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Introduction

Γ-convergence is a notion of convergence for functionals introduced by Ennio de
Giorgi. The theory of Γ-convergence is commonly recognized as a flexible tool for
the description of the asymptotic behaviour of minimum problems in Calculus of
Variations. Its strength is its adaptability, due to its being linked to no a priori
assumption about the form of minimizers: the latter being in a sense automatically
described by a process of optimization.

On the other hand the theory of Large Deviations concerns the asymptotic
behaviour of remote tails of sequences of probability measures. Large Deviations
theory formalizes the heuristic ideas of concentration of measures and makes more
general statements about the notion of convergence of probability measures. Prin-
ciples of Large Deviations may be applied to collect information of a probabilistic
model, consequently they find their applications in information theory and mathe-
matical physics. In physics, the best known application of large deviations theory
emerges in thermodynamics and statistical mechanics (in connection with relating
entropy with rate function).

In this work we will show how it is possible to find a rigorous connection
between the two theories of Γ-convergence and Large Deviations. The main results
will be presented, showing an application at the end. The thesis is widely based on
the paper of Mauro Mariani (see [6]) A Γ-convergence approach to large deviations.

In the first chapter we explain the general setting and prove some basic state-
ments that link the property of tightness of a sequence of probability measures
with the equicoercivity of an associated family of Relative Entropy functionals.
Moreover we find a connection between weak convergence in the space of proba-
bility measures and the Γ-lim of the entropy functionals.

In the second chapter we introduce the concept of Large Deviations, by proving
a Large Deviations version of the previous statements: the tightness is replaced by
exponential tightness, the functionals are weighted with an appropriate sequence
of real numbers (the inverse of speed) and finally weak convergence is replaced by
Large Deviations bounds.

The third chapter is dedicated to present a simple application of the conclusions
showed in chapter 2, proving classical results of Large Deviations theory.

Notation
In propositions and theorems of the following chapters the statements concerning
Large Deviations bounds, that express the probabilistic side of the medal, will
be usually labeled by (P) or (P1), (P2); whereas the statements concerning Γ-
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convergence and in particular concerning convergence of an entropy functionals
sequence (Hn)n , will be labeled with (H) or (H1), (H2). This kind of notation
will be useful to quickly understand from an heuristic point of view the direction
of the implications that we will prove.

Topological and set theory-notation
• Let X be a topological space and let A be a subset of X. Å is the interior of
A. A denotes the closure of A with respect to the topology ofX. ∂A := A\Å.

• Let (X, d) be a metric space. Let r be a real positive number. Fixed x ∈ X
the symbol Br(x) denotes the ball centered in x with radius r i.e. the set of
all y ∈ X s.t. d(x, y) < r.

• Let (X, d) be a metric space and let A be a subset of X:

diam(A) = sup{d(x, y) | (x, y) ∈ A× A}

• R+
0 are non-negative real numbers.

• R+ are positive real numbers.

• R := R ∪ {+∞,−∞} .

• N+ are positive natural numbers.

Probabilistic and analytical notation
• The notation (an)n denotes a sequence, indexed on positive natural numbers.

• Given a real valued sequence (an)n we denote

lim
n
an := lim inf

n→+∞
an and lim

n
an := lim sup

n→+∞
an.

Moreover, given a space X with a notion of convergence, and given a se-
quence (xn)n with elements in X, we denote

lim
n
xn = lim

n→+∞
xn.

• Let (X, d) be a metric space. P(X) denotes the space of (posive) Borel
probability measures.

• Let (X, d) be a metric space, ν ∈ P(X) and let f : X → R be a ν-Borel-
measurable function. We denote

ν(f) :=
∫
X
f(x)dν(x) =

∫
X
fdν

• Let (X, d) be a metric space and let (En)n be a sequence of subsets of X.
We denote σ((En)n) the σ-algebra generated by (En)n.
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• Let X be a topological space. We denote B(X) the Borel σ-algebra on X.

• Let X be a set and A a subset of X. We denote χA : X → R the indicator
function

χA(x) =

 1 if x ∈ A
0 otherwise

• We write f ∈ Cb(X) if f : X → R is continuous and uniformly bounded.

• Let X be a metric space. ∀µ ∈ P(X) ∀A ∈ B(X) : µ(A) > 0 we denote
µA(·) = µ(·|A). For every x ∈ X, we define the Dirac measure as δx ∈ P(X)
where for any A Borel set

δx(A) =

0, x 6∈ A;
1, x ∈ A.

v



vi



Chapter 1

Preliminaries

In this chapter we are going to introduce the general setting used in the work,
main definitions and the first results. In all the thesis (X, d) will be a separable
and complete metric space. In particular we will show a first connection between
tightness of a sequence of measures in P(X) and equicoercivity of entropy func-
tionals, whereupon we are going to prove a relation between weak convergence in
P(X) and Γ-liminf of the associated entropy functionals.

1.1 Γ− convergence definitions
Let (E, d) be a metric space. We are going to use the following definitions.

Definition 1 (Lower semicontinuity). A functional I : E −→ [0,+∞] is lower
semicontinuos if and only if ∀l > 0 the set {x ∈ E|I(x) 6 l} is closed. Equivalently
given (xn)n in E such that xn converges to x ∈ E then

lim
n
I(xn) > I(x) (1.1)

Definition 2 (Precompact). Let E be a metric space. Let Y ⊆ E. A precom-
pact subset Y of a topological space E is a set where any sequence in Y has a
subsequence convergent in E.

Definition 3 (Coercivity). A functional I is coercive if and only if ∀l > 0 the set
{x ∈ E|I(x) 6 l} is precompact.

Definition 4 (Equicoercivity). Let (In) be a sequence of functionals In : E →
[0,+∞]. The sequence is equicoercive on E if and only if ∀l > 0 the set⋃

n

{x ∈ E|In(x) 6 l}

is precompact.

Definition 5 (Γ−convergence). Let E be a metric space and Fn : E → [0,+∞)
a sequence of functionals on E. Then Fn are said to Γ-converge to the Γ-limit
F : E → [0,+∞) if the following two conditions hold:
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• lower bound inequality: for every sequence (xn)n ⊆ E such that xn → x as
n→ +∞ ,

F (x) 6 lim
n
Fn(xn)

• upper bound inequality: ∀x ∈ E ∃(xn)n ⊆ E such that xn → x as n→ +∞

F (x) > lim
n
Fn(xn).

