqueness write $S_t v = \text{value at time } t$ of the solution with $u(0) = v$.

An **attractor** is a compact set $A \subseteq H$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset H$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

$$A = \{ S_\tau V : V \in B \text{ and } \tau \text{ an infinite time} \}$$

where $B \subseteq H_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For **stochastic systems** there is a variety of notions including

1. **measure attractors** - limiting behaviour of the measure induced on path space (Schmalfuß and others).
2. **stochastic attractors** (Crauel & Flandoli)
Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS
For a deterministic dynamical system with uniqueness write \(S_t \nu = \text{value at time } t \) of the solution with \(u(0) = \nu \).

An attractor is a compact set \(A \subseteq \mathcal{H} \) such that \(S_t A = A \) and for any open set \(G \supset A \) and bounded set \(B \subset \mathcal{H} \), eventually we have \(S_t B \subseteq G \).

Intuitively an attractor is given by

\[
A = \{ \ast S_\tau V : V \in B \text{ and } \tau \text{ an infinite time} \}
\]

where \(B \subseteq \mathcal{H}_N \) is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For stochastic systems there is a variety of notions including

1. measure attractors - limiting behaviour of the measure induced on path space (Schmalfuß and others).
2. stochastic attractors (Crauel & Flandoli)
3. process attractors (NJC & Keisler)
Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS

For a deterministic dynamical system with uniqueness write $S_t v = \text{value at time } t$ of the solution with $u(0) = v$.

An attractor is a compact set $A \subseteq \mathcal{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathcal{H}$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

$$A = \{ \ast S_\tau V : V \in B \text{ and } \tau \text{ an infinite time} \}$$

where $B \subseteq \mathcal{H}_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For stochastic systems there is a variety of notions including

1. measure attractors - limiting behaviour of the measure induced on path space (Schmalfuß and others).
2. stochastic attractors (Crauel & Flandoli)
3. process attractors (NJC & Keisler)
4. neo-attractors (NJC & Keisler)
Application 1: ATTRACTORS FOR STOCHASTIC NAVIER–STOKES EQUATIONS

For a *deterministic* dynamical system with uniqueness write $S_t v = \text{value at time } t$ of the solution with $u(0) = v$.

An *attractor* is a compact set $A \subseteq \mathcal{H}$ such that $S_t A = A$ and for any open set $G \supset A$ and bounded set $B \subset \mathcal{H}$, eventually we have $S_t B \subseteq G$.

Intuitively an attractor is given by

$$A = \{ \ast S_\tau V : V \in B \text{ and } \tau \text{ an infinite time} \}$$

where $B \subseteq \mathcal{H}_N$ is a chosen bounded set (an absorbing set). This can be made precise using the ideas of NSA.

For *stochastic* systems there is a variety of notions including

1. *measure attractors* - limiting behaviour of the measure induced on path space (Schmalfuß and others).
2. *stochastic attractors* (Crauel & Flandoli)
3. *process attractors* (NJC & Keisler)
4. *neo-attractors* (NJC & Keisler)

Loeb space methods give new results for each of (2) - (4) for sNSe for drift and noise of the form $f(u)$ and $g(u)$.
Stochastic attractors for sNSe

For this only makes sense for $d = 2$ (where we have uniqueness).

Crauel & Flandoli's idea: a stochastic attractor is a random compact set $A(\omega)$ that, at time 0, attracts trajectories starting at $-\infty$ (compared to the usual idea of an attractor being a set at time ∞ that attracts trajectories starting at time 0).

The Loeb space approach to solving the sNSe can be modeled by starting the solutions at any given negative time - including infinite negative time; then intuitively a random attractor $A(\omega)$ = points in H that can be reached at time $t = 0$ starting at some infinite negative time.

Making this precise gives:

Theorem (Capiùski & NJC 1999) For special forms of the noise term $g(u)$ in the 2D sNSe there is a stochastic attractor $A(\omega)$ (compact in the strong topology of H).

Precise definition and proof - too long and complicated!
Stochastic attractors for sNSe

For sNSe this only makes sense for $d = 2$ (where we have uniqueness).
Stochastic attractors for sNSE
For sNSE this only makes sense for $d = 2$ (where we have uniqueness). Crauel & Flandoli’s idea: a stochastic attractor is a random compact set $A(\omega)$ that, at time 0, attracts trajectories “starting at $-\infty$” (compared to the usual idea of an attractor being a set “at time ∞” that attracts trajectories starting at time 0).
Stochastic attractors for sNSe
For sNSe this only makes sense for \(d = 2 \) (where we have uniqueness). Crauel & Flandoli’s idea: a stochastic attractor is a random compact set \(A(\omega) \) that, at time 0, attracts trajectories “starting at \(-\infty\)” (compared to the usual idea of an attractor being a set “at time \(\infty \)” that attracts trajectories starting at time 0). The Loeb space approach to solving the sNSe can be modified by starting the solutions at any given negative time - including infinite negative time; then intuitively a random attractor \(A(\omega) = \) points in \(H \) that can be reached at time \(t = 0 \) starting at some infinite negative time.
Stochastic attractors for sNSe

For sNSe this only makes sense for \(d = 2 \) (where we have uniqueness). Crauel & Flandoli’s idea: a *stochastic attractor* is a random compact set \(A(\omega) \) that, at time 0, attracts trajectories “starting at \(-\infty\)” (compared to the usual idea of an attractor being a set “at time \(\infty \)” that attracts trajectories starting at time 0). The Loeb space approach to solving the sNSe can be modified by starting the solutions at any given negative time - including infinite negative time; then intuitively a random attractor \(A(\omega) = \text{points in } H \) that can be reached at time \(t = 0 \) starting at some infinite negative time.

Making this precise gives:

Theorem

(*Capiński & NJC 1999*) *For special forms of the noise term \(g(u) \) in the 2D sNSe there is a stochastic attractor \(A(\omega) \) (compact in the strong topology of \(H \)).* Precise definition and proof - too long and complicated!
Process attractors for sNSe

For \(d = 3 \) uniqueness is unknown. To overcome this for the deterministic NSe, Sell replaced the phase space \(H \) by \(\mathcal{W} = \) all solution paths for the deterministic NavierStokes equations.

The semigroup action \(\mathcal{S}_t \) on \(\mathcal{W} \) is time translation: if \(u = u(\cdot) \in \mathcal{W} \) then \(\mathcal{S}_t u = v \in \mathcal{W} \) is given by \((\mathcal{S}_t u)(s) = u(t+s)\).

This has the crucial semi-group property \(\mathcal{S}_{t_1} \circ \mathcal{S}_{t_2} = \mathcal{S}_{t_1 + t_2} \) along with \(\mathcal{S}_0 u = u \).

