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Introduction

In this thesis, we will study a method of approximation for the solution of
an optimal transport (OT) problem.
Following [2], we will approximate the solution using an entropic constraint
and show that the solution of the regularized problem approaches the solu-
tion of the optimal transport problem in the generic form.
Some properties of the Kullback-Leibler divergence (KL) allows to prove the
existence and unicity of the solution of regularized OT problem. Moreover,
the solution is a matrix with given row and column sums, diagonally equiv-
alent to a given matrix.
Sinkhorn’s theorem gaurantees that there exists a unique matrix satisfying
these properties.
Hence, it’s possible to compute the solution of regularized OT problem
through Sinkhorn’s algorithm.
In the first chapter we will define the entropy and the Kullback-Leibler di-
vergence. An elementary lemma about KL will be proved in order to derive
Sinkhorn’s theorem.
In the second chapter we will study Sinkhorn’s algorithm, that allows com-
puting the solution of regularized OT problem.
Therefore, Hilbert’s projective metric allows to define a metric on a suitable
space of matrices. Completeness of this space and a bound given by Birkhoff-
Hopf theorem are used to prove the convergence of Sinkhorn’s algorithm.
In the third chapter we will define an optimal transport problem between
two probability vectors. First, we will restrict the problem to a set of matri-
ces with a bound on their KL divergence from a fixed matrix. Then, using
Lagrange multipliers, we will turn the problem in a form depending on reg-
ularized entropy. Hence, we will prove that the regularized formulation is
equivalent to minimize a Kullback-Leibler divergence.
Theorems proved in the previous chapters ensure the existence and unicity
of the solution. Moreover, it’s possible to compute the solution through
Sinkhorn’s algorithm. In the last section we will implement Sinkhorn’s
algorithm in MATLAB and show some results on 1-D marginals and 2-D

1



CONTENTS 2

marginals that confirm theoretical analysis.



Notation

1. Rn
+ = {x = (x1, .., xn)|xi ≥ 0 ∀i ≤ n}.

2. For x, y ∈ Rn
+ we write x ≤ y if xi ≤ yi ∀i = 1, . . . , n.

3. If x ∈ R, y ∈ Rn and y > 0, denote
x

y
=

(
x1

y1

, . . . ,
xn
yn

)
.

4. e = (1, .., 1)T ∈ Rn
+.

5. Let X ⊂ Rn
+. Let ρ defined on X such that ∀x, y ∈ X xρy ⇔ x = λy,

λ > 0. Denote P(X) = X/ρ.

6. If A,B ∈ Rd×d
+ , then < A,B >= tr(ATB) is the Frobenius dot product.

7. If x ∈ Rn, ‖x‖ is the Euclidean norm.

8. If M ∈ Rn×n, denote by exp(−λM) the element-wise exponential.
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Chapter 1

Sinkhorn’s theorem

In this chapter we will define the entropy of a probability distribution and
the Kullback-Leibler divergence (KL) of two probability distributions. We
can fit these definitions on the set U(r, c) defined in 1.1.
We will prove some properties of the entropy [3] and of the KL. Therefore,
we will prove an elementary lemma (1.11) about existence and unicity of the
minimum, satisfying a condition on its partial derivatives. Following [5], we
will use this lemma to prove a theorem (1.13) about diagonal rescaling of a
matrix with nonnegative entries. Theorem 1.13 allows to prove Sinkhorn’s
theorem.

1.1 Kullback-Leibler divergence

Definition 1.1. Let Σd := {x ∈ Rd
+ : xe = 1} . For two probability vectors

r and c in Σd we define U(r, c) := {P ∈ Rd×d
+ |Pe = r, P T e = c}.

If X and Y are two random variables taking values in {1, ..., d}, each with
distribution r and c respectively, U(r, c) contains all possible joint probability
distributions of (X,Y).

Definition 1.2. If Q is a discrete probability distribution on Ω we define
the entropy of Q as

h(Q) = −
∑
x∈Ω

Q(x) logQ(x)

Remark 1.3. If P ∈ U(r, c) and r ∈ Σd then

h(r) = −
d∑
i=1

ri log ri h(P ) = −
d∑

i,j=1

pij log pij

4



CHAPTER 1. SINKHORN’S THEOREM 5

.

Remark 1.4. p→ h(p) is concave.

Definition 1.5. If P,Q are discrete probability distributions on Ω we define
the Kullback-Leibler divergence of P,Q as

KL(P‖Q) =
∑
x∈Ω

P (x) log
P (x)

Q(x)

.

Remark 1.6. If P,Q ∈ U(r, c) then

KL(P‖Q) =
∑
i,j

pij log(
pij
qij

)

Remark 1.7. If r, c ∈ Rn
+ are two probability vectors, then

KL(r‖c) =
n∑
i=1

ri log
ri
ci

Proposition 1.8. If P,Q are discrete probability distributions then KL(P‖Q) ≥
0 with equality iff P = Q.

Proof. Using Jensen’s inequality

−KL(P‖Q) =
∑
x∈Ω

P (x) log
Q(x)

P (x)
≤ log

∑
x∈Ω

P (x)
Q(x)

P (x)
=

log
∑
x∈Ω

Q(x) = log 1 = 0

with equality iff P = Q by the strict concavity of the logarithm.

Proposition 1.9. If p, q ∈ Σd and q has uniform density then KL(p‖q) =
−h(p) + log(d). Therefore log d ≥ h(p)

Proof.

KL(p‖q) =
∑
i

pi log(
pi
qi

) = −h(p)−
∑
i

pi log qi

= −h(p) + log(d)

.

Using 1.8, log d ≥ h(p).
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Proposition 1.10. Let C be an m × n real matrix. Then Im(CT ) =
Ker(C)⊥.

Proof. For x, y ∈ Rn denote φ(x, y) the standard dot product.
Im(CT ) ⊆ Ker(C)⊥: ∀z ∈ Ker(C), ∀x ∈ Rn we have φ(CTx, z) = φ(x,Cz) =
0. Hence CTx ∈ Ker(C)⊥.
Ker(C)⊥ ⊆ Im(CT ): it’s equivalent to show that Im(CT )⊥ ⊆ Ker(C)⊥

⊥
=

Ker(C). If x ∈ Im(CT )⊥, then ∀y ∈ Rn we have 0 = φ(x,CTy) = φ(Cx, y).
Since this must be true ∀y ∈ Rn, it’s also true for y choosen in the canonic
basis of Rn. Then Cx = 0 and x ∈ Ker(C).

Theorem 1.11. Let C be an m × n real matrix. Let b lie in Rn.Assume

Cy = b for some y > 0. Assume x ∈ Rn
+, x > 0,

n∑
j=1

xj = 1. There exists a

unique u0 ∈ Rn
+ such that

KL(u0‖x) = min{KL(u‖x) : u ∈ Rn
+,
∑
uj = 1, Cu = b}.