Definition 6 (Γ−lim and Γ−lim). Let E be a metric space and Fn : E → [0,+∞)
a sequence of functionals on E. For x ∈ E we define:

(Γ− lim
n
Fn)(x) := inf{lim

n
Fn(xn)|(xn)n sequence in E s. t. xn → x}

and

(Γ− lim
n
Fn)(x) := inf{lim

n
Fn(xn)|(xn)n sequence in E s. t. xn → x}

1.2 Weak topology on probability measures
The space P(X) of Borel probability measures onX will be equipped with the weak
topology. All probability measures from now on will be elements of P(X). The
weak topology on P(X) is the coarsest among all topologies that make continuous
all the real functions

µ 7−→
∫
X
fdµ

where f ∈ Cb(X). The convergence of measures with respect to this topology is
said weak convergence. In order that a sequence (µn)n of measure weakly converges
towards a measure µ it is necessary and sufficient that∫

X
fdµ = lim

n

∫
X
fdµn

for all real valued, continuous and bounded function f on X.
In the following lines we are going to state some theorems about weak con-

vergence, without proof1. The first theorem is about a characterization of weak
convergence.

Theorem 1. Let µ be a measure and (µn)n a sequence of measures on (X,B(X)).
The following facts are equivalent.

(a) The sequence (µn)n weakly converges to µ.

(b) It holds ∫
X
fdµ = lim

n

∫
X
fdµn

for every bounded and Lipschitz function f : X → R.
1A proof can be found in [2].

2



(c) It holds ∫
X
fdµ 6 lim

n

∫
X
fdµn

for every lower bounded and lower semicontinuous function f : X → R.

(d) It holds ∫
X
fdµ > lim

n

∫
X
fdµn

for every upper bounded and upper semicontinuous function f : X → R.

(e) It holds ∫
X
fdµ = lim

n

∫
X
fdµn

for every bounded and Borel function f : X → R, µ-almost evereywhere con-
tinuous.

The second theorem is a version of the previous one, where sets play the role
of functions.

Theorem 2. Let µ be a measure and (µn)n a sequence of measures on (X,B(X)).
The following facts are equivalent.

(a) The sequence (µn)n weakly converges to µ.

(b) We have
µ(X) = lim

n
µn(X) and µ(O) 6 lim

n
µn(O)

for every O ⊆ X open.

(c) We have
µ(X) = lim

n
µn(X) and µ(C) > lim

n
µn(C)

for every C ⊆ X closed.

(d) We have
µ(B) = lim

n
µn(B)

for every B ∈ B(X) such that µ(∂B) = 0.

Definition 7 (Tightness). A probability measure µ is said tight if ∀ε > 0 exists
a compact K of X such that µ(Kc) < ε.

This condition of tightness equals to impose that the measure µ is concentrated
on an appropriate countable union of compact sets.

Theorem 3 (Ulam). If X is a separable and complete metric space, then every
probability measure is tight.

So we could always assume the tightness for every measure, because in all the
thesis X will be a separable and complete metric space.

The following definition and the next theorem will be extensively used in the
proofs of the main results, so it is essential to focus on them.
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Definition 8 (Tightness for a family of measure). Given H ⊆ P(X) we say that
H is tight if ∀ε > 0 exists a compact K ⊆ X such that

sup
µ∈H

µ(Kc) 6 ε

Theorem 4 (Prokhorov). Given H ⊆ P(X). H is tight if and only if it is sequen-
tially compact in the space P(X) equipped with the topology of weak convergence.

For a proof of Prokhorov’s theorem and Ulam’s theorem see [2].

1.3 Large Deviations definitions
Definition 9 (Large Deviations bounds). Let I : X → [0,+∞] be a lower semi-
continuous functional and let (an)n be a sequence of positive real numbers such
that limn an = +∞. The sequence (µn)n ⊆ P(X) satisfies:

• a Large Deviations Lower Bound with speed (an)n and rate I, if and only if
∀O ⊆ X open we have

lim
n

1
an

log µn(O) > − inf
x∈O

I(x) (1.2)

• a Large Deviations Weak Upper Bound with speed (an)n and rate I, if and
only if ∀K ⊆ X compact we have

lim
n

1
an

log µn(K) 6 − inf
x∈K

I(x) (1.3)

• a Large Deviations Upper Bound with speed (an)n and rate I, if and only if
∀C ⊆ X closed we have

lim
n

1
an

log µn(C) 6 − inf
x∈C

I(x) (1.4)

Definition 10 (Relative Entropy). 2 Given µ, ν ∈ P(X) and F ⊂ B(X) a σ-
algebra, the relative entropy of ν with respect to µ on B is defined as

HF(ν|µ) := sup
ϕ
{ν(ϕ)− log µ(eϕ)} ∈ [0,+∞] (1.5)

where the supremum runs over the bounded F -measurable functions ϕ on X. For
a fixed µ, HF(·|µ) is a convex functional on P(X). If F = B(X) the subindex
will be dropped hereafter. In such case H(·|µ) is also lower semicontinuous and
coercive on P(X). Given (µn)n sequence in P(X) we will define

Hn(ν) := H(ν|µn)
2The relative entropy is also known as Kullback–Leibler divergence in information theory and

mathematical statistics. It is a measure of how one probability distribution is different from a
second reference probability distribution. The Kullback–Leibler divergence was introduced by
Solomon Kullback and Richard Leibler in 1951 (see [5]) as the directed divergence between two
distributions.
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Moreover, we can write the entropy functional in a more explicit way, very helpful
in some steps later.

H(ν|µ) =


∫
X

dν
dµ

log
(
dν
dµ

)
dµ if ν � µ

+∞ otherwise
(1.6)

Remark 1. The two formulas of Relative Entropy presented above are equivalent.
We can prove the equivalence showing that the two inequalities in 1.5 hold with
respect to the integral formulation. Without loss of generality we assume ν � µ.
In the following lines we use D(ν|µ) to denote the 1.6 form.