Theorem (Sell (1996))

There is global attractor \(\mathcal{A} \subseteq \mathcal{W} \) for the 3-dimensional (deterministic) NavierStokes equations.
Process attractors for sNSe
For $d = 3$ uniqueness is unknown. To overcome this for the deterministic NSe, Sell replaced the phase space \mathbb{H} by $\mathbb{W} = \text{all solution paths for the deterministic Navier–Stokes equations.}$
Process attractors for sNSe
For $d = 3$ uniqueness is unknown. To overcome this for the deterministic NSe, Sell replaced the phase space \mathcal{H} by $\mathcal{W} =$ all solution paths for the deterministic Navier–Stokes equations. The semigroup action S_t on \mathcal{W} is time translation: if $u = u(\cdot) \in \mathcal{W}$ then $S_t u = v \in \mathcal{W}$ is given by

$$ (S_t u)(s) = u(t + s). $$
Process attractors for sNSe
For $d = 3$ uniqueness is unknown. To overcome this for the deterministic NSe, Sell replaced the phase space H by $W = \text{all solution paths for the deterministic Navier–Stokes equations}$. The semigroup action S_t on W is time translation: if $u = u(\cdot) \in W$ then $S_t u = v \in W$ is given by

$$(S_t u)(s) = u(t + s).$$

This has the crucial semi-flow property $S_{t_1} \circ S_{t_2} = S_{t_1 + t_2}$ along with $S_0 u = u$.
Process attractors for sNSe

For $d = 3$ uniqueness is unknown. To overcome this for the deterministic NSe, Sell replaced the phase space \mathbf{H} by $\mathbf{W} =$ all solution paths for the deterministic Navier–Stokes equations. The semigroup action S_t on \mathbf{W} is time translation: if $u = u(\cdot) \in \mathbf{W}$ then $S_t u = v \in \mathbf{W}$ is given by

$$(S_t u)(s) = u(t + s).$$

This has the crucial semi-flow property $S_{t_1} \circ S_{t_2} = S_{t_1 + t_2}$ along with $S_0 u = u$.

Theorem (Sell (1996))

There is global attractor $A \subseteq \mathbf{W}$ for the 3-dimensional (deterministic) Navier–Stokes equations.
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w.
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \geq 0$ that “shift the noise to the right”.

\[
\begin{align*}
\theta_1 \circ \theta_0 &= \text{id} \\
\theta_t \circ \theta_s &= \theta_{t+s} \\
\theta_t \circ F_s &= F_{t+s} \\
\theta_t \circ w(t+s, \omega) &= w(s, \omega)
\end{align*}
\]
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the stochastic NS-equations on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \rightarrow \Omega$ for $t \geq 0$ that “shift the noise to the right”. That is:

\begin{align*}
(\theta 1) & \quad \theta_0 = \text{identity and } \theta_t \circ \theta_s = \theta_{t+s};
\end{align*}
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \geq 0$ that “shift the noise to the right”. That is:

(θ_1) $\theta_0 = \text{identity and } \theta_t \circ \theta_s = \theta_{t+s}$;

(θ_2) $\theta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s, t \geq 0$, where (\mathcal{F}_t) is the filtration on Ω;
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the stochastic NS-equations on a space Ω with Wiener process W. Assume that Ω has measure preserving maps $\theta_t : \Omega \rightarrow \Omega$ for $t \geq 0$ that “shift the noise to the right”. That is:

(θ_1) $\theta_0 =$ identity and $\theta_t \circ \theta_s = \theta_{t+s}$;

(θ_2) $\theta_t F_s = F_{t+s}$ for all $s, t \geq 0$, where (F_t) is the filtration on Ω;

(θ_3) $w(t + s, \theta_t \omega) - w(t, \theta_t \omega) = w(s, \omega)$ for all $s \geq 0$.
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the sNSe on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \rightarrow \Omega$ for $t \geq 0$ that “shift the noise to the right”. That is:

(θ_1) $\theta_0 =$identity and $\theta_t \circ \theta_s = \theta_{t+s}$;
(θ_2) $\theta_t F_s = F_{t+s}$ for all $s, t \geq 0$, where (F_t) is the filtration on Ω;
(θ_3) $w(t + s, \theta_t \omega) - w(t, \theta_t \omega) = w(s, \omega)$ for all $s \geq 0$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t, \omega) = u(r + t, \theta_r \omega)$$
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the stochastic NS equation on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t: \Omega \to \Omega$ for $t \geq 0$ that “shift the noise to the right”. That is:

1. $\theta_0 =$identity and $\theta_t \circ \theta_s = \theta_{t+s}$;
2. $\theta_t F_s = F_{t+s}$ for all $s, t \geq 0$, where (F_t) is the filtration on Ω;
3. $w(t+s, \theta_t \omega) - w(t, \theta_t \omega) = w(s, \omega)$ for all $s \geq 0$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t, \omega) = u(r + t, \theta_r \omega)$$

S_r is a semigroup, and if u is adapted so is $S_t u$.

Suppose now that X is closed under S_t. Then a natural definition of a process attractor for the class X is $A \subseteq X$ such that

(i) $S_t A = A$ for all $t \geq 0$

(ii) A is compact in some sense

(iii) A attracts bounded subsets of the class X

This turns out to be asking too much. We need a weaker definition. In the following, if u is a stochastic process then $\text{Law}(u)$ is defined to be the probability law (on path space) of the coupled process (u, w).

Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let \(X \) be a set of solutions to the sNSe on a space \(\Omega \) with Wiener process \(w \). Assume that \(\Omega \) has measure preserving maps \(\theta_t : \Omega \to \Omega \) for \(t \geq 0 \) that “shift the noise to the right”. That is:

\[
\begin{align*}
(\theta_1) & \quad \theta_0 = \text{identity and } \theta_t \circ \theta_s = \theta_{t+s}; \\
(\theta_2) & \quad \theta_t \mathcal{F}_s = \mathcal{F}_{t+s} \text{ for all } s, t \geq 0, \text{ where } (\mathcal{F}_t) \text{ is the filtration on } \Omega; \\
(\theta_3) & \quad w(t+s, \theta_t \omega) - w(t, \theta_t \omega) = w(s, \omega) \text{ for all } s \geq 0
\end{align*}
\]

Definition

(Semiflow of Processes) For a stochastic process \(u = u(t, \omega) \) define a process \(v = S_r u \) by

\[
v(t, \omega) = u(r + t, \theta_r \omega)
\]

\(S_r \) is a semigroup, and if \(u \) is adapted so is \(S_t u \).

Suppose now that \(X \) is closed under \(S_t \). Then a natural definition of a process attractor for the class \(X \) is \(A \subseteq X \) such that
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the sNSE on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \geq 0$ that “shift the noise to the right”. That is:

$(\theta 1)$ $\theta_0 =$identity and $\theta_t \circ \theta_s = \theta_{t+s}$;
$(\theta 2)$ $\theta_t F_s = F_{t+s}$ for all $s, t \geq 0$, where (F_t) is the filtration on Ω;
$(\theta 3)$ $w(t + s, \theta_t \omega) - w(t, \theta_t \omega) = w(s, \omega)$ for all $s \geq 0$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t, \omega) = u(r + t, \theta_r \omega)$$

S_r is a semigroup, and if u is adapted so is $S_t u$.