Necessarily u0 > 0 and u0 is the unique point such that u > 0, Cu = b and

∂

∂uj
[KL(u‖x)− qTCu]|u=u0= 0 for some q ∈ Rm.

The vector q is unique apart from increments ω satysfing ωTC = 0 .

Proof. Existence For uj ≥ 0 the function uj log
uj
xj

is continuous and attains

a finite minimum value at uj = e−1xj; so the sum KL(u‖x) is continuous on
Rn

+. The set

S = {u ∈ Rn
+,
∑

j uj = 1, Cu = b}

is non-empty because y ∈ S bounded and closed in Rn
+ so KL(u‖x) attains

a finite minimum value u0 in S.
Positivity. If 0 < ε < 1 we define the positive vector u(ε) = (1 − ε)u0 + εy
and the sets of indices

J0 = {j : u0
j = 0}, J1 = {j : u0

j > 0}.

Then

d

dε
KL(u(ε)‖x) =

n∑
j=1

(yj − u0
j)(1 + log

uj(ε)

xj
)
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If J0 is not empty, as ε→ 0

d

dε
KL(u(ε)‖x) = (

∑
J0

yj) log ε+O(1)

which would tend to −∞. So for small ε, KL ◦ u is decreasing compared
to ε. So this would imply KL(u(ε)‖x) < KL(u(0)‖x) = KL(u0‖x) contra-
dicting the minimizing property of u0.
Uniqueness. Suppose u1 also minimizes KL under the constraints u ≥ 0,
Cu = b. By positivity u1 ≥ 0.For 0 ≤ θ ≤ 1 define

u(θ) = (1− θ)u0 + θu1

If u0 6= u1, then

d2

dθ2
KL(u(θ)‖x) =

n∑
j=1

(u0
j − u1

j)
2

uj(θ)
> 0

So KL◦u is strictly convex with respect to θ and KL(u0‖x) = KL(u(0)‖x) >
KL(u(1

2
)‖x) contradicting tha fact that u0 minimizes KL. Therefore, u0 =

u1 and the minimizing u is unique.
Lagrange multipliers. Since u0 > 0, if z is fixed in Rn, then u0 + εz > 0 for
all sufficiently small ε. If Cz = 0 then

d

dε
KL(u0 + εz‖x) = 0 at ε = 0,

which says that is orthogonal to the gradient ofKL at u = u0. Since this must
be true for all z in Ker(C), using Proposition 1.10, we have ∇KL(u0‖x) ∈
Im(CT ) and so there exists a vector q ∈ Rm such that

(∇KL(u0‖x))T = qTC

This satisfies Lagrange equation
∂

∂uj
[KL(u‖x)− qTCu]|u=u0= 0. The vector

q is unique apart from increments ω satisfying ωTC = 0.
Uniqueness. Suppose u1 > 0, Cu = b,u1 6= u0 and

(∇KL(u1‖x))T = qTC

By the uniqueness of the minimum, KL(u1‖x) > KL(u0‖x). The convexity
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of KL(u‖x) now implies

d

dε
KL((1− ε)u1 + εu0‖x) < 0 at ε = 0

which says
(∇KL(u‖x))T (u0 − u1) < 0 at u = u1.

Now (∇KL(u‖x))T = qTC implies

qTC(u0 − u1) < 0

which is absurd, because C(u0 − u1) = b− b = 0.

1.2 Sinkhorn’s theorem

Theorem 1.12. Let C = (cij) be a real m × n matrix. Let b ∈ Rn − {0}.
Let K = {π : Cπ = b, π ≥ 0}. Let x and y be two nonnegative vectors with
the same zero pattern (xi = 0⇔ yi = 0). If y ∈ K then there exists a unique
π in K such that

πj = xj

m∏
i=1

z
cij
i j = 1, ..., n

for some zi > 0.

Proof. If xj = 0 we set πj = 0, thus without loss of generality we may assume
that all components xj and yj are positive for j = 1, .., n.
According to Theorem 1.11 there exists a unique u0 achieving

min
u
{

n∑
j=1

uj log
uj
xj

: u ≥ 0,
1

e
Cu = b}

where u0 > 0,
1

e
Cu0 = b and

1 + log
u0
j

xj
=

m∑
i=1

qicij j = 1, .., n.

Taking exponentials, we find

πj = xj

m∏
i=1

z
cij
i j = 1, .., n

where πj = eu0
j and zi = exp(

1

e
qi).
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Theorem 1.13. Let X = (xij), Y = (yij) be two r × s matrices with non-
negative entries. Let xij = 0 ⇔ yij = 0 for any i,j. Let the row sums and
column sums of Y be positive. Then there exist u1, ..ur, v1, ..vs all positive
such that πij = (xijuivj) has the same row sums and column sums as Y.

Proof. Let es = [1, .., 1] ∈ Rs and er = [1, .., 1] ∈ Rr.Let sj be the vector
of row sums: sj = C(es)T , so sj ∈ Rr and si be the vector of row sums
si = CT (er)T , si ∈ Rs.
Let C be the matrix in Rm×n defined as

C =



es 0 . . . 0

0
. . .

...
... es 0
0 . . . 0 es

er 0 . . . 0

0 er
...

...
. . .

0 . . . 0 er


where m = r + s and n = 2rs.
The condition on the row and column sums of Y can be expressed in the

form Cy = b where y =
[
Y1 . . . Yr Y 1 . . . Y s

]T
y ∈ Rn;

b =
[
sj si

]T
and b ∈ Rm.

If z ∈ Rn it’s possible to write z =
[
z1 . . . zn

]T
where

z1 =
[
z11 . . . z1s

]
,..., zr =

[
zr1 . . . zrs

]
zr+1 =

[
z11 . . . zr1

]
,..., zn =

[
z1s . . . zrs

]
.

For any q ∈ Rm we may write

qT =
[
α1 . . . αr β1 . . . βs

]
So for all z in Rn we have

qTCz =
r∑
i=1

s∑
j=1

(αi + βj)zij

Now we consider for all z ∈ Rn

KL(z‖x) =
n∑
v=1

zv log
zv
xv

where x has the same structure as z.
According to Theorem 1.11 there exists a unique z0 in Rn such that

KL(z0‖x) = min{KL(z‖x) : z ∈ Rn, Cz = b}
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and satisfying Lagrange equation

∂

∂zj
[KL(z‖x)− qTCz] = 0 j = 1, .., n.

It’s possible to write Lagrange equation in the form

1 + log
z0
ij

xij
− (αi + βj) = 0

Taking exponentials, we find

ez0
ij = xije

αieβj

Now define
πij = ez0

ij, ui = eαi , vj = eβj

and we obtain the theorem.