• Simply

ϕ(x) = log
(
dν

dµ
(x)
)
⇒ H(ν|µ) > D(ν|µ)

• Fix ϕ, we define
µϕ(dx) = eϕµ(dx)

µ(eϕ)
and of course µϕ � µ.

ν(ϕ)− log(µ(eϕ)) = µ

(
log

(
dµϕ

dµ

))
= D(ν|µ)−D(ν|µϕ) 6 D(ν|µ).

Hence H(ν|µ) 6 D(ν|µ).

Moreover because of the strict convexity of the function g : x 7−→ x log x defined
on R+, we can use Jensen’s inequality to show that H(ν|µ) > 0. Indeed

H(ν|µ) = µ

(
g

(
dν

dµ

))
> g

(
µ

(
dν

dµ

))
= g(1) = 0

and H(ν|µ) = 0 if and only if ν = µ almost everywhere.
Now let us prove convexity. Let ν1, ν2, µ ∈ P(X) and λ ∈ R: for g convexity

we have:

H(λν1 + (1− λ)ν2|µ) = µ

(
g

(
λ
dν1

dµ
+ (1− λ)dν2

dµ

))
6

6 µ

(
λg

(
dν1

dµ

)
+ (1− λ)g

(
dν2

dµ

))
=

= λµ

(
g

(
dν1

dµ

))
+ (1− λ)µ

(
g

(
dν2

dµ

))
= λH(ν1|µ) + (1− λ)H(ν2|µ)

With the following proposition we are going to prove lower semicontinuity of
the relative entropy functional, when µ is fixed.

Proposition 5. Let µ, ν ∈ P(X) and (µn)n, (νn)n two sequence of probability
measures such that µn → µ and νn → ν weakly in P(X) thus

lim
n
H(νn|µn) > H(ν|µ)

5



Proof. From 1.5 we have

H(νn|µn) := sup
ϕ
{νn(ϕ)− log µn(eϕ)}

Moreover µn → µ if and only if µ(ϕ) = limn µn(ϕ) for any bounded ϕ thanks to
point (b) of Theorem 1. Taking the liminf concludes the proof.

Lemma 6. Given A Borel set we get

ν(A) 6 log 2 +H(ν|µ)
log

(
1 + 1

µ(A)

) (1.7)

if H(ν|µ) < +∞ and µ(A) > 0.

Proof. Choosing ϕ(x) = log(1 + µ(A))χA(x) + log(µ(A))χAc(x) in the definition
of entropy, we get the thesis. Fixing

ϕ(x) = c1χA(x) + c2χAc(x)

with c1 6= c2 real numbers, from 1.5 we get easily that

c1ν(A) + c2(1− ν(A)) 6 H(ν|µ) + log (ec2(1− µ(A)) + µ(A)ec1)
ν(A)(c1 − c2) 6 H(ν|µ) + log (ec2(1− µ(A)) + µ(A)ec1)− c2

ν(A) 6 H(ν|µ) + log (ec2(1− µ(A)) + µ(A)ec1)− c2

(c1 − c2)

Choosing c1 = log(1 + µ(A)) and c2 = log(µ(A)) we have

c1 − c2 = log
(

1 + 1
µ(A)

)

whereas ec2 = µ(A) and ec1 = 1 + µ(A) thus

log
(
µ(A)(1− µ(A)) + µ(A)elog(1+µ(A))

)
− log(µ(A)) = log 2

so the inequality.

1.4 Weak convergence and Entropy
Proposition 7. The following are equivalent.

(P ) (µn)n is tight in P(X).

(H) (H(·|µn))n is equicoercive on P(X)

Proof.
(H)⇒ (P ) Since H(µn|µn) 6 0 ∀n ∈ N, the sequence (µn)n is contained in
{ν|H(ν|µn) 6 0} hence precompact and thus tight for Prokhorov’s theorem.
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(P )⇒ (H) Let (νn)n be a subsequence in P(X) such that lim
n
H(νn|µn) < +∞.

To prove the thesis we need to show that

∀l > 0
⋃
n∈N
{ν ∈ P(X)|H(ν|µn) 6 l}

is precompact i.e. the set is tight. Namely we will prove precompactness of a
sequence in

{ν ∈ P(X)|H(ν|µn) 6 l}.
Let us use the notation Hn(ν) = H(ν|µn). Thus

Hn(ν) = sup
ϕ
{ν(ϕ)− log µn(eϕ)} 6 l⇒

∀ϕ ν(ϕ) 6 l + log µn(eϕ)

A good choice of ϕ could be

ϕ(x) :=

0 if x ∈ K
M if x ∈ Kc

where M ∈ R+ will be specified later. This gives

Mν(Kc) 6 l + log(µ(K) + µ(Kc)eM)

ν(Kc) 6 l

M
+ log(1− µ(Kc) + µ(Kc)eM)

M

ν(Kc) 6 l

M
+ log(1 + µ(Kc)(eM − 1))

M

Given ε > 0 we set M = 2l
ε
so

ν(Kc) 6 ε

2 + log(1 + µ(Kc)(eM − 1))
M

Now we use the hypothesis of tightness of (µn)n. Indeed

∀η > 0 ∃K := Kη : µn(Kc) < η

thus choosing η < Me
ε
2−1

eM−1 we will obtain log(1+µ(Kc)(eM−1))
M

6 ε
2 and so the thesis.

Before proving the next proposition it is appropriate to build a particular
partitions of space X and to do some observations.

Let (Ei)Ni=0 be a finite partition of X. Let us call G = σ((Ei)Ni=0) the σ-algebra
generated by the partition. So applying the integral definition of the entropy
functional we can state:

HG(ν|µ) =
N∑
i=0

ν(Ei) log ν(Ei)
µ(Ei)

understanding ν(A) log ν(A)
µ(A) = 0 if ν(A) = 0 and ν(A) log ν(A)

µ(A) = +∞ if µ(A) = 0
but ν(A) > 0.

7



Lemma 8. Let µ, ν ∈ P(X), and (Kl)l∈N a sequence of compact subsets of X such
that

lim
l
µ(Kl) = 1.