Suppose now that X is closed under S_t. Then a natural definition of a process attractor for the class X is $A \subseteq X$ such that

(i) $S_tA = A$ for all $t \geq 0$
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the stochastic NS equations on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \geq 0$ that “shift the noise to the right”. That is:

1. $\theta_0 =$ identity and $\theta_t \circ \theta_s = \theta_{t+s}$;
2. $\theta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s, t \geq 0$, where (\mathcal{F}_t) is the filtration on Ω;
3. $w(t + s, \theta_t \omega) - w(t, \theta_t \omega) = w(s, \omega)$ for all $s \geq 0$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t, \omega) = u(r + t, \theta_r \omega)$$

S_r is a semigroup, and if u is adapted so is $S_t u$.

Suppose now that X is closed under S_t. Then a natural definition of a *process attractor* for the class X is $A \subseteq X$ such that

1. $S_t A = A$ for all $t \geq 0$
2. A is compact in some sense
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the stochastic NS-equations on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t: \Omega \to \Omega$ for $t \geq 0$ that “shift the noise to the right”. That is:

1. $\theta_0 =$ identity and $\theta_t \circ \theta_s = \theta_{t+s}$;
2. $\theta_t F_s = F_{t+s}$ for all $s, t \geq 0$, where (F_t) is the filtration on Ω;
3. $w(t + s, \theta_t \omega) - w(t, \theta_t \omega) = w(s, \omega)$ for all $s \geq 0$.

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t, \omega) = u(r + t, \theta_r \omega)$$

S_r is a semigroup, and if u is adapted so is $S_t u$.

Suppose now that X is closed under S_t. Then a natural definition of a process attractor for the class X is $A \subseteq X$ such that

1. $S_t A = A$ for all $t \geq 0$
2. A is compact in some sense
3. A attracts bounded subsets of the class X
Extension of Sell’s idea to the stochastic NS-equations.

Basic idea. Let X be a set of solutions to the stochastic NS-equations on a space Ω with Wiener process w. Assume that Ω has measure preserving maps $\theta_t : \Omega \to \Omega$ for $t \geq 0$ that “shift the noise to the right”. That is:

1. $\theta_0 = \text{identity and } \theta_t \circ \theta_s = \theta_{t+s}$;
2. $\theta_t \mathcal{F}_s = \mathcal{F}_{t+s}$ for all $s, t \geq 0$, where (\mathcal{F}_t) is the filtration on Ω;
3. $w(t+s, \theta_t \omega) - w(t, \theta_t \omega) = w(s, \omega)$ for all $s \geq 0$

Definition

(Semiflow of Processes) For a stochastic process $u = u(t, \omega)$ define a process $v = S_r u$ by

$$v(t, \omega) = u(r + t, \theta_r \omega)$$

S_r is a semigroup, and if u is adapted so is $S_t u$.

Suppose now that X is closed under S_t. Then a natural definition of a process attractor for the class X is $A \subseteq X$ such that

1. $S_t A = A$ for all $t \geq 0$
2. A is compact in some sense
3. A attracts bounded subsets of the class X

This turns out to be asking too much. We need a weaker definition. In the following, if u is a stochastic process then $\text{Law}(u)$ is defined to be the probability law (on path space) of the coupled process (u, w).
Definition
(a) A set of laws \(\mathcal{A} \subset \text{Law}(X) \) is a \textit{law-attractor} if

(i) \textit{(Invariance)} \(\hat{S}t \mathcal{A} = \mathcal{A} \) for all \(t \geq 0 \), where \(\hat{S}t \) is the mapping of laws induced by the semigroup \(S_t \).

(ii) \textit{(Attraction)} For any open set \(O \supset \mathcal{A} \) and bounded \(Z \subset \text{Law}(X) \), \(\hat{S}t Z \subseteq O \) eventually (i.e. this holds for all \(t \geq t_0 \)).

(iii) \textit{(Compactness)} \mathcal{A} \) is compact

(b) A process attractor for the semigroup \(S_t \) on \(X \) is a set of processes \(\mathcal{A} \subseteq X \) such that

(i) \(\text{Law}(\mathcal{A}) \) is a law-attractor (so \(\text{Law}(\mathcal{A}) \) is compact and \(\mathcal{A} \) is bounded);

(ii) \textit{(Invariance)} \(S_t \mathcal{A} = \mathcal{A} \) for all \(t \geq 0 \);

(iii) \textit{(Attraction)} For bounded \(Z \subset X \) and compact \(K \) with \(O = (K \leq \varepsilon)^c \supset \mathcal{A} \), for sufficiently large \(t \) \(S_t Z \subseteq O \).

(iv) \mathcal{A} \) is closed.

Even for this weaker definition, existence requires a rather large probability space.
Definition

(a) A set of laws $\mathcal{A} \subset \text{Law}(X)$ is a \textit{law-attractor} if

(i) (Invariance) $\hat{S}_t \mathcal{A} = \mathcal{A}$ for all $t \geq 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t.

Even for this weaker definition, existence requires a rather large probability space
Definition
(a) A set of laws $\mathcal{A} \subset \text{Law}(X)$ is a \textit{law-attractor} if
(i) \textbf{(Invariance)} $\hat{S}_t \mathcal{A} = \mathcal{A}$ for all $t \geq 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t.
(ii) \textbf{(Attraction)} For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset \text{Law}(X)$,
\[\hat{S}_t \mathcal{Z} \subseteq \mathcal{O} \]
eventually (i.e. this holds for all $t \geq t_0(\mathcal{O}, \mathcal{Z})$).
Definition

(a) A set of laws $\mathcal{A} \subset \text{Law}(X)$ is a **law-attractor** if

(i) (Invariance) $\hat{S}_t \mathcal{A} = \mathcal{A}$ for all $t \geq 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t.

(ii) (Attraction) For any open set $O \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset \text{Law}(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq O$$

eventually (i.e. this holds for all $t \geq t_0(O, \mathcal{Z})$).

(iii) (Compactness) \mathcal{A} is compact
Definition

(a) A set of laws $\mathcal{A} \subset \text{Law}(X)$ is a \textit{law-attractor} if

(i) (Invariance) $\hat{S}_t \mathcal{A} = \mathcal{A}$ for all $t \geq 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t.

(ii) (Attraction) For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset \text{Law}(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

eventually (i.e. this holds for all $t \geq t_0(\mathcal{O}, \mathcal{Z})$).

(iii) (Compactness) \mathcal{A} is compact

(b) A \textit{(process) attractor} for the semiflow S_t on X is a set of processes $\mathcal{A} \subset X$ such that
Definition
(a) A set of laws $\mathcal{A} \subset \text{Law}(X)$ is a **law-attractor** if
(i) **(Invariance)** $\hat{S}_t \mathcal{A} = \mathcal{A}$ for all $t \geq 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t.
(ii) **(Attraction)** For any open set $\mathcal{O} \supset \mathcal{A}$ and bounded $\mathcal{Z} \subset \text{Law}(X)$,

$$\hat{S}_t \mathcal{Z} \subseteq \mathcal{O}$$

eventually (i.e. this holds for all $t \geq t_0(\mathcal{O}, \mathcal{Z})$).
(iii) **(Compactness)** \mathcal{A} is compact
(b) A **(process) attractor** for the semiflow S_t on X is a set of processes $\mathcal{A} \subseteq X$ such that
(i) $\text{Law}(\mathcal{A})$ is a law-attractor (so $\text{Law}(\mathcal{A})$ is compact and \mathcal{A} is bounded);
Definition
(a) A set of laws \(A \subset \text{Law}(X) \) is a \textit{law-attractor} if

(i) \textbf{(Invariance)} \(\hat{S}_t A = A \) for all \(t \geq 0 \), where \(\hat{S}_t \) is the mapping of laws induced by the semigroup \(S_t \).