Theorem 1.14. Let A = (aij) be a N × N matrix with aij > 0 ∀i, j. Let

p, q ∈ RN . There exists exactly one matrix B̂ such that the row and column
sums are respectively p and q and it can be expressed in the form B̂ = D1AD2

where D1 and D2 are diagonal matrices with positive diagonals. D1 and D2

are unique up to a scalar factor.

Proof. Let Y be a matrix with positive entries such that Y e = p, Y T e = q.By
Theorem 1.13, there exist ui, vj such that the matrix (πij) defined as

πij = aijuivj

has the same row sums and column sums as Y .
Then, setting B̂ = (πij), D1 = diag(ui), D2 = diag(vj), we get the theorem.

Definition 1.15. A doubly stochastic matrix is a square matrix A = (aij)
of nonnegative real numbers each of whose rows and column sums to 1, i.e∑

j

aij =
∑
i

aij = 1 ∀i, j

Corollary 1.16 (Sinkhorn’s theorem). To a given N ×N matrix A = (aij)
with aij > 0 ∀i, j, there corresponds exactly one doubly stochastic matrix TA
which can be expressed in the form TA = D1AD2 where D1 and D2 are diag-
onal matrices with positive diagonals. The matrices D1 and D2 are unique
up to a scalar factor.

Proof. Using the notation of the previous theorem, we can set Y = (yij) with

yij =
1

N
for all i, j.

By this choice of Y , we have that TA = (πij) is doubly stochastic.



Chapter 2

Sinkhorn’s algorithm

In this chapter we will discuss Sinkhorn’s algorithm in order to compute the
unique matrix diagonally equivalent to a given matrix with prescribed row
and column sums. The existence and unicity of such a matrix was proved in
Chapter 1. We will use Hilbert’s projective metric d (2.2) to define a metric
µ (2.6) on the set P(EA) of matrices diagonally equivalent to a given matrix.
We will show that the space

(
P(Rn

+), d
)

is complete [1].This result allows to
show the completeness of (P(EA), µ) .
We will prove Birkhoff-Hopf theorem in 2× 2 case using Sinkhorn’s theorem
and then, following [4], we will extend it to the m × n case. This theorem
gives a bound on the contraction ratio defined in 2.10.
We will use this bound and the completeness of (P(EA), µ) to prove the
convergence of Sinkhorn’s algorithm.

2.1 Hilbert’s projective metric

Definition 2.1. If x, y ∈ Rn
+ we define M(x/y) = max

i

xi
yi

and m(x/y) =

min
i

xi
yi

Definition 2.2. Hilbert’s projective metric d(, ) is defined on Rn
+ by

d(x, y) = log
M(x/y)

m(x/y)
= log max

i,j

xiyj
xjyi

Proposition 2.3.
(
Rn

+, d
)

is a pseudo-metric space and
(
P(Rn

+), d
)

is a met-
ric space.

Proof. Let x, y, z ∈ Rn
+.It’s obvious that d(x, y) = d(y, x). Since M(x/y) ≥

m(x/y) we have d(x, y) ≥ 0 and d(x, y) = 0 iff x = αy where α > 0.

11
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We have
max

xi
xj

yj
yi

max
xi
xj

zj
zi

zi
zj

yj
yi
≤ max

xizj
xjzi

max
ziyj
zjyi

.

So d(x, y) ≤ d(x, z) + d(z, y). If x, y ∈ P(Rn
+) then d(x, y) = 0 ⇔ x = y so

(P(Rn
+), d) is a metric space.

Proposition 2.4. E =
(
P(Rn

+), d
)

is complete.

Proof. If x, y ∈ Rn
+ and x 6= λy ∀λ > 0, we will show that

‖x− y‖≤ exp(d(x, y))− 1.

If x, y ∈ Rn
+ we have

m(x/y) ≤ 1 ≤M(x/y)

Therefore,

‖x− y‖ = {
∑
i

(xi − yi)2}1/2 ≤ {
∑
i

[M(x/y)−m(x/y)]2y2
i }1/2

≤M(x/y)−m(x/y) ≤ (exp(d(x, y))− 1)m(x/y)

Moreover,

M(x/y) ≤ 1 +
‖x− y‖
m(y/e)

Similarly, if ‖x− y‖≤ m(y/e)

m(x/y) ≥ 1− ‖x− y‖
m(y/e)

It follows that

‖x− y‖≤ m(y/e) tanh(
1

2
d(x, y)).

Let p : Rn
+ → P(Rn

+) be the natural projection. So if {xk} is a Cauchy
sequence in E, then {p−1(xk)} is a Cauchy sequence in {Rn

+, ‖ ‖} and hence
converges to a limit p−1(x) with d(xk, x) → 0 and so xk converges to x in
E.

Definition 2.5. Let A be a positive m × n matrix. We denote A ∼ B if
there exist X and Y diagonal matrices such that A = XBY . Denote

EA = {B : A ∼ B, bij > 0}

the set of matrices diagonally equivalent to A.
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Definition 2.6. If B,B′ ∈ EA, B = XB′Y, X = diag(xi), Y = diag(yj)
we define

µ(B,B′) = d(x, e) + d(y, e)

Remark 2.7. µ is well defined because by Sinkhorn’s theorem X and Y are
unique up to a scalar factor.

Proposition 2.8. (EA, µ) is a pseudometric space and (P(EA), µ) is a metric
space.

Proof. Let B,B′ ∈ EA, B = XB′Y with X = diag(x) and Y = diag(y).
Since d(, ) ≥ 0, µ(B,B′) = d(x, e) + d(y, e) ≥ 0. µ(B,B′) = 0 iff d(x, e) =
−d(y, e); by positivity of d we obtain d(x, e) = d(y, e) = 0 so x = λe

and y = te and B = λtB′. We also have µ(B′, B) = d(
e

x
, e) + d(

e

y
, e) =

d(x, e) + d(y, e) = µ(B,B′) .
If B′′ = X ′′BY ′′ with X ′′ = diag(x′′) and Y ′′ = diag(y′′) we have µ(B,B′) =
d(x, e) + d(y, e) ≤ d(x, x′′) + d(x′′, e) + d(y, y′′) + d(y′′, e) = µ(B,B′′) +
µ(B′′, B′).

Proposition 2.9. The space P(EA) with the metric µ is complete.

Proof. Let {Ak}k be a Cauchy sequence in P(EA). For all i, j Ai ∼ Aj.
So there exist Xi, Yj such that

A2 = X1A1Y1

A3 = X2A2Y2

...

An+1 = XnAnYn = Xn . . . X1A1Y1 . . . Yn

Let {xi} ⊂ Rn
+ be such that Xi . . . X1 = diag(xi).

Similarly, let {yi} ⊂ Rm
+ be such that Yi . . . Y1 = diag(yi).