For every l ∈ N and δ > 0, exists a finite collection of Borel subsets of X that we
denote with (Ei

δ,l)
Nδ,l
i=1 such that:

(i) if i 6= i′, then Ei
δ,l ∩ Ei′

δ,l = ∅ and

Kl ⊆
Nδ,l⋃
i=1

Ei
δ,l

(ii) ∀i ∈ {1, ..., Nδ,l} we have diameter(Ei
δ,l) 6 δ

(iii) ∀i ∈ {1, ..., Nδ,l} we have µ(∂Ei
δ,l) = ν(∂Ei

δ,l) = 0

(iv) ∀i ∈ {1, ..., Nδ,l} E̊i
δ,l 6= ∅

(v) setting

E0
δ,l = X\

Nδ,l⋃
i=1

Ei
δ,l

we can assume without loss of generality that if δ 6 δ′ and l > l′ then
(Ei

δ,l)
Nδ,l
i=0 is finer3 than (Ei

δ,l)
Nδ′,l′
i=0

(vi) let Gδ,l = σ((Ei
δ,l)

Nδ,l
i=0 ) so

lim
l

lim
δ
HGδ,l(ν|µ) = H(ν|µ)

Proof. Fixing δ > 0 and l ∈ N we can take the open cover {B δ
2
(x)|x ∈ Kl} of

Kl and because it is compact, we can extract a finite subcover. Thus it exists
Nδ,l ∈ N and exist xi ∈ Kl ∀i ∈ {1, . . . , Nδ,l} for which

Kl ⊆
Nδ,l⋃
i=1

B δ
2
(xi)

Setting m = min16i<j6Nδ,l d(xi, xj), let r ∈ R+ be such that r 6 min{ δ2 ,m};
so there exists δ′ ∈ ( δ2 ,

δ
2 + r) such that µ(∂Bδ′(xi)) = ν(∂Bδ′(xi)) = 0 ∀i ∈

{1, . . . , Nδ,l}. Indeed the set {δ′|µ(∂Bδ′(xi)) > 0} is countable.
Let us define the partition. We takeE1

δ,l = Bδ′(x1)
Ei
δ,l = Bδ′(xi)\

⋃
j<iE

j
δ,l for i > 1

3A partition α of a set X is a refinement of a partition ρ of X -and we say that α is finer than
ρ and that ρ is coarser than α- if every element of α is a subset of some element of ρ. Roughly
speaking, this means that α is a further fragmentation of ρ.
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Property (i) is trivial for construction. Property (ii) is really easy to check:
∀i ∈ {1, ..., Nδ,l}

diam(Ei
δ,l) = diam

Bδ′(xi)\
⋃
j<i

Ej
δ,l

 6 diam(Bδ′(xi)) 6 2δ′ 6 δ

Property (iii) is due to µ(∂Bδ′(xi)) = ν(∂Bδ′(xi)) = 0. Property (iv) is due to
the fact that balls have nonempty interior.

Properties (v): if (Ei
δ,l)

Nδ′,l′
i=0 is not finer than (Ei

δ,l)
Nδ,l
i=0 we could intersect the

sets Ei
δ,l of the two covers (of Kl) obtaining a new one with the properties from

(i) to (v). Property (vi) is a corollary of Proposition 16 in the appendix.

Proposition 9. The following are equivalent. Given a sequence (µn)n and given
µ in P(X),

(P1) µn → µ in P(X)

(P2) For each sequence (ϕn)n of Borel measurable functions ϕn : X → R∪{+∞}
bounded from below we have

lim
n
µn(ϕn) > µ(Γ− lim

n
(ϕn)) (1.8)

(H) H(ν|µ) = (Γ− limnHn)(ν)

Proof. The implications will be proved as follows: (P1)⇒(P2)⇒(H)⇒(P1).

(P1)⇒(P2) Let us assume µn → µ in P(X) and consider the construction of (Ei
δ,l)

Nδ,l
i=0 as

in Lemma 8 with ν = µ. Now consider a generic sequence (ϕn)n, ϕn : X →
R ∪ {+∞} of Borel functions bounded from below. Fixed x ∈ X we define

ϕn,δ,l(x) := inf
y∈Ei

δ,l

ϕn(y) if x ∈ Ei
δ,l

and
ϕδ,l(x) := lim

n
ϕn,δ,l(x) = lim

n
inf
y∈Ei

δ,l

ϕn(y)

From bullets (iii), (iv) and (v) of Lemma 8 it follows that

µ(
⋃

l∈N+,δ>0

Nδ,l⋃
i=1

∂Ei
δ,l) = 0 and lim

l
lim
δ

Nδ,l∑
i=0

µ(Ei
δ,l) = 0

where the first equality holds for (v) and the second one for (ii). Moreover
if x /∈ ⋃l∈N+,δ>0

⋃Nδ,l
i=1 ∂E

i
δ,l it holds (see Proposition 15 in Appendix A)

lim
l→+∞

lim
δ→0

ϕδ,l(x) = (Γ− lim
n
ϕn)(x). (1.9)

Thanks to point (v) of Lemma 8 the limit is monotone increasing and it
holds µ-a.e., thus by monotone convergence

µ(Γ− lim
n
ϕn) = lim

l
lim
δ
µ(ϕδ,l)

9



Inasmuch as ϕn,δ,l takes the same values ∀x ∈ E̊i
δ,l it follows

lim
l

lim
δ
µ(ϕδ,l) = lim

l
lim
δ

Nδ,l∑
i=0

(µ(Ei
δ,l) lim

n
inf
y∈Ei

δ,l

ϕn(y))

The right hand side of the last equality is smaller than

lim
l

lim
δ

lim
n

Nδ,l∑
i=0

(µ(Ei
δ,l) inf

y∈Ei
δ,l

ϕn(y)) 6 lim
n
µn(ϕn)

Thus µ(Γ− limn ϕn) 6 limn µn(ϕn) as wanted.