(ii) \textbf{(Attraction)} For any open set \(O \supset A \) and bounded \(Z \subset \text{Law}(X) \),

\[
\hat{S}_t Z \subseteq O
\]

eventually (i.e. this holds for all \(t \geq t_0(O, Z) \)).

(iii) \textbf{(Compactness)} \(A \) is compact

(b) A \textit{(process) attractor} for the semiflow \(S_t \) on \(X \) is a set of processes \(A \subset X \) such that

(i) \(\text{Law}(A) \) is a law-attractor (so \(\text{Law}(A) \) is compact and \(A \) is bounded);

(ii) \textbf{(Invariance)} \(S_t A = A \) for all \(t \geq 0 \);
Definition
(a) A set of laws $A \subseteq \text{Law}(X)$ is a \textit{law-attractor} if
(i) \textbf{(Invariance)} \(\hat{S}_t A = A \) for all \(t \geq 0 \), where \(\hat{S}_t \) is the mapping of laws induced by the semigroup \(S_t \).
(ii) \textbf{(Attraction)} For any open set $O \supset A$ and bounded $Z \subset \text{Law}(X)$,
\[
\hat{S}_t Z \subseteq O
\]
eventually (i.e. this holds for all \(t \geq t_0(O, Z) \)).
(iii) \textbf{(Compactness)} A is compact
(b) A \textit{(process) attractor} for the semiflow S_t on X is a set of processes $A \subseteq X$ such that
(i) $\text{Law}(A)$ is a law-attractor (so $\text{Law}(A)$ is compact and A is bounded);
(ii) \textbf{(Invariance)} \(S_t A = A \) for all \(t \geq 0 \);
(iii) \textbf{(Attraction)} For bounded $Z \subset X$ and compact K with $O = (K \leq \varepsilon)^c \supset A$, for sufficiently large t
\[
S_t Z \subseteq O.
\]
Definition
(a) A set of laws $A \subset \text{Law}(X)$ is a \textit{law-attractor} if
(i) (Invariance) $\hat{S}_t A = A$ for all $t \geq 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t.
(ii) (Attraction) For any open set $O \supset A$ and bounded $Z \subset \text{Law}(X)$,
\[\hat{S}_t Z \subseteq O \]
eventually (i.e. this holds for all $t \geq t_0(O, Z)$).
(iii) (Compactness) A is compact
(b) A \textit{(process) attractor} for the semiflow S_t on X is a set of processes $A \subseteq X$ such that
(i) $\text{Law}(A)$ is a law-attractor (so $\text{Law}(A)$ is compact and A is bounded);
(ii) (Invariance) $S_t A = A$ for all $t \geq 0$;
(iii) (Attraction) For bounded $Z \subset X$ and compact K with $O = (K^{\leq \varepsilon})^c \supset A$, for sufficiently large t
\[S_t Z \subseteq O. \]
(iv) A is closed.
Definition
(a) A set of laws $A \subset \text{Law}(X)$ is a **law-attractor** if

(i) **(Invariance)** $\hat{S}_t A = A$ for all $t \geq 0$, where \hat{S}_t is the mapping of laws induced by the semigroup S_t.

(ii) **(Attraction)** For any open set $O \supset A$ and bounded $Z \subset \text{Law}(X)$,

$$\hat{S}_t Z \subseteq O$$

eventually (i.e. this holds for all $t \geq t_0(O, Z)$).

(iii) **(Compactness)** A is compact

(b) A **(process) attractor** for the semiflow S_t on X is a set of processes $A \subseteq X$ such that

(i) $\text{Law}(A)$ is a law-attractor (so $\text{Law}(A)$ is compact and A is bounded);

(ii) **(Invariance)** $S_t A = A$ for all $t \geq 0$;

(iii) **(Attraction)** For bounded $Z \subset X$ and compact K with $O = (K \leq \varepsilon)^c \supset A$, for sufficiently large t

$$S_t Z \subseteq O.$$

(iv) A is closed.

Even for this weaker definition, existence requires a rather large probability space
Theorem
(NJC & H.J. Keisler, 2004) There is a Loeb space Ω and a natural class of solutions X that has a process attractor A. The class X contains solutions to the sNSe for all L^2 random initial conditions.
A is the restriction to nonnegative times of a corresponding class \hat{X} of two sided solutions to the sNSe.
Theorem

(NJC & H.J. Keisler, 2004) There is a Loeb space Ω and a natural class of solutions X that has a process attractor A. The class X contains solutions to the sNSe for all L^2 random initial conditions. A is the restriction to nonnegative times of a corresponding class \hat{X} of two sided solutions to the sNSe.

Remark It can be shown that if Ω is any sufficiently rich space (for example if Ω is a Loeb space) then any process attractor A is not compact.
The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a neo-attractor.

Keisler's theory of neo-metric spaces involves notions of neo-open, neo-compact, and neo-continuous. These arise very naturally for metric spaces that are constructed using nonstandard analysis—such as the class of solutions X in the above theorem.

Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is stronger than continuous.

Theorem (NJC & H.J. Keisler, 2005) The attractor A of the above theorem is a neo-attractor; that is

1. (Invariance) $S t A = A$ for all $t \geq 0$;
2. A is neo-compact;
3. for any neo-open set $G \supset A$ and bounded set $B \subset X$, eventually $S t B \subseteq G$.

NEO-ATTRACTORS
The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.
NEO-ATTRACTORS
The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a \textit{neo-attractor}.
Keisler’s theory of \textit{neo-metric spaces} involves notions of \textit{neo-open, neo-compact} and \textit{neo-continuous}. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.
NEO-ATTRACTORS
The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*. Keisler’s theory of *neo-metric spaces* involves notions of *neo-open, neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions \(X \) in the above theorem.

Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.
NEO-ATTRACTORS
The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.
Keisler’s theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.
Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.

Theorem
(NJ&C & H.J.Keisler, 2005) The attractor A of the above theorem is a *neo-attractor*; that is
NEO-ATTRACTORS
The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.
Keisler’s theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.
Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.

Theorem

(NJ C & H.J.Keisler, 2005) The attractor A of the above theorem is a *neo-attractor*; that is

1. **(Invariance)** $S_t A = A$ for all $t \geq 0$;
NEO-ATTRACTORS
The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.

Keisler’s theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.

Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.