Since Ak is a Cauchy sequence there exist N such that ∀ε > 0 ∀m,n > N

µ(Am, An) < ε

Suppose n > m, so An = Xn . . . XmAmYm . . . Yn and

µ(An, Am) = d(
xn

xm−1
, e) + d(

yn

ym−1
, e) = d(xn, xm−1) + d(yn, ym−1) < ε

Since d(, ) is a distance we have d(, ) ≥ 0 and so

d(xn, xm−1) < ε d(yn, ym−1) < ε
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Hence, {xi} and {yi} are Cauchy sequences in (P(Rm
+ ), d); since this space is

complete
xi → x yi → y

Then ∀m > N let

B = diag(
xm

x
)Am diag(

ym

y
)

We have B ∈ P(EA) and

µ(B,Am) = d(
xm

x
, e) + d(

ym

y
, e) = d(xm, x) + d(ym, y) < 2ε

So the sequence Am converges to B in P(EA) with the metric µ.

2.2 Birkhoff-Hopf theorem

Definition 2.10. Given an m× n matrix A with positive entries, we define

1. ∆(A) = sup{d(Ay,Ay′)|y, y′ ∈ Rn
+}; it measures the diameter of the

image.

2. κ(A) = sup{d(Ay,Ay′)

d(y, y′)
: y, y′ ∈ Rn

+, y
′ 6= αy} denote the contraction

ratio of A.

3. If x, y ∈ Rn, ω(x/y) = max
i

xi
yi
−min

i

xi
yi

4. N(A) = sup{ω(Ay/Ax)

ω(y/x)
, x, y ∈ Rn} is the Hopf oscillation ratio

Remark 2.11. If A and B are two m×n matrices diagonally equivalent with
positive entries, i.e., there are two diagonal matrices X and Y with positive
diagonal entries such that B = XAY , then ∆(A) = ∆(B)

Remark 2.12. Let A1 be an m×n matrix and A2 be an n×m matrix. Since
∀y, y′ ∈ Rm

+ ,

d(A1A2y, A1A2y
′) ≤ κ(A1)d(A2y, A2y

′) ≤ κ(A1)κ(A2)d(y, y′)

then
κ(A1A2) ≤ κ(A1)κ(A2)

.

Proposition 2.13. Let A be an m× n matrix. Then ∆(A) = ∆(AT ).
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Proof. Let y, y′ ∈ Rn
+. If ej are standard basis vector of Rn then y =

n∑
s=1

λses;

y′ =
n∑
t=1

µtet.

∆(A) = max
y,y′∈Rn+

log max
i,j

(Ay)i(Ay
′)j

(Ay)j(Ay′)i

= log max
i,j,k,l

(Aλkek)i(Aµlel)j
(Aλkek)j(Aµlel)i

= log max
i,j,k,l

(Aek)i(Ael)j
(Aek)j(Ael)i

= log max
i,j,k,l

aikajl
ajkail

.

Using this equality, ∆(A) = ∆(AT ).

Theorem 2.14. Given a matrix A =

[
a b
c d

]
with positive entries and det(A) 6=

0, there exists a matrix A′ =

[
α 1
1 α

]
where α > 1 with κ(A) = κ(A′),

∆(A) = ∆(A′) and N(A) = N(A′).

Proof. According to Sinkhorn’s theorem there exist diagonal matrices D1 and
D2 with positive diagonal elements such that D1AD2 is doubly stochastic so

D1AD2 =

[
β 1− β

1− β β

]
Now, if det(A) > 0 let P be the identity matrix and if det(A) < 0 let P be
the permutation matrix [

0 1
1 0

]
(det(A) 6= 0) by hypothesis, so

PD1AD2 =

[
γ 1− γ

1− γ γ

]
where γ > 1/2. Finally, let D be 1/1− γ times the identity matrix, so

A′ = PD1AD2D =

[
α 1
1 α

]
Using Remark 2.11 and the fact that P and D are bijections in R2 we have
N(A) = N(A′), ∆(A) = ∆(A′) and so κ(A) = κ(A′)
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Proposition 2.15. Let A be the matrix

A =

[
α 1
1 α

]
where α > 1. Then ∆(A) = d(Ae1, Ae2) where e1 and e2 are the standard
basis vectors of R2.

Proof. Assume v = e1 + se2, v′ = te1 + e2 where s, t ≥ 0 and d(Av,Av′) =
∆(A). We want to show s = t = 0.
Therefore,

Av =

[
α + s
1 + αs

]
Av′ =

[
αt+ 1
t+ α

]
Assume without loss of generality

α + s

αt+ 1
>

1 + αs

t+ α

Define

f(s, t) =
α + s

1 + sα

t+ α

αt+ 1

Since α > 1,
α + s

1 + sα
≤ α

t+ α

αt+ 1
≤ α.

Hence, f(s, t) ≤ α2 and then s = t = 0.

Proposition 2.16. Let A be the matrix

A =

[
α 1
1 α

]
where α > 1. Then N(A) = κ(A) = tanh

1

4
∆(A) =

exp(∆(A)/2)− 1

exp(∆(A)/2) + 1

Proof. By the definition

N(A) = sup
x,y∈R2

w(Ax/Ay)

w(x/y)

We can consider x = (1, s) and y = (1, t) for non-negative s,t. For ω(x/y) to
exist and be non zero we must have s, t > 0 and s 6= t.
Using the definition of ω we have

N(A) = sup
s,t

∣∣∣∣α + s

α + t
− 1 + αs

1 + αt

∣∣∣∣∣∣∣1− s

t

∣∣∣
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= sup
s,t

(α2 − 1)t

(α + t)(αt+ 1)

= sup
t
φ(t)

where

φ(t) =
(α2 − 1)t

(α + t)(αt+ 1)

φ is non-negative, its only stationary point is at 1 and its limits at 0 and ∞
are both 0; it follows that its supremum is attained at 1 and is equal to

φ(1) =
α2 − 1

(α + 1)2
=
α− 1

α + 1

A similar approach for κ(A) gives

κ(A) = sup
s,t

∣∣∣∣∣∣∣∣
log

(α + s)(1 + αt)

(α + t)(1 + αs)

log
s

t

∣∣∣∣∣∣∣∣
= sup

s,t
|ψ(s, t)|

where

ψ(s, t) =

log
(α + s)(1 + αt)

(α + t)(1 + αs)

log
s

t

We can write

ψ(s, t) =
f(s)− f(t)

log s− log t

where

f(t) = log
α + t

1 + αt

Using mean value theorem, we have that for 0 < s < t there exists τ with
s ≤ τ ≤ t

ψ(s, t) =
f(s)− f(t)

log s− log t

= f ′(τ)τ

=
(1− α2)τ

(α + τ)(1 + ατ)
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= −φ(t).