(P2)⇒(H) We want to show that H(ν|µ) = (Γ − limnHn)(ν) so we will proceed as
follows: first of all we will prove that if νn → ν in P(X), then

lim
n
H(νn|µn) > H(ν|µ)

whereupon we will show that given ν ∈ P(X) it exists (νn)n ⊆ P(X) that
holds

lim
n
H(νn|µn) 6 H(ν|µ)

From hypothesis of (P2), let us choose ϕn = ϕ ∈ Cb(X) ∀n ∈ N in (1.8).
So µn(ϕ)→ µ(ϕ): Γ− limϕn = ϕ and we get the convergence replacing −ϕ
to ϕ. Fixed ν ∈ P(X), we consider an arbitrary sequence in (νn)n ⊆ P(X)
such that νn → ν in P(X).

lim
n
H(νn|µn) = lim

n
sup

ϕ∈Cb(X)
{νn(ϕ)− log µn(eϕ)} >

> sup
ϕ∈Cb(X)

lim
n
{νn(ϕ)− log µn(eϕ)} =

= sup
ϕ∈Cb(X)

{ν(ϕ)− log µ(eϕ)} = H(ν|µ)

thus the first inequality is proved. Without loss of generality the Γ-limsup
inequality can be proved for ν � µ i. e. withH(ν|µ) < +∞. Let (Ei

δ,l)
Nδ,l
i=0 be

as in Lemma 8. We fix δ, l > 0 and for n large enough we define νn,δ,l ∈ P(X)
as

νn,δ,l(A) =
Nδ,l∑
i=0

ν(Ei
δ,l)
µn(A ∩ Ei

δ,l)
µn(Ei

δ,l)

with ν(Ei
δ,l) = 0 if µn(Ei

δ,l) = 0. So

lim
l

lim
δ

lim
n
νn,δ,l = ν

We saw in the previous section that H(νn,δ,l|µn) = HGδ,l(ν|µn). We will prove

lim
n
H(νn,δ,l|µn) 6 H(ν|µ)

so the Γ-limsup inequality.
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In fact

lim
n
H(νn,δ,l|µn) = lim

n
HGδ,l(ν|µn)

= lim
n

Nδ,l∑
i=0

∫
Ei
δ,l

log
(
dνn,δ,l
dµn

)
dνn,δ,l

= lim
n

Nδ,l∑
i=0

νn(Ei
δ,l) log

(
ν(Ei

δ,l)
µn(Ei

δ,l)

)
= HGδ,l(ν|µ) 6 H(ν|µ).

Thus we can state that there exist sequences (δn)n and (ln)n such that
νn,δn,ln → ν and limnH(νn|µn) 6 H(ν|µ). Thus the Γ-limsup inequality
holds, so the thesis.

(H)⇒(P1) For Prokhorov’s theorem if we show that the sequence (µn)n is tight, so it
is precompact in P(X) thus we can apply the result of convergence on min-
imizers. For hypothesis of Γ−convergence and precompactness, converging
sequence of minimizers of Hn converge to minimizers of the Γ−limit H. In
particular µn is the unique minimizer of Hn and µ is the unique minimizer of
H, so we would have the result (P1). Let us prove tightness. (H) implies the
existence of a recovery sequence of probability measures (νn)n converging to
µ and such that it holds the limsup inequality, i.e.

lim
n
H(νn|µn) 6 H(µ|µ)

thus
lim
n
H(νn|µn) = 0

and (νn)n is tight (for Prokhorov’s theorem, in the inverse sense respect to
the last use).
Reversing now inequality (1.7) we obtain (where A is a Borel set)

1
µ(A) 6 e

(
log 2+H(ν|µ)

ν(A)

)
− 1

and so
µ(A) > 1

e

(
log 2+H(ν|µ)

ν(A)

)
− 1

Let us note with some easy reckoning that, given ε > 0, the right hand side
of the last written inequality is > 1− ε if

e1+ 1
1−ε >

log 2 +H(ν|µ)
ν(A)

i.e.
ν(A) > log 2 +H(ν|µ)

e1+ 1
1−ε

11



Setting ν = νn and µ = µn in the formulas due to inequality 1.7 we can say,
for tightness of (νn)n and for n large enough exists Kε such that

νn(Kε) >
log 2 +H(νn|µn)

e1+ 1
1−ε

thus
µn(Kε) > 1− ε ∀n > n0

so the tightness of (µn)n is showed and the thesis proved.
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Chapter 2

The connection between Large
Deviations and Γ-convergence

In this chapter we will state and prove first of all the Large Deviations version of
Proposition 7 and Proposition 9.

An interesting observation to focus on is that the Proposition 9 will have two
Large Deviations versions. The first one using a Large Deviations lower bound
and the second one using a Large Deviations weak upper bound. At the same
time the (H) point of Proposition 9 will be splint into (H1) and (H2), or rather a
version fixing x ∈ X and a version fixing ν ∈ P(X).

The (P) condition will split into (P1) and (P2) in the second theorem of this
chapter, and from (P1) to (P4) in the third one.

Hereafter let a = (an)n be a sequence of strictly positive real numbers such
that

lim
n
an = +∞

let (µn)n be a sequence of probability measures in P(X) and I : X → [0,+∞] a
measurable lower semicontinuous functional.

In order to have a Large Deviations version, we have to define a new, indeed,
weighted functional of entropy, starting from the one introduced in the previous
chapter.

2.1 Exponential tightness and entropy function-
als

Definition 11 (Weighted Relative Entropy). Given a = (an)n and (µn)n as above,
we define Ha

n : P(X)→ [0,+∞] as follows

Ha
n(ν) := 1

an
H(ν|µn)

What we stated before with tightness, now will become exponentially tightness.
The weak convergence in P(X) will be the realization of a Large Deviations Prin-
ciple. The idea of exponential tightness is a strengthening of classical tightness.
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Definition 12 (Exponential tightness). Let X be as above. A sequence of prob-
ability measures in P(X), (µn)n is said exponentially tight if ∀ε > 0 exists Kε

compact of X such that
lim
n

1
n

log µn(Kc
ε) 6 −ε.

We can also give a definition of exponential tightness with a speed (an)n, more
interesting of a fixed velocity as in the classical exponential tightness definition.

Definition 13 (Exponential tightness with speed (an)n). Let X and (an)n be as
above. Let (µn)n be a sequence of probability measures in P(X), so (µn)n is said
exponentially tight with speed (an)n if ∀ε > 0 exists Kε compact of X such that

lim
n

1
an

log µn(Kc
ε) 6 −ε.