Theorem

(NJ&C & H.J.Keisler, 2005) The attractor A of the above theorem is a *neo-attractor*; that is

(1) *(Invariance)* $S_t A = A$ for all $t \geq 0$;
(2) A is *neocompact*;
NEO-ATTRACTORS
The definition of a process attractor is somewhat unsatisfactory and does not capture the full strength of what was proved above. This is fully captured by the notion of a *neo-attractor*.

Keisler’s theory of *neo-metric spaces* involves notions of *neo-open*, *neo-compact* and *neo-continuous*. These arise very naturally for metric spaces that are constructed using nonstandard analysis - such as the class of solutions X in the above theorem.

Neo-compact is weaker than compact in general; neo-open is weaker than open, but neo-continuous is *stronger* than continuous.

Theorem

(NJC & H.J.Keisler, 2005) The attractor A of the above theorem is a neo-attractor; that is

1. *(Invariance)* $S_t A = A$ for all $t \geq 0$;
2. A is *neo-compact*;
3. for any *neo-open* set $G \supset A$ and bounded set $B \subset X$, eventually $S_t B \subseteq G$.
Suppose we have a minimizing sequence of controls $\theta^*_n : [0, T] \rightarrow M$ (metric space) for a given optimal control problem, say. That is the cost of using control θ^*_n equals $J(\theta^*_n) \downarrow J_0$ where J_0 is the minimum of all costs for controls for the given system. Then NSA allows us to speak of the nonstandard control θ_N for any infinite N. We can usually make sense of $J(\theta_N)$ and we will have $J(\theta_N) \approx J_0$. In many circumstances we can then take standard parts to produce an optimal control $\theta = \circ \theta_N$.

This idea has been applied to the NSSe in a variety of settings, always involving a Loeb space so that solutions for all controls live on the same probability space. Results have been obtained for 2D systems of the form

$$u(t) = u_0 + \int_0^t \left\{ -\nu A u(s) - B(u(s)) + f(s, u, \theta(s, u)) \right\} ds + \int_0^t g(s, u) dw(s)$$

with θ Hölder continuous, or with θ having no feedback in u, or with the feedback consisting of cumulative digital observations of the solution at a fixed finite number of times.
Using NSA for optimal control problems
Suppose we have a minimizing sequence of controls $\theta_n : [0, T] \to M$ (M a metric space) for a given optimal control problem, say. That is

$$\text{Cost of using control } \theta_n = J(\theta_n) \downarrow J_0$$

where J_0 is the infimum of all costs for controls for the given system.
Using NSA for optimal control problems

Suppose we have a minimizing sequence of controls \(\theta_n : [0, T] \rightarrow M \) \((M \text{ a metric space})\) for a given optimal control problem, say . That is

\[
\text{Cost of using control } \theta_n = J(\theta_n) \downarrow J_0
\]

where \(J_0 \) is the infimum of all costs for controls for the given system. Then NSA allows us to speak of the nonstandard control \(\theta_N \) for any infinite \(N \). We can usually make sense of \(J(\theta_N) \) and we will have \(J(\theta_N) \approx J_0 \).
Using NSA for optimal control problems
Suppose we have a minimizing sequence of controls \(\theta_n : [0, T] \to M \) (\(M \) a metric space) for a given optimal control problem, say . That is

\[
\text{Cost of using control } \theta_n = J(\theta_n) \downarrow J_0
\]

where \(J_0 \) is the infimum of all costs for controls for the given system. Then NSA allows us to speak of the nonstandard control \(\theta_N \) for any infinite \(N \). We can usually make sense of \(J(\theta_N) \) and we will have \(J(\theta_N) \approx J_0 \). In many circumstances we can then “take standard parts” to produce an optimal control

\[
\theta = \circ \theta_N
\]
Using NSA for optimal control problems
Suppose we have a minimizing sequence of controls \(\theta_n : [0, T] \to M \) (\(M \) a metric space) for a given optimal control problem, say. That is

\[
\text{Cost of using control } \theta_n = J(\theta_n) \downarrow J_0
\]

where \(J_0 \) is the infimum of all costs for controls for the given system. Then NSA allows us to speak of the nonstandard control \(\theta_N \) for any infinite \(N \). We can usually make sense of \(J(\theta_N) \) and we will have \(J(\theta_N) \approx J_0 \). In many circumstances we can then “take standard parts” to produce an optimal control

\[
\theta = \circ \theta_N
\]

This idea has been applied to the sNSe in a variety of settings, always involving a Loeb space so that solutions for all controls live on the same probability space.
Application 2: OPTIMAL CONTROL THEORY (NJC & Katarzyna Grzesiak)

Using NSA for optimal control problems
Suppose we have a minimizing sequence of controls $\theta_n : [0, T] \to M$ (M a metric space) for a given optimal control problem, say. That is

$$\text{Cost of using control } \theta_n = J(\theta_n) \downarrow J_0$$

where J_0 is the infimum of all costs for controls for the given system. Then NSA allows us to speak of the nonstandard control θ_N for any infinite N. We can usually make sense of $J(\theta_N)$ and we will have $J(\theta_N) \approx J_0$. In many circumstances we can then “take standard parts” to produce an optimal control

$$\theta = \circ \theta_N$$

This idea has been applied to the sNSe in a variety of settings, always involving a Loeb space so that solutions for all controls live on the same probability space. Results have been obtained for 2D systems of the form

$$u(t) = u_0 + \int_0^t \{-\nu Au(s) - B(u(s)) + f(s, u, \theta(s, u))\} \, ds + \int_0^t g(s, u) \, dw(s)$$

with θ Hölder continuous, or with θ having no feedback in u, or with the feedback consisting of cumulative digital observations of the solution at a fixed finite number of times.
For the **3D equations** results are only for systems with no feedback: i.e. \(\theta = \theta(t) \). The possible non-uniqueness of solutions requires a large space to work in - one containing all possible solutions for a given control to allow initially the existence of an optimal solution for a given control.

\[
\text{where } U: \mathbb{R} \rightarrow \mathbb{R}^n.
\]

Then we standardise the control to give \(\theta = \Theta \) and as in the basic existence proof show that it is possible to take \(u(t, \omega) = \theta(U(t, \omega)) \) It remains to prove that \(u \) is a solution for control \(\theta \) and \(J(\theta) = \theta(J(\Theta)) \) to give optimality.

For the **3D equations** results are only for systems with no feedback: i.e. \(\theta = \theta(t) \). The possible non-uniqueness of solutions requires a large space to work in - one containing all possible solutions for a given control to allow initially the existence of an optimal solution for a given control.
A typical situation in either 2D or 3D is that we have a nonstandard control \(\Theta \) (possibly \(\theta_N \)) and a nonstandard solution for it:

\[
U(\tau) = U_0 + \int_0^\tau \{-\nu^* A U(s) - ^* B(U(s)) + ^* f(s, U, \Theta(U))\} \, ds
\]

\[
+ \int_0^\tau ^* g(s, U) \, dW(s)
\]

where \(U : ^*[0, T] \rightarrow ^*H \) or \(H_N \).
For the 3D equations results are only for systems with no feedback: i.e. \(\theta = \theta(t) \). The possible non-uniqueness of solutions requires a large space to work in - one containing all possible solutions for a given control to allow initially the existence of an optimal solution for a given control.