From this we obtain sup |ψ| ≤ supφ. To show the opposite inequality, fix
t > 0 and choose an arbitrary positive ε. Using mean value theorem, −ψ(t−
ε, t + ε) = φ(τ) with τ ∈ [t − ε, t + ε]. By the continuity of φ we have that
|ψ| attains values arbitrarily close to φ(t) for any given t.
Hence, we have

N(A) = κ(A) =
α− 1

α + 1

Let e1 and e2 be the standard basis vectors for R2. By Proposition 2.15

∆(A) = d(Ae1, Ae2)

Since Ae1 = (α, 1) and Ae2 = (1, α), we have d(Ae1, Ae2) = logα2 = 2 logα.
Now α = exp(∆(A)/2) and

N(A) = κ(A) =
α− 1

α + 1
=

exp(∆(A)/2)− 1

exp(∆(A)/2) + 1
= tanh

1

4
∆(A)

Corollary 2.17. If A ∈ R2×2
+ with positive entries and det(A) 6= 0 then

κ(A) = N(A) = tanh
1

4
∆(A) =

exp(∆(A)/2)− 1

exp(∆(A)/2) + 1

Proof. Using the previous theorems, there exists a matrixA′ such that κ(A) =
κ(A′), N(A) = N(A′), ∆(A) = ∆(A′) and

κ(A′) = N(A′) =
exp(∆(A′)/2)− 1

exp(∆(A′)/2) + 1
= tanh

1

4
∆(A′)

We now extend the previous result to a generic m×n matrix with positive
entries:

Theorem 2.18 (Birkhoff-Hopf). Let A ∈ Rm×n
+ with positive entries. Then

κ(A) = N(A) =
exp(∆(A)/2)− 1

exp(∆(A)/2) + 1
= tanh

1

4
∆(A)

Proof. If x, y ∈ Rn
+ define V (x, y) = {αx+ βy;α, β ∈ R}

Now define the functions k,N and ∆ on Rn
+ by

κ(x, y) = sup{d(Av,Aw)

d(v, w)
|v, w ∈ V (x, y)}
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N(x, y) = sup{ω(Av,Aw)

ω(v, w)
|v, w ∈ V (x, y)}

∆(x, y) = sup{d(Av,Aw)|v, w ∈ V (x, y)}

Since we proved the theorem in dimension 2 we have

κ(x, y) = N(x, y) = tanh
1

4
∆(x, y) =

exp(∆(x, y)/2)− 1

exp(∆(x, y)/2) + 1

By the definitions it follows that

κ(A) = sup{κ(x, y)|x, y ∈ Rn
+}

N(A) = sup{N(x, y)|x, y ∈ Rn
+}

∆(A) = sup{∆(x, y)|x, y ∈ Rn
+}

Now
κ(A) = sup{κ(x, y)|x, y ∈ Rn

+}

= sup{N(x, y)|x, y ∈ Rn
+}

= N(A)

= sup{tanh
1

4
∆(x, y)|x, y ∈ Rn

+}

= tanh(sup{1

4
∆(x, y)|x, y ∈ Rn

+})

= tanh
1

4
∆(A)

Remark 2.19. κ(A) < 1. Using 2.13 κ(A) = κ(AT ).

2.3 Sinkhorn’s Algorithm

The aim of Sinkhorn’s iterative algorithm is to find a positive matrix B̂ of
the form D1AD2 which has prescribed row and column sums. The existence
of the matrix B̂ was proved in the first chapter.
Suppose A = (aij) is a positive m× n matrix and p ∈ Rm, q ∈ Rn with

p1 + ...+ pm = q1 + ...+ qn.
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Starting with A0 = A it’s possible to define the sequences Ak, A
′
k of column

and row normalized matrices by the following algorithm.
If r(k) = Ake is the vector of row sums, define

A′k = SkAk, Sk = diag(
pi

r
(k)
i

)

If c(k) = A′Tk e is the vector of column sums, then

Ak+1 = A′kTk, Tk = diag(
qj

c
(k)
j

)

Definition 2.20. We say that A is row normalized by p if Ae = p. We say
that A is column normalized if by q is AT e = q.

Theorem 2.21. If B ∈ P(EA) is row normalized, then f(B) = S0BT0 is a
contraction.

Proof. Let B,B′ ∈ P(EA) be row normalized.
We want to show that

µ(f(B), f(B′)) ≤ k(µ(B,B′)) k < 1

There exist diagonal matrices X = diag(x), Y = diag(y) such that

B′ = XBY

and µ(B,B′) = d(x, e)+d(y, e). Now f(B′) = S ′0XBY T
′
0 andB = S−1

0 f(B)T−1
0

implies
f(B′) = S ′0XS

−1
0 f(B)T−1

0 Y T ′0

So

µ(f(B), f(B′)) = d(
s′0
s0

x, e) + d(
t′0
t0
y, e)

where S0 = diag(s0); S ′0 = diag(s′0); T0 = diag(t0) and T ′0 = diag(t′0).
Now,

B′
e

y
= diag(x)B diag(y)

e

y
= diag(x)Be = Bex

Hence,

d(
s′0
s0

x, e) = d(
r′0
r0

x, e) = d(Bex,B′e)

= d(B′
e

y
, B′e)

≤ κ(B′)d(
e

y
, e) = κ(B′)d(y, e)
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Now we want to show d(
t′0
t0
y, e) ≤ κ(B′)d(x, e).

We have

B′T
e

x
= diag(y)BT diag(x)

e

x
= diag(y)BT e = BT ey

Therefore,

d(
t′0
t0
y, e) = d((S0B)T ey, (S ′0B

′)T e) =

d(BTS0ey, B
′TS ′0e)

= d(BT ey, B′T e)

= d(B′T
e

x
,B′T e)

≤ κ(B′)d(x, e)

since S0e = S ′0e = e and κ(B′T ) = κ(B′).

Remark 2.22. It’s not known if f is a contraction on P(EA).

2.3.1 Convergence

We will use Hilbert projective metric and µ defined in the previous sections
to show the convergence.

Theorem 2.23. Let A = A0 be column normalized. Then

d(r(1), p) ≤ γd(r(0), p)

d(c(1), q) ≤ γd(c(0), q)

where γ = κ(A)2, r(k) = Ake, c
(k) = A′Tk e and Ak, A

′
k are the matrices defined

by Sinkhorn’s algorithm.

Proof. Let A′ = A′0. Since r(1) = A1e = A′T0e = A′
q

c(0)
and A′e = p we have

d(r(1), p) = d(A′
q

c(0)
, A′e)

≤ κ(A)d(
q

c(0)
, e)

= κ(A)d(q, c(0))
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since κ(A) does not change during the iteration.
Now

c(0) = A′T e = ATS0e = AT
p

r(0)

and AT e = q imply

d(q, c(0)) = d(AT e, AT
p

r(0)
) ≤ κ(AT )d(r(0), p).