Let us start with the analogous of Proposition 7.

Theorem 10. The following are equivalent:

(P ) (µn)n is exponentially tight with speed (an)n.

(H) (Ha
n) is equicoercive on P(X)

Proof.
(P)⇒(H) If I show that ∀M > 0 the set

{ν ∈ P(X)|Ha
n(ν) 6M}

is tight ∀n ∈ N, by Prokhorov’s theorem is precompact, thus Ha
n is equicoercive

by definition. We will prove that given η > 0 there exists a compact K̃η for which
ν(K̃η) < η for every ν in the set. Since

Ha
n(ν) = 1

an
sup
ϕ
{ν(ϕ)− log µn(eϕ)} 6M ⇒

∀ϕ ν(ϕ)− log µn(eϕ) 6Man

∀ϕ ν(ϕ) 6Man + log µn(eϕ)

A good choice of ϕ could be, depending on n,

ϕn(x) :=

0 if x ∈ K
Mn if x ∈ Kc

where Mn ∈ R+ and the compact set K (not depending on n) will be specified
later.

So

Mnν(Kc) 6Man + log(µn(K) + µn(Kc)eMn)

ν(Kc) 6 Man
Mn

+ log(1− µn(Kc) + µn(Kc)eM)
Mn

ν(Kc) 6 Man
Mn

+ log(1 + µn(Kc)(eMn − 1))
Mn

14



Given η > 0 we set Mn = 2Man
η

so

ν(Kc) 6 η

2 + log(1 + µ(Kc)(eMn − 1))
Mn

Now we use the hypothesis of exponential tightness of (µn)n. Indeed

∀ε > 0 ∃K := Kε : µn(Kc) < e−εan

thus choosing ε such that

e−εan <
e
Mnη

2 − 1
eMn − 1 = eMan − 1

e
2Man
η − 1

( ∃n0 s.t. ∀n > n0 it is possible ) we will obtain

log(1 + µ(Kc)(eMn − 1))
Mn

<
η

2
and so the thesis for n > n0, but the finite union with n 6 n0 is also precom-

pact, so the thesis. Of course we let K̃η = Kε.
(H)⇒(P) By the previous inequalities, for each l > 0 and integer n0 > 1

G(n0, l) :=
⋃
n>n0

{
µK

c

n , K ⊆ X is compact and µn(Kc) > e−lan
}
⊆

⊆
⋃
n>n0

{ν ∈ P(X) : Ha
n(ν) 6 l}

thus ∀l > 0 ∃n0(l) such that G(n0, l) is precompact in P(X), thus tight for
Prokhorov’s theorem. So ∀l > 0 we can find a compact Kl ⊆ X such that
µK

c

n (Kc
l ) 6 1

2 ∀n > n0(l) and for each K compact such that µn(Kc) > e−lan ,
thanks to tightness.

Since µn(Kc|Kc) = 1∀K : µn(K) > 0 thus Kl 6= K for each compact K
(otherwise we would arrive to an absurd) with µn(Kc) > e−lan for some n > n0(l),
so definitively in n,∀l > 0 µn(Kc

l ) 6 e−lan . So we have (P) for definition of
exponentially tightness.

2.2 Γ− convergence and Large Deviations
Now we state and prove the equivalent versions in Large Deviations context of
Proposition 9. Next theorem concerns about convergence satisfying a Large De-
viations lower bound, related to an inequality for the Γ− limn

1
an
H(·|µn).

Theorem 11. The following are equivalent:

(P1) (µn)n satisfies a Large Deviations lower bound with speed (an)n and rate I.
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(P2) For each sequence (ϕn)n of measurable functions ϕn : X → R ∪ {+∞,−∞}
the inequality

lim
n

1
an

log µn(exp(anϕn)) > sup
x∈X
{(Γ− lim

n
ϕn)(x)− I(x)} (2.1)

holds, with (Γ− limn ϕn)(x)− I(x) = −∞ if I(x) = +∞.

(H1)
(Γ− lim

n
Ha
n)(δx) 6 I(x). (2.2)

(H2) For each ν ∈ P(X)

(Γ− lim
n
Ha
n)(ν) 6 ν(I) =

∫
X
Idν. (2.3)

Proof. The implications will be proved as follows: (P1)⇒(H1)⇒(P2)⇒(P1) and
(H1)⇔(H2).
(P1)⇒(H1) Fixing x ∈ X, inequality (Γ − limnH

a
n)(δx) 6 I(x) is proved by pro-

viding a sequence ν̃n → δx such that limnH
a
n(ν̃n) 6 I(x) .

For x ∈ X and δ > 0 let Bδ(x) the open ball of radius δ centered in x. Fix n
and define νn,δ ∈ P(X) as follows:

νn,δ :=

µBδ(x)
n if µn(Bδ(x)) > 0
δx otherwise

We observe that, in the case µn(Bδ(x)) > 0,
dνn,δ
dµn

= dµBδ(x)
n

dµn
= χBδ(x)

µn(Bδ(x))
So we can obtain a comfortable formula of H(νn,δ|µn):

H(νn,δ|µn) =
∫
X

dνn,δ
dµn

log
(
dνn,δ
dµn

)
dµn

=
∫
Bδ(x)

dνn,δ
dµn

log
(
dνn,δ
dµn

)
dµn +

∫
X\Bδ(x)

dνn,δ
dµn

log
(
dνn,δ
dµn

)
dµn

=
∫
Bδ(x)

χBδ(x)

µn(Bδ(x)) log
(

χBδ(x)

µn(Bδ(x))

)
dµn

=− log(µn(Bδ(x)))
that we can extend also to case µn(Bδ(x)) = 0, where we understand− log(0) =

+∞. Now, for Large Deviations lower bound definition ∀δ > 0

lim
n
Ha
n(νn,δ) = − lim

n

1
an

log(µn(Bδ(x))) 6 inf
y∈Bδ(x))

I(y) 6 I(x)

where we chose the open O = Bδ(x) At the same time

lim
δ→0

lim
n
νn,δ = δx in P(X)

thus by a diagonal argument there exists a sequence (δn)n converging to 0 such
that limn νn,δn = δx. For the initial observation we got the thesis.
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(H1)⇒(H2) First of all recall the Jensen inequality for a convex function ϕ and X
random variable.