A typical situation in either 2D or 3D is that we have a nonstandard control \(\Theta \) (possibly \(\theta_N \)) and a nonstandard solution for it:

\[
U(\tau) = U_0 + \int_0^\tau \{ -\nu^* A U(s) - B^*(U(s)) + \mathbf{f}(s, U, \Theta(U)) \} \, ds \\
+ \int_0^\tau g^*(s, U) \, dW(s)
\]

where \(U : [0, T] \to \mathbb{H} \) or \(\mathbb{H}_N \). Then we “standardise” the control to give \(\theta = \Theta^o \) and as in the basic existence proof show that it is possible to take \(u(t, \omega) = U(t, \omega) \). It remains to prove that \(u \) is a solution for control \(\theta \) and \(J(\theta) = J^o(\Theta) \) to give optimality.

Details: NJC & K.Grzesiak: Stochastics (2005) and AMO (2007).
Application 3: NON-HOMOGENEOUS (i.e. non-constant density)
STOCHASTIC NSe with multiplicative noise
These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d \ (d = 2, 3)$
Application 3: NON-HOMOGENEOUS (i.e. non-constant density)
STOCHASTIC NSe with multiplicative noise
These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$)

(Velocity) $\rho du = [\nu \Delta u - <\rho u, \nabla > u - \nabla p + \rho f(t, u)] dt + \rho g(t, u) dw_t$

$\text{div } u = 0$
Application 3: NON-HOMOGENEOUS (i.e. non-constant density)
STOCHASTIC NSe with multiplicative noise

These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d \ (d = 2, 3)$

(Velocity) $\rho du = [\nu \Delta u - < \rho u, \nabla > u - \nabla p + \rho f(t, u)] \ dt + \rho g(t, u) dw_t$

$$\text{div } u = 0$$

(Density) $\frac{\partial \rho}{\partial t} + < u, \nabla > \rho = 0$

with boundary and initial conditions $u|_{\partial D} = 0, \ u|_{t=0} = u_0, \ \rho|_{t=0} = \rho_0.$
Application 3: NON-HOMOGENEOUS (i.e. non-constant density)
STOCHASTIC NSe with multiplicative noise
These model the velocity \(u \) and density \(\rho \) of a mixture of viscous incompressible fluids of varying density in a bounded domain \(D \subset \mathbb{R}^d \ (d = 2, 3) \)

(Velocity) \(\rho du = [\nu \Delta u - < \rho u, \nabla > u - \nabla p + \rho f(t, u)] \, dt + \rho g(t, u) \, dw_t \)

\[\text{div } u = 0 \]

(Density) \(\frac{\partial \rho}{\partial t} + < u, \nabla > \rho = 0 \)

with boundary and initial conditions \(u|_{\partial D} = 0, \ u|_{t=0} = u_0, \ \rho|_{t=0} = \rho_0. \)

(1) the \textit{deterministic} nonhomogeneous equations: solved by Kazhikhov (1974) - assuming \(M \geq \rho_0 \geq m > 0 \)
Application 3: NON-HOMOGENEOUS (i.e. non-constant density) STOCHASTIC NSe with multiplicative noise

These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$)

(Velocity) $\rho du = [\nu \Delta u - < \rho u, \nabla > u - \nabla p + \rho f(t, u)] dt + \rho g(t, u) dw_t$

$$\text{div } u = 0$$

(Density) $\frac{\partial \rho}{\partial t} + < u, \nabla > \rho = 0$

with boundary and initial conditions $u|_{\partial D} = 0$, $u|_{t=0} = u_0$, $\rho|_{t=0} = \rho_0$.

(1) the deterministic nonhomogeneous equations: solved by Kazhikhov (1974) - assuming $M \geq \rho_0 \geq m > 0$

(2) The stochastic equations with additive noise (i.e. $dG = gdw$ does not depend on u) - Yashima (1992) assuming $M \geq \rho_0 \geq m > 0$. Solved essentially pathwise.
Application 3: NON-HOMOGENEOUS (i.e. non-constant density) STOCHASTIC NSe with multiplicative noise

These model the velocity u and density ρ of a mixture of viscous incompressible fluids of varying density in a bounded domain $D \subset \mathbb{R}^d$ ($d = 2, 3$)

(Velocity) $\rho du = [\nu \Delta u - <\rho u, \nabla > u - \nabla p + \rho f(t, u)] dt + \rho g(t, u)dw_t$

$$\text{div } u = 0$$

(Density) $\frac{\partial \rho}{\partial t} + <u, \nabla > \rho = 0$

with boundary and initial conditions $u|_{\partial D} = 0, \ u|_{t=0} = u_0, \ \rho|_{t=0} = \rho_0$.

(1) the deterministic nonhomogeneous equations: solved by Kazhikhov (1974) - assuming $M \geq \rho_0 \geq m > 0$

(2) The stochastic equations with additive noise (i.e. $dG = gdw$ does not depend on u) - Yashima (1992) assuming $M \geq \rho_0 \geq m > 0$. Solved essentially pathwise.

(3) Loeb space methods (NJC & Brendan Enright): solve the stochastic equations with general multiplicative noise for $d = 2, 3$ assuming $M \geq \rho_0 \geq m > 0$.

Definition of a weak solution The velocity and the density will be stochastic processes living on an adapted probability space Ω.

Definition
Given $u_0 \in H$, $\rho_0 \in L^\infty(D)$, $f : [0, T] \times H \to H$ and $g : [0, T] \times H \to L(H, H)$ a pair of stochastic processes (ρ, u) is a weak solution to the stochastic nonhomogeneous Navier-Stokes equations if

(i) $u \in L^2([0, T] \times \Omega, V)$ and for a.a. ω $u(\cdot, \omega) \in L^\infty(0, T; H) \cap L^2(0, T; V)$

(ii) $\rho \in L^\infty([0, T] \times D \times \Omega)$

(iii) (Velocity) for almost all $T_0 \leq T$, for all $\Phi \in C^1(0, T; V)$

$$\rho(T_0) u(T_0) - (\rho_0 u_0, \Phi(0)) = \int_0^{T_0} \left[(\rho u, \Phi') + \langle u, \nabla \rangle \Phi \right] dt + \int_0^{T_0} (\Phi, \rho g) dw$$

(iv) (Density) for all $\phi \in C^1(0, T; H_1(D))$, for all $T_0 \leq T$

$$\rho(T_0) \phi(T_0) - (\rho_0 \phi(0)) = \int_0^{T_0} (\rho, \phi') dt$$

(v) $\rho(0) = \rho_0$ and $u(0) = u_0$

Note. $g = 0$ gives Kazhikhov’s definition for the deterministic equations.
Definition of a weak solution The velocity and the density will be stochastic processes living on an adapted probability space Ω.

