A REMARK ON ULTRAPOWER CARDINALITY AND THE CONTINUUM PROBLEM

ALEKSANDAR PEROVIĆ

[Joint work with Aleksandar Jovanović.]

In this work we discuss the relationship between the ultrapower cardinality jumps, the two cardinal properties and the continuum problem (CP). In ZFC the equation $2^{\aleph_{\alpha}} = \aleph_{F(\alpha)}$ we prefer written as $2^{\aleph_{\alpha}} = \aleph_{\alpha+f(\alpha)}$, naming f the CP displacement (function). We say that f is bounded at α if $f(\alpha) < 2^{\aleph_{\alpha}}$, and unbounded when $f(\alpha) = F(\alpha) = 2^{\aleph_{\alpha}}$. There are all those exciting well known results on CP. Some solutions express some preferences towards smaller f (f = 1 iff GCH), avoiding wilder possibilities when f is large or unbounded somewhere (e.g. the case of RV-large cardinals). For an ultrafilter D over κ , define its cardinality trace as

$$\operatorname{ct}\left(D\right) = \{|\prod_{D}\lambda|:\lambda<\kappa\}$$

and call D jumping when $|\operatorname{ct}(D)| > 1$. For example, when D is regular, it is not jumping, when κ is measurable with $D \kappa$ -complete, $|\operatorname{ct}(D)| = 2^{\kappa}$. Magidor constructed models with nonregular jumping ultrafilters over small cardinals, which are hardest to obtain, using large cardinals.

A theory T with unary predicate U admits pair (κ, λ) if it has a model of cardinality κ in which $|U| = \lambda$. A pair (κ, λ) is a left large gap (LLG) for T if T admits (κ, λ) but does not admit the pair (κ^+, λ) . Now we can state the theorem relating the mentioned notions.

Theorem 1. Let f be the displacement function in the continuum problem, $2^{\aleph_{\alpha}} = \aleph_{\alpha+f(\alpha)}$. Let T be a theory with $(\aleph_{\xi}(\lambda), \lambda)$ as LLG for all λ . Let $\aleph_{\sigma}^{<\aleph_{\sigma}} = \aleph_{\sigma}$ and let $(\aleph_{\sigma}, \kappa)$ be a LLG for T. Let D be a uniform nonregular ultrafilter over \aleph_{σ} with jumps after κ :

$$\aleph_{\eta} = |\prod_{D} \kappa| < |\prod_{D} \aleph_{\sigma}|.$$

Then, $\eta < \sigma + f(\sigma) \leq \eta + \xi \leq \eta + \sigma$, binding CP-jump with the ultrapower cardinality jump and the diameter of the gap.

As examples, we mention some consequences.

- (1) Let *D* be a jumping ultrafilter over \aleph_{17} and $\aleph_{17}^{\langle \aleph_{17}} = \aleph_{17}$. If $|\prod_{D} \omega| \leq \aleph_{17}$,
 - then $2^{\aleph_{17}} \leq \aleph_{34}$.
- (2) If $2^{\aleph_{17}} = \aleph_{\omega+1}$, then there is no jumping ultrafilter over \aleph_{17} .

(Aleksandar Perović) FACULTY OF TRANSPORTATION AND TRAFFIC ENGINEER-ING, VOJVODE STEPE 305, 11000 BELGRADE, SERBIA.

E-mail address: pera@sf.bg.ac.yu

(Aleksandar Jovanović) FACULTY OF MATHEMATICS, STUDENTSKI TRG 16, 11000 BELGRADE, SERBIA.

E-mail address: aljosha@lycos.com