ϕ(E[X]) 6 E[ϕ(X)]
Because of the convexity of Ha

n as a functional, also Γ − limnH
a
n is convex and

lower semicontinuous.

(Γ− lim
n
Ha
n)(ν) = Γ− lim

n
Ha
n

(∫
P(X)

ν(dx)δx
)

and using Jensen inequality1 and hypothesis (H1)

6
∫
P(X)

ν(dx)(Γ− lim
n
Ha
n)(δx) 6

∫
P(X)

ν(dx)I(x) = ν(I)

(H2)⇒(H1) We can trivially take ν = δx.
(H1)⇒(P2) Before starting with the real proof of the implication, let us do an
observation. Let

Y =
{
x ∈ X : (Γ− lim

n
ϕn)(x) > −∞

}
so ∀x ∈ Y ∃δ(x) > 0 ∃n0(x) = n0 ∈ N such that

inf
y∈Bδ(x)

(
inf
n>n0

ϕn(y)
)
> −∞

Indeed, we can show it with a proof by contradiction. Assume to the contrary
that

∃x ∈ Y : ∀δ > 0 ∀n0 ∈ N inf
y∈Bδ(x)

(
inf
n>n0

ϕn(y)
)

= −∞

So given x as in the contrary assumption we fix δ = 1
m

with m ∈ N+. By definition
of infimum,

∀M > 0 ∃y′(M) = y′ ∈ B 1
m

(x) : inf
n>n0

ϕn(y′) < −M

Recall for clarity the definition of Γ− limn:

(Γ− lim
n
ϕn)(x) = inf

{
lim
n
ϕn(xn) : xn → x

}
Joining the last observations we can say:

∀m ∈ N+∃ym ∈ B 1
m

(x) : inf
n>n0

ϕn(ym) < −m

thus ∀M > 0 we can extract a sequence yn → x such that limn ϕn(yn) < −M .
This is absurd by definition of Y .

For x ∈ Y by condition 2.2 there exists a sequence (νn,x)n converging to δx in
P(X) and such that

1The previous and the following passages are quite technical and need a level of accuracy
that would divert the reader’s attention from the proof, so it will be better specified in the
appendix. In particular Pettis integral and a generalized form of Jensen inequality are necessary
to formalize these steps.
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lim
n
Ha
n(νn,x) 6 I(x)

that can be assumed concentrated on Bδ(x). By definition or Relative Entropy
1.5 for each measurable ϕ : X → R ∪ {+∞,−∞} we obtain:

H(νn,x|µn) > νn,x(ϕ)− log µn(eϕ) (2.4)

provided we understand the right hand side as −∞ whenever H(νn,x|µn) = +∞
or νn,x(ϕ−) = +∞. Choosing ϕ = anϕn we obtain

H(νn,x|µn) > νn,x(anϕn)− log µn(eanϕn)
⇒ log µn(eanϕn) > (−H(νn,x|µn) + νn,x(anϕn))

⇒ 1
an

log µn(eanϕn) > (−Ha
n(νn,x) + νn,x(ϕn))

⇒ lim
n

1
an

log µn(eanϕn) > lim
n

(−Ha
n(νn,x) + νn,x(ϕn))

⇒ lim
n

1
an

log µn(eanϕn) > lim
n

(−Ha
n(νn,x)) + lim

n
νn,x(ϕn)

⇒ lim
n

1
an

log µn(eanϕn) > − lim
n
Ha
n(νn,x) + lim

n
νn,x(ϕn)

⇒ lim
n

1
an

log µn(eanϕn) > sup
x∈Y

{
− lim

n
Ha
n(νn,x) + lim

n
νn,x(ϕn)

}

Because of the concentration of νn,x on Bδ(x) and y ∈ Y , we have that ϕn for
n > n0(x) is bounded from below. Using (H1) hypothesis (2.2) and setting µ = δx
in (1.8) of point (P2) of Proposition 9, we can write the following inequality:

lim
n
νn,x(ϕn) > δx(Γ− lim

n
ϕn) = Γ− lim

n
ϕn(x)

Moreover the definition of Γ-limsup and (H1) yield

I(x) > lim
n
Ha
n(νn,x)

and joining the inequalities

− lim
n
Ha
n(νn,x) + lim

n
νn,x(ϕn) > −I(x) + (Γ− lim

n
ϕn)(x)

⇒ sup
x∈Y

{
− lim

n
Ha
n(νn,x) + lim

n
νn,x(ϕn)

}
> sup

x∈Y

{
−I(x) + (Γ− lim

n
ϕn)(x)

}
⇒ lim

n

1
an

log µn(eanϕn) > sup
x∈Y

{
−I(x) + (Γ− lim

n
ϕn)(x)

}
⇒ lim

n

1
an

log µn(eanϕn) > sup
x∈X

{
(Γ− lim

n
ϕn)(x)− I(x)

}

that is the thesis.
(P2)⇒(P1) Given O ⊆ X open and M > 0, we define ϕn ≡MχO ∀n ∈ N that is
lower semicontinuous, so it coincides with its Γ-limit. Let us do some reckoning.
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First of all we will proceed with an estimate on µn(eanϕn) .

µn(eanϕn) =
∫
X
eanMχOdµn =

∫
O
eanMχOdµn +

∫
Oc
eanMχOdµn =

=
∫
O
eanMχOdµn +

∫
Oc

1dµn = 1− µn(O) + µn(O)eanM 6

6 1 + µn(O)eanM

At this point we note some trivial inequalities: given r ∈ R+, if r > 1 ⇒
2r > r + 1 ⇒ log(r + 1) 6 log(2r) 6 log 2 + log r. Otherwise r + 1 < 2 ⇒
log(r + 1) < log(2). Choosing r = µn(O)eanM follows that log(1 + µn(O)eanM) 6
log 2 + max{0,Man + log(µn(O))}. Thus

1
an

log µn(eanϕn) 6 log 2
an

+ max
{

0,M + log(µn(O))
an

}
(2.5)

Now we will use the (P2) hypothesis (2.1). Because of lower semicontinuity of
chosen ϕn, it follows

Γ− lim
n
ϕn(x)− I(x) = ϕn(x)− I(x) = MχO(x)− I(x) (2.6)

By (2.5) taking the liminf in n

lim
n

1
an

log µn(eanϕn)−M 6 max
{
−M, lim

n

log(µn(O))
an

}
but for (2.1) in (P2) and (2.6) we got

lim
n

1
an

log µn(eanϕn)−M > sup
x∈X
{MχO(x)− I(x)} −M

Moreover
− inf

x∈O
I(x) = sup

x∈O
{−I(x)} =

= sup
x∈O
{(MχO(x)− I(x)) + (M −MχO(x))−M} 6

6 sup
x∈O
{MχO(x)− I(x)}+ sup

x∈O
{M −MχO(x)} −M =

= sup
x∈O
{MχO(x)− I(x)} −M

(2.7)

so
− inf

x∈O
I(x) 6 sup

x∈O
(MχO(x)− I(x))−M 6

6 lim
n

1
an

log µn(eanϕn)−M 6

6 max
{
−M, lim

n

log(µn(O))
an

}
All these inequalities yield to

− inf
x∈O

I(x) 6 max
{
−M, lim

n

log(µn(O))
an

}
(2.8)

that implies the thesis when taking M → +∞.
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Theorem 12. The following are equivalent.

(P1) (µn)n satisfies a Large Deviations weak upper bound with speed (an)n and
rate I.

(P2) For each sequence (ϕn)n of measurable functions ϕn : X → R ∪ {+∞,−∞}
bounded from below and such that

sup
K⊆X compact

lim
n

µn(1Kc exp(−anϕn))
µn(exp(−anϕn)) = 0 (2.9)

then

lim
n

1
an

log µn(exp(−anϕn)) 6 sup
x∈X
{−(Γ− lim

n
ϕn)(x)− I(x)} (2.10)

holds, where −(Γ− limn ϕn)(x)− I(x) = −∞ if I(x) = +∞.

(H1) ∀x ∈ X,
(Γ− lim

n
Ha
n)(δx) > I(x) (2.11)

(H2) ∀ν ∈ P(X),

(Γ− lim
n
Ha
n)(ν) > ν(I) (2.12)

Moreover assuming that (µn)n satisfies the conditions of Theorem 10, then the
statements are also equivalent to

(P3) (µn)n satisfies a Large Deviations upper bound with speed (an) and rate I.

(P4) Given a sequence (ϕn)n like in (P2) the following inequality

lim
n

1
an

log µn(exp(−anϕn)) 6 sup
x∈X
{−(Γ− lim

n
ϕn)(x)− I(x)} (2.13)

holds, where −(Γ− limn ϕn)(x)− I(x) = −∞ if I(x) = +∞.

Proof. The implications will be proved as follows:

(P1)⇒ (H1)⇔ (H2)⇒ (P2)⇒ (P1)

for the first part. Assuming also Theorem 11 we will proceed with (Theorem 11-
(P) & (P1))⇒(P3)⇒(P1) and (Theorem 11-(P) & (P2))⇒(P4)⇒(P2). The graph
built up by putting conditions together comes out strongly connected.

(P1)⇒(H1) First of all we do some elementary reckoning:

∀x ∈ R+ 0 6 log(x+ 1) = log
(
x
(

1 + 1
x

))
=

= log(x) + log
(

1 + 1
x

)
⇒

⇒ log
(

1 + 1
x

)
> − log(x)

(2.14)
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Moreover from inequality (1.7) ∀A ∈ B(X) we get

H(ν|µ) > ν(A) log
(

1 + 1
µ(A)

)
− log 2

and applying 2.14 with x = µ(A) we get

H(ν|µ) > −ν(A) log µn(A)− log 2 (2.15)

We also recall that given two sequences (an)n ⊆ R+ and (bn)n ⊆ R+, they
hold:

lim
n

(anbn) 6 (lim
n
an)(lim

n
bn) and lim

n
(anbn) > (lim

n
an)(lim

n
bn)

Let us start with the actual proof. Let x ∈ X and (νn)n ⊆ P(X) a generic
sequence be such that limn νn = δx in P(X). Showing

lim
n
Ha
n(νn) > I(x)

yields to (H1) by definition of Γ-liminf. Given ε > 0, the sequence νn
is tight for Prokhorov’s theorem so there exists K compact of X such that
νn(K) > 1−ε ∀n ∈ N⇒ limn νn(K) > 1−ε. Just take now A = K∩Bε(x),
ν = νn and µ = µn in 2.15 and dividing by an

1
an
H(νn|µn) > − 1

an
νn(A) log µn(A)− log 2

an
⇒

⇒ lim
n
Ha
n(νn) > lim

n

(
− 1
an
νn(A) log µn(A)− log 2

an

)
>

> lim
n

(
− 1
an
νn(A) log µn(A)

)
>

> − lim
n

(νn(A))
(

lim
n

1
an

log µn(A)
)

(2.16)

Noting that limn νn(A) > 1 − ε, joining this with 2.16 and using (P1) we
obtain

lim
n
Ha
n(νn) > −(1− ε)

(
lim
n

1
an

log µn(A)
)

> (1− ε) inf
y∈A

I(y) > (1− ε) inf
y∈Bε(x)

I(y)

Taking the limit ε→ 0, because of lower semicontinuity of I the right hand
side converges to I(x). For the initial observation we got the thesis.

(H1)⇒(H2) Before starting the proof, it’s necessary to focus on some elementary calcu-
lations in order to use them below.
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Let N be a positive integer number, let p1, . . . , pN be positive real numbers
such that pi ∈ (0, 1) ∀i ∈ {1, . . . , N} and ∑N

i=1 pi = 1, thus

N∑
i=1

pi log pi > − logN (2.17)

Indeed this is equivalent to prove that

N∑
i=1

pi log pi + logN > 0

as follows:(
N∑
i=1

pi log pi
)

+ logN =
(

N∑
i=1

pi log pi
)
− log 1

N
=

=
(

N∑
i=1

pi log pi
)