Definition

Given $u_0 \in H$, $\rho_0 \in L^\infty(D)$, $f : [0, T] \times H \to H$ and $g : [0, T] \times H \to L(H, H)$ a pair of stochastic processes (ρ, u) is a weak solution to the stochastic nonhomogeneous Navier-Stokes equations if

(i) $u \in L^2([0, T] \times \Omega, \mathbf{V})$ and for a.a. ω

$$u(\cdot, \omega) \in L^\infty(0, T; H) \cap L^2(0, T; \mathbf{V})$$
Definition of a weak solution The velocity and the density will be stochastic processes living on an adapted probability space Ω.

Definition
Given $u_0 \in H$, $\rho_0 \in L^\infty(D)$, $f : [0, T] \times H \to H$ and $g : [0, T] \times H \to L(H, H)$ a pair of stochastic processes (ρ, u) is a weak solution to the stochastic nonhomogeneous Navier-Stokes equations if
(i) $u \in L^2([0, T] \times \Omega, V)$ and for a.a. ω

$$u(\cdot, \omega) \in L^\infty(0, T; H) \cap L^2(0, T; V)$$

(ii) $\rho \in L^\infty([0, T] \times D \times \Omega)$
Definition of a weak solution The velocity and the density will be stochastic processes living on an adapted probability space Ω.

Definition
Given $u_0 \in H$, $\rho_0 \in L^\infty(D)$, $f : [0, T] \times H \rightarrow H$ and $g : [0, T] \times H \rightarrow L(H, H)$ a pair of stochastic processes (ρ, u) is a weak solution to the stochastic nonhomogeneous Navier-Stokes equations if

(i) $u \in L^2([0, T] \times \Omega, V)$ and for a.a. ω

$$u(\cdot, \omega) \in L^\infty(0, T; H) \cap L^2(0, T; V)$$

(ii) $\rho \in L^\infty([0, T] \times D \times \Omega)$

(iii) (Velocity) for almost all $T_0 \leq T$, for all $\Phi \in C^1(0, T; V)$

$$(\rho(T_0)u(T_0), \Phi(T_0)) - (\rho_0 u_0, \Phi(0))$$

$$= \int_0^{T_0} [(\rho u, \Phi' + \langle u, \nabla \rangle \Phi) - v((u, \Phi)) + (\rho f, \Phi)]\, dt + \int_0^{T_0} (\Phi, \rho g)\, dw$$

Note. $g = 0$ gives Kazhikhov’s definition for the deterministic equations.
Definition of a weak solution The velocity and the density will be stochastic processes living on an adapted probability space Ω.

Definition
Given $u_0 \in H$, $\rho_0 \in L^\infty(D)$, $f : [0, T] \times H \to H$ and $g : [0, T] \times H \to L(H, H)$ a pair of stochastic processes (ρ, u) is a weak solution to the stochastic nonhomogeneous Navier-Stokes equations if

(i) $u \in L^2([0, T] \times \Omega; V)$ and for a.a. ω

$$u(\cdot, \omega) \in L^\infty(0, T; H) \cap L^2(0, T; V)$$

(ii) $\rho \in L^\infty([0, T] \times D \times \Omega)$

(iii) (Velocity) for almost all $T_0 \leq T$, for all $\Phi \in C^1(0, T; V)$

$$\rho(T_0)u(T_0), \Phi(T_0) - (\rho_0u_0, \Phi(0)) = \int_0^{T_0} [(\rho u, \Phi' + \langle u, \nabla \rangle \Phi) - \nu((u, \Phi)) + (\rho f, \Phi)] dt + \int_0^{T_0} (\Phi, \rho g) dw$$

(iv) (Density) for all $\varphi \in C^1(0, T; H^1(D))$, for all $T_0 \leq T$

$$\rho(T_0), \varphi(T_0) - (\rho_0, \varphi(0)) = \int_0^{T_0} (\rho, \varphi' + \langle u, \nabla \rangle \varphi) dt$$

Note. $g = 0$ gives Kazhikhov’s definition for the deterministic equations.
Definition of a weak solution The velocity and the density will be stochastic processes living on an adapted probability space Ω.

Definition

Given $u_0 \in H$, $\rho_0 \in L^\infty(D)$, $f : [0, T] \times H \to H$ and $g : [0, T] \times H \to L(H, H)$ a pair of stochastic processes (ρ, u) is a weak solution to the stochastic nonhomogeneous Navier-Stokes equations if

(i) $u \in L^2([0, T] \times \Omega, V)$ and for a.a. ω

$$u(\cdot, \omega) \in L^\infty(0, T; H) \cap L^2(0, T; V)$$

(ii) $\rho \in L^\infty([0, T] \times D \times \Omega)$

(iii) (Velocity) for almost all $T_0 \leq T$, for all $\Phi \in C^1(0, T; V)$

$$\left(\rho(T_0)u(T_0), \Phi(T_0)\right) - \left(\rho_0 u_0, \Phi(0)\right) = \int_0^{T_0} \left[\left(\rho u, \Phi' + \langle u, \nabla \rangle \Phi\right) - \nu((u, \Phi)) + (\rho f, \Phi)\right] dt + \int_0^{T_0} (\Phi, \rho g)dw$$

(iv) (Density) for all $\varphi \in C^1(0, T; H^1(D))$, for all $T_0 \leq T$

$$\left(\rho(T_0), \varphi(T_0)\right) - \left(\rho_0, \varphi(0)\right) = \int_0^{T_0} (\rho, \varphi' + \langle u, \nabla \rangle \varphi) dt$$

(v) $\rho(0) = \rho_0$ and $u(0) = u_0$

Note. $g = 0$ gives Kazhikhov’s definition for the deterministic equations.
Theorem (NJ C & Brendan Enright, JDE 2006) Suppose that \(u_0 \in H \) and \(\rho_0 \in L^\infty(D) \) with \(0 < m \leq \rho_0(x) \leq M \), and \(f, g \) satisfy natural continuity and growth conditions. Then there is a weak solution \((\rho, u)\) to the stochastic nonhomogeneous Navier-Stokes equations with

\[
\mathbb{E} \left(\sup_{t \leq T} |u(t)|^2 + \nu \int_0^T ||u(t)||^2 \, dt \right) < \infty
\]

and for almost all \(\omega \), for all \(t \)

\[
m \leq \rho(t, x) \leq M \quad \text{for almost all} \quad x
\]
Main idea of the proof (Broadly similar to the homogeneous case.)
Main idea of the proof (Broadly similar to the homogeneous case.)

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in H_N, using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, A, (A_\tau)_{\tau \geq 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in H_N. The density will take the form $R(\tau, \omega)$ with values in $\ast C^1(D) \subset \ast L^\infty(D)$.
Main idea of the proof (Broadly similar to the homogeneous case.)

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field \(U(\tau, \omega) \) with values in \(H_N \), using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space \(\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_\tau)_{\tau \geq 0}, \Pi) \) carrying an internal Wiener process \(W(\tau, \omega) \) also with values in \(H_N \). The density will take the form \(R(\tau, \omega) \) with values in \(*C^1(D) \subset *L^\infty(D) \).