Since κ(A) = κ(AT ) we obtain d(r(1), p) ≤ γd(r(0), p).
The estimate for the column sums follows similarly.

Remark 2.24. By construction, all matrices Ak in Sinkhorn’s iteration are
column normalized. Hence repeated applications of the previous theorem
yield

d(r(k), p) ≤ γkd(r(0), p)

d(c(k), q) ≤ γkd(c(0), q)

Proposition 2.25. The sequence {Ak} generated by Sinkhorn’s algorithm

converges in (P(EA), µ) to the unique matrix B̂ such that B̂e = p, B̂T e = q

and B̂ ∼ A0.

Proof. We first show that Ak is a Cauchy sequence.
Following the previous theorem,

µ(Ak, Ak+1) = d(
p

r(k)
, e) + d(

q

c(k)
, e) =

= d(r(k), p) + d(c(k), q)

≤ γk{d(r(0), p) + d(c(0), q)}

.

Suppose m,n > N and m > n, by triangle inequality

µ(An, Am) ≤ (γn + · · ·+ γm−1){d(r(0), p) + d(c(0), q)}

= γn(1 + · · ·+ γm−n−1){d(r(0), p) + d(c(0), q)}

= γn
1− γm−n

1− γ
{d(r(0), p) + d(c(0), q)}

≤ γn

1− γ
{d(r(0), p) + d(c(0), q)}
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Since γ = κ(A)2 < 1, the last term tends to zero as n approaches ∞.
So there exists the limit C ∈ P(EA) of the sequence Ak; we want to show

that C = B̂.
For k large enough, ∀ε > 0

µ(Ak, C) = d(x, e) + d(y, e) < ε,

where C = diag(x)Ak diag(y). So C has column sums q.

Recall A′k = SkAk where Sk = diag(
p

r(k)
).

So
µ(Ak, A

′
k) = d(e, e) + d(t(k), e) = d(q, c(k)) ≤ γkd(c(0), q)

Now, by the triangle inequality

µ(A′k, C) ≤ µ(A′k, Ak) + µ(Ak, C)

and the last term tends to zero as k approaches ∞. Then, C has row sums
p. So C is diagonally equivalent to A0 = A and has row sums p and column
sums q.By unicity proved in Sinkhorn’s theorem, B̂ = C.

Corollary 2.26 (Error bounds). Using the notation of Proposition 2.25

µ(Ak, B̂) ≤ γk

1− γ
{d(r(0), p) + d(c(0), q)}

Proof. If m > k we already proved that

µ(Ak, Am) ≤ γk

1− γ
{d(r(0), p) + d(c(0), q)}.

If k is fixed and m→∞ then Am → B̂ and

µ(Ak, B̂) ≤ γk

1− γ
{d(r(0), p) + d(c(0), q)}

Proposition 2.27 (Error bounds). If A ∼ B, AT e = BT e and µ(A,B) ≤ ε,
then

exp(−ε) ≤ bij
aij
≤ exp(ε)

for all i, j.



CHAPTER 2. SINKHORN’S ALGORITHM 24

Proof. There exist diagonal matrices with positive entries X = diag(x), Y =
diag(y) such that B = XAY and d(x, e) ≤ ε and d(y, e) ≤ ε.

If x′ =
1

xk
x where xk = min{xi} then

1 ≤ x′i ≤ exp(ε) i = 1, .., n.

Without loss of generality we may assume x = x′. From Y AT = BTX−1 and
AT e = q = BT e it follows that

Y q = Y AT e = BTX−1e.

So
exp(−ε) ≤ X−1e ≤ e

and multiplying by BT ,

exp(−ε)q ≤ BTX−1e ≤ q

Now
exp(−ε) ≤ yj ≤ 1 j = 1, . . . , n.

Finally

exp(−ε) ≤ xiyj =
bij
aij
≤ exp(ε)



Chapter 3

Optimal transport problem

In this chapter we will define an optimal transport problem (3.1) between
two probability vectors. It is a known fact that the solution of this problem
lies on a vertex of the polyhedral set U(r, c) defined in 1.1; our aim is to
approximate the solution.
Following [2], we will introduce a convex subset Uα(r, c) of U(r, c), using a
constraint on the Kullback-Leibler divergence. Hence, it’s possible to define
the optimal transport problem on the set Uα. For α large enough, Uα(r, c) =
U(r, c) and the two formulations are equivalent.
Lagrange multipliers’ theory allows to turn the problem defined on Uα(r, c) in
the form of the definition 3.6. Proposition 3.10 shows that this formulation
is equivalent to minimize a Kullback-Leibler divergence on U(r, c).
Therefore, the existence and uniqueness of the solution to the problem defined
in 3.6 is ensured by theorem 1.11. According to the condition on the partial
derivatives of theorem 1.11, the solution of 3.6 is diagonally equivalent to a
given matrix.
Moreover, by Sinkhorn’s theorem, there exists a unique matrix of that form,
with row sums r and column sums c.
Therefore, it is possible to compute the solution of the problem defined in 3.6
using Sinkhorn’s algorithm. In the last section we will show some numerical
experiments.

3.1 Entropic constraint

Definition 3.1 (OT problem). Let U(r, c) be the set defined in 1.1. Given
a d× d cost matrix M , the problem

dM(r, c) := min
P∈U(r,c)

< P,M >

25
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is called an optimal transport problem between r and c with given cost M .

Proposition 3.2. The set Uα(r, c) := {P ∈ U(r, c)|KL(P‖rcT ) ≤ α} =
{P ∈ U(r, c)|h(P ) ≥ h(r) + h(c)− α} ⊂ U(r, c) is convex.

Proof. The two definitions are equivalent because KL(P‖rcT ) = h(r)+h(c)−
h(P ). If P,Q lie in Uα(r, c) then ∀t ∈ [0, 1] h((1− t)P + tQ) ≥ (1− t)h(P ) +
th(Q) ≥ (1− t)(h(r) + h(c)− α) + t(h(r) + h(c)− α) = h(r) + h(c)− α. So
(1− t)P + tQ ∈ Uα(r, c). We used the concavity of the entropy (Remark 1.4)
in the first inequality.

Remark 3.3. rcT is the joint density in the case r and c are independent.

Definition 3.4 (OT with entropic constraint).

dM,α(r, c) := min
P∈Uα(r,c)

< P,M >

Remark 3.5. Since for any P ∈ U(r, c) h(P ) is lower bounded by
1

2
(h(r) +

h(c)), we have that for α large enough Uα(r, c) = U(r, c) and so dM,α(r, c) =
dM(r, c).

Definition 3.6 (dual-Sinkhorn divergence). For λ > 0,

dλM(r, c) := min
P∈U(r,c)

< P,M > −1

λ
h(P )

Remark 3.7. Equivalence between 3.6 and 3.4 is a consequence of the follow-
ing proposition.

Proposition 3.8. Let G(P ) =< P,M >, let F : Rn → R be a smooth and
strictly convex function. If there exists a unique minimum P ? for G such
that F (P ?) = α where α > 0, then there exists a µ < 0 such that (P ?, µ) is
a minimum for

Λ(P, µ) = G(P ) + µF (P )

Proof. Using Lagrange multipliers, there exists a µ? such that (P ?, µ?) is a
stationary point for

Λ(P, µ) = G(P ) + µF (P )

It’s known that ∇G must be proportional to ∇F in the point P ?. So

∇G(P ?) = µ?∇F (P ?)

Suppose µ? ≥ 0, so there exists a T minimizing G with F (T ) < α, this is
absurd because by hypothesis the minimum must achieve F (T ) = α.
Using the convexity of F , (P ?, µ?) is a minimum for Λ.
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Proposition 3.9. For every α ∈ [0,∞] there exists a λ > 0 such that
dM,α(r, c) = dλM(r, c)

Proof. Fix α > 0.
If Pα is the matrix such that < Pα,M >= dM,α(r, c), so Pα ∈ ∂Uα(r, c).
Hence, Pα satisfies KL(Pα‖rcT ) = α which is equivalent to

h(Pα) + α− h(r)− h(c) = 0

By the previous theorem, there exists a µ < 0 such that (Pα, µ) is a minimum
for

Λ(P, µ) =< P,M > +µKL(Pα‖rcT )

So (Pα, µ) is a minimum for

Λ′(P, µ) =< P,M > +µh(P )

Setting µ = −1

λ
where λ > 0 we get the proposition.

Proposition 3.10. dλM(r, c) = min
P∈U(r,c)

KL(P‖exp(−λM))

λ

Proof.

KL(P‖exp(−λM)) =
∑
i,j

pij log
pij

exp(−λmij)

=
∑
i,j

pij log pij + λ
∑
i,j

pijmij

= −h(P ) + λ < P,M >

Theorem 3.11. For λ > 0 the solution P λ = (pλij) of the problem defined in
3.6 is unique and has the form P λ = diag(u)K diag(v) where u, v ∈ Rd

+ are
uniquely defined up to a multiplicative factor and K = e−λM is the element-
wise exponential of −λM .

Proof. The existence and uniqueness of the solution P λ is ensured by Propo-
sition 3.10 and Theorem 1.11.
By the condition on partial derivatives in theorem 1.11, there exist α, β ∈ Rd

+

such that
δ

δpij

[
KL(P‖e−λM)− αTPe− βTP T e

]
P=Pλ

= 0
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that is equivalent to

log pλij + 1 + λmij − αj − βi = 0

which leads to
pλij = e−1/2+αje−λmijeβi−1/2.

Therefore, P λ is diagonally equivalent to K and has row sums r and column
sums c.
Since K has strictly positive entries, Sinkhorn’s theorem states that there
exists a unique matrix diagonally equivalent to K that belongs to U(r, c).
P λ is necessarily that matrix.

3.2 Numerical experiments

3.2.1 1-D marginals

It is possible to implement Sinkhorn’s algorithm in Matlab to find the solution
P λ of 3.6. Algorithm 1 computes Hilbert’s projective metric between two
given vectors in Rn

+.

Algorithm 1.
1 func t i on d= d i s t anc e (w, v )
2 s=v (1) /w(1) ;
3 t=v (1) /w(1) ;
4 f o r i =2: l ength ( v )
5 i f ( v ( i ) /w( i )>s )
6 s=v ( i ) /w( i ) ;
7 end
8 end
9 f o r i =2: l ength ( v )

10 i f ( v ( i ) /w( i )<t )
11 t=v ( i ) /w( i ) ;
12 end
13 end
14 d=log ( s / t ) ;
15 end
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Given a matrix cost M and marginals r and c, Algorithm 2 computes
the unique matrix P which has row sums r and column sums c. We will use
Hilbert’s projective metric computed in Algorithm 1 as a stopping criterion.
We say that Sinkhorn’s algorithm converges to P at k − th iteration if the
sum of the distance between the row sums and r and column sums and c is
less then 10−5.

Algorithm 2.
1 func t i on [P, k , d]= s ink (M, r , c , l )
2 [ n ,m]= s i z e (M) ;
3 e=ones (n , 1 ) ;
4 e1=ones (m, 1 ) ;
5 P=M;
6 d=1;
7 k=1;
8 whi l e (d>10ˆ−5 && k<l )
9 j=P*e1 ;

10 A1=diag ( r . / j )*P;
11 g=A1'*e ;
12 P=A1*diag ( c . / g ) ;
13 d=d i s t anc e ( j , r )+d i s t anc e ( g , c ) ;
14 k=k+1;
15 end
16 end

Given variance σ2, mean m and a uniform grid of an interval a, Algo-
rithm 3 computes a discretized Gaussian distribution on a.

Algorithm 3.
1 func t i on q=gaussd (a , sigma ,m)
2 q=ones ( l ength ( a ) ,1 ) ;
3 f o r j =1: l ength ( a )
4 q ( j , 1 )=exp(−(a ( j )−m) ˆ2/(2* sigma ˆ2) ) ;
5 end
6 q=(1/sum( q ) )*q ;
7 end



CHAPTER 3. OPTIMAL TRANSPORT PROBLEM 30

Figure 3.1: Marginals p (blue) and q (red)

Marginals p and q in Figure 3.1 are Gaussian distributions with variance
4, and mean respectively m1 = −2 and m2 = 2; discretized on a uniform grid
(xi)

100
i=1 of 100 points of [−10, 10]. Using the cost matrix Mi,j = |xi−xj|2 and

K = e−λM elementwise with λ = 5, Figure 3.2 (a) shows the convergence of
Sinkhorn’s algorithm from p to q and Figure 3.2 (b) shows the structure of
the transport matrix, that is similiar to a translation.

(a) k=number of iterations
d=distance(j,p)+distance(k,q)

(b) Transport matrix P obtained with
Sinkhorn’s algorithm

Figure 3.2: Convergence of Sinkhorn’s algorithm for a fixed λ
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Figure 3.3 and Figure 3.4 show the convergence of the algorithm for dif-
ferent values of λ.

Figure 3.3: k=number of itera-
tions of Sinkhorn’s algorithm; λ is
the parameter used computing K =
e−λM

Figure 3.4: For encreasing values
of λ, dλM approaches |m1 −m2|2

Let SkATk be the k-th iteration of Sinkhorn’s algorithm starting from
the matrix A. Let p be the normalized row sum and q be the normalized
column sum. If {qk} is the sequence of column sums of Sk+1SkATk, then by
Sinkhorn’s theorem Sk+1SkATk is the unique matrix diagonally equivalent to
A with row sum p and column sum qk. The sequence {qk} converges to q.
Therefore, stopping the algorithm at the i-th iteration and normalizing the
rows we get a transport matrix between p and qk. This gives an idea of the
convergence from p to q. The computation is performed with cost matrix
Mi,j = |xi − xj|2 and K = e−5M elementwise.

Algorithm 4.
1 func t i on Y=succ (K, p , q , n )
2 P=s ink (K, p , q , n ) ;
3 [ a , b]= s i z e (P) ;
4 e=ones (b , 1 ) ;
5 r=P*e ;
6 Y=diag (p . / r )*P;
7 end
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Figure 3.5: Input marginals p (blue) and q (red) are gaussian distributions
with the same variance. In yellow the distribution of Y e for n = 7. In violet
the distribution of Y e for n = 15.

Figure 3.5 shows the distribution of Y e where Y is computed using Al-
gorithm 4 for different values of n. We get similiar results if the input
marginals p and q have different variances.

Figure 3.6: Marginals p (blue) and
q (red) with different variances

Figure 3.7: In yellow the distribu-
tion of Y e for n = 2, in violet the
distribution of Y e for n = 4.
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Fix 0 ≤ t ≤ 1. Given the transport matrix P obtained with Sinkhorn’s
algorithm, we can know where the point (1− t)i+ tj is sent by the matrix P .
If t = 1 we get the marginal q = P ′e, if t = 0 we get the marginal p = Pe.

Algorithm 5.
1 func t i on r=i n t e r (P, t )
2 [ n ,m]= s i z e (P) ;
3 r=ze ro s (n , 1 ) ;
4 f o r i =1: s i z e (P)
5 f o r j =1: s i z e (P)
6 k=f l o o r ((1− t )* i+t* j ) ;
7 r (k , 1 )=r (k , 1 )+P( i , j ) ;
8 end
9 end

10 end

Figure 3.8: Input marignals p (blue) and q (red), in yellow interpolation
with t = 1/2
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3.2.2 2-D marginals

Let (xi)
1600
i=1 be a uniform grid of 40 × 40 points in [−1, 1]2. If the input

marginal s is a uniform density distribution on the discretized ball centered
in (0, 0) of [−1, 1]2 and r is the uniform density on the discretized boundary
of the square, Figure 3.9 shows the convergence of Sinkhorn’s algorithm with
input bidimensional marginals s and r. The computation is performed with
cost matrix Mij = ‖xi − xj‖2 and K = e−10M elementwise. Subfigures from
(b) to (e) show the distribution of Y e where Y is computed using Algorithm
4 for different values of n.

(a) Uniform density on the discretized
ball

(b) n = 1

(c) n = 2 (d) n = 5

(e) n = 10
(f) Uniform density on the discretized
boundary of the square

Figure 3.9: Sinkhorn’s algorithm with input marginals (a) and (f)
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Let (xi)
1600
i=1 be a grid of 40× 40 points in [−1, 1]2. Let Mij = ‖xi − xj‖2

and K = e−10M elementwise. Let s be the uniform density on a ball centered
in (0, 0). Let r be the uniform density on two balls centered in (-1,0) and
in (1,0). The following figure shows the convergence of Sinkhorn’s algorithm
from s to r. Subfigures from (b) to (e) show the distribution of Y e where Y
is computed using Algorithm 4 with different values of n.

(a) Uniform density on the discretized
ball

(b) n = 1

(c) n = 2 (d) n = 4

(e) n = 6
(f) Uniform density on two balls cen-
tered in (-1,0) and (1,0)

Figure 3.10: Sinkhorn’s algorithm with input marginals (a) and (f)
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The following algorithm is a variation of Algorithm 3 for the 2-D case.

Algorithm 6.
1 func t i on r=i n t e r 2 (P, t , n )
2 r=ze ro s (n , n) ;
3 f o r i =1:(nˆ2−1)
4 x1=f l o o r ( i /n) ;
5 y1=i−n*x1 ;
6 f o r j =1:(nˆ2−1)
7 x2=f l o o r ( j /n) ;
8 y2=j−n*x2 ;
9 w=f l o o r ((1− t )*x1+t*x2 ) ;

10 k=f l o o r ((1− t )*y1+t*y2 ) ;
11 walt=c e i l ((1− t )*x1+t*x2 ) ;
12 k a l t=c e i l ((1− t )*y1+t*y2 ) ;
13 r ( k+1,w+1)=r ( k+1,w+1)+P( i , j ) /2 ;
14 r ( k a l t +1, walt+1)=r ( k a l t +1, walt+1)+P( i , j ) /2 ;
15 end
16 end
17 end

Let P be the transport matrix between (a) and (f) in Figure 3.10. Figure
3.11 shows the results of Algorithm 6 for two values of t and n = 40.

(a) t =
1

2
(b) t =

3

4

Figure 3.11: Interpolation between uniform density on a ball centered in
(0, 0) and uniform density on two balls centered in (−1, 0) and (1, 0).
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(a) Marginal s (b) Marginal r

Figure 3.12: Marginals s and r are uniform density on a rectangle in the
discretized square [−1, 1]2

If P is the matrix obtained with Sinkhorn’s algorithm with marginals
input s and r in Figure 3.12 , Figure 3.13 shows the results of Algorithm
6 for two values of t.

(a) t =
1

2
(b) t =

3

4

Figure 3.13: Interpolation between marginals s and r in Figure 3.12 for two
values of t.
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affrontate con lucidità e freddezza.
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tempo e più sono sicuro di poter contare su di te. A Peppe, alla sua risata
contagiosa, ai suoi scherzi infami e al suo saper ascoltare quando serve. Or-
goglioso di questi anni fianco a fianco.
Alla mia famiglia pisana, a Mattia Gavini con cui ho condiviso tantissimo,
a partire da serate a Vettovaglie fino addirittura a una mail (Cari Vitto-
rio e Mattia...) con i risultati di un esame, passata alla storia. Grasie a
Mattia Cimorelli e alla tassa quotidiana pagata sui caffè; grazie per tutte
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può fare freddo anche in un giorno di Agosto. Siamo stati capaci di creare
un rapporto unico. Grazie per questi anni, Chiara. Grazie a Bargagnati e

39



BIBLIOGRAPHY 40

alla sua inconfondibile voce tenue. Ad Alfonso, Alessandro, Max, Sciabolata
e tutti gli altri della squadra di cui sono orgogliosamente il capitano da tre
anni(qualcuno dice anche presidente). Siamo scarsi ma comunque belli veri
speciali. Al club di scommettitori anonimi dell’aula 4, all’aula studenti e a
tutte le persone con cui ho condiviso qualcosa in questi anni. Ai posti in cui
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