2. Prove an “energy estimate” showing that for almost all \((\tau, \omega)\) the field \(U(\tau, \omega) \) is nearstandard.
Main idea of the proof (Broadly similar to the homogeneous case.)

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in H_N, using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_\tau)_{\tau \geq 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in H_N. The density will take the form $R(\tau, \omega)$ with values in $\ast C^1(D) \subset \ast L^\infty(D)$.

2. Prove an “energy estimate” showing that for almost all (τ, ω) the field $U(\tau, \omega)$ is nearstandard.

3. Show that for almost all (τ, ω) the density $R(\tau, \omega)$ is nearstandard.
Main idea of the proof (Broadly similar to the homogeneous case.)

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in H_N, using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_\tau)_{\tau \geq 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in H_N. The density will take the form $R(\tau, \omega)$ with values in $C^1(D) \subset L^\infty(D)$.

2. Prove an “energy estimate” showing that for almost all (τ, ω) the field $U(\tau, \omega)$ is nearstandard.

3. Show that for almost all (τ, ω) the density $R(\tau, \omega)$ is nearstandard.

4. Establish appropriate S-continuity in the time variable τ.

Main idea of the proof (Broadly similar to the homogeneous case.)

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in H_N, using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_\tau)_{\tau \geq 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in H_N. The density will take the form $R(\tau, \omega)$ with values in $\ast C^1(D) \subset \ast L^{\infty}(D)$.

2. Prove an “energy estimate” showing that for almost all (τ, ω) the field $U(\tau, \omega)$ is nearstandard.

3. Show that for almost all (τ, ω) the density $R(\tau, \omega)$ is nearstandard.

4. Establish appropriate S-continuity in the time variable τ

5. Take standard parts $u(\circ \tau, \omega) = \circ U(\tau, \omega)$ and $\rho(\circ \tau, \omega) = \circ R(\tau, \omega)$
Main idea of the proof (Broadly similar to the homogeneous case.)

1. Solve a modified hyperfinite dimensional approximation of the equations with velocity field $U(\tau, \omega)$ with values in H_N, using the transfer of finite dimensional SDE theory. This will live on an internal adapted probability space $\Omega_0 = (\Omega, \mathcal{A}, (\mathcal{A}_\tau)_{\tau \geq 0}, \Pi)$ carrying an internal Wiener process $W(\tau, \omega)$ also with values in H_N. The density will take the form $R(\tau, \omega)$ with values in $\ast C^1(D) \subset \ast L^\infty(D)$.

2. Prove an “energy estimate” showing that for almost all (τ, ω) the field $U(\tau, \omega)$ is nearstandard.

3. Show that for almost all (τ, ω) the density $R(\tau, \omega)$ is nearstandard.

4. Establish appropriate S-continuity in the time variable τ.

5. Take standard parts $u(\circ \tau, \omega) = \circ U(\tau, \omega)$ and $\rho(\circ \tau, \omega) = \circ R(\tau, \omega)$.

6. Show that the pair (u, ρ) is a solution to the stochastic nonhomogeneous Navier-Stokes equations on the adapted Loeb space

$$\Omega = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$$

where $P = \Pi_L$, $\mathcal{F} = L(A)$ and $(\mathcal{F}_t)_{t \geq 0}$ is the filtration obtained from $(\mathcal{A}_\tau)_{\tau \geq 0}$.
Regularity in dimension 2

In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is more regularity to the solution, provided \(g \) has a little more regularity.
Regularity in dimension 2
In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is more regularity to the solution, provided \(g \) has a little more regularity.

Theorem
Suppose that \(d = 2 \) and the initial condition \(u_0 \in V \) and \((\rho, u)\) is the solution to the stochastic non-homogeneous Navier-Stokes equations constructed above. Suppose further that \(g : [0, t] \times V \to L(H, V) \) and \(|g(t, u)|_{H, V} \leq a(t)(1 + ||u||) \). Then almost surely:
Regularity in dimension 2
In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is more regularity to the solution, provided \(g \) has a little more regularity.

Theorem

Suppose that \(d = 2 \) and the initial condition \(u_0 \in \mathbf{V} \) and \((\rho, u)\) is the solution to the stochastic non-homogeneous Navier-Stokes equations constructed above. Suppose further that \(g : [0, t] \times \mathbf{V} \rightarrow L(\mathbf{H}, \mathbf{V}) \) and
\[
|g(t, u)|_{\mathbf{H}, \mathbf{V}} \leq a(t)(1 + ||u||).
\]
Then almost surely:

(a) \(\sup_{t \in [0, T]} ||u(t)|| + \int_T^T |Au(t)|^2 \, dt < \infty \) where \(A = -\Delta \);
Regularity in dimension 2
In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is more regularity to the solution, provided g has a little more regularity.

Theorem
Suppose that $d = 2$ and the initial condition $u_0 \in V$ and (ρ, u) is the solution to the stochastic non-homogeneous Navier-Stokes equations constructed above. Suppose further that $g : [0, t] \times V \rightarrow L(H, V)$ and $|g(t, u)|_{H,V} \leq a(t)(1 + \|u\|)$. Then almost surely:

(a) $\sup_{t \in [0, T]} \|u(t)\| + \int_0^T |Au(t)|^2 \, dt < \infty$ where $A = -\Delta$;

(b) $u(t)$ is strongly continuous in H and weakly continuous in V;
Regularity in dimension 2
In the 2D setting (i.e. a fluid moving in a bounded domain in the plane) there is
more regularity to the solution, provided g has a little more regularity.

Theorem
Suppose that $d = 2$ and the initial condition $u_0 \in V$ and (ρ, u) is the solution
to the stochastic non-homogeneous Navier-Stokes equations constructed above.
Suppose further that $g : [0, t] \times V \rightarrow L(H, V)$ and
$|g(t, u)|_{H,V} \leq a(t)(1 + ||u||)$. Then almost surely:

(a) $\sup_{t \in [0, T]} ||u(t)|| + \int_0^T |Au(t)|^2 dt < \infty$ where $A = -\Delta$;
(b) $u(t)$ is strongly continuous in H and weakly continuous in V;
(c) the equation for $u(t, \omega)$ holds for all $T_0 \leq T$.
Concluding remarks - what makes nonstandard methods useful in the study of Navier-Stokes equations?
Concluding remarks - what makes nonstandard methods useful in the study of Navier-Stokes equations?

1. No need for limiting arguments and specialized compactness theorems to get a convergent subsequence from a sequence of finite dimensional Galerkin approximations. In fact the specialized compactness theorems (and the appropriate topology) are discovered as by-products.
Concluding remarks - what makes nonstandard methods useful in the study of Navier-Stokes equations?
1. No need for limiting arguments and specialized compactness theorems to get a convergent subsequence from a sequence of finite dimensional Galerkin approximations. In fact the specialized compactness theorems (and the appropriate topology) are discovered as by-products.
2. The richness of Loeb spaces means that all activity can take place in a single underlying probability space - not only convenient but essential for formulating some ideas - eg process attractors and optimal controls in 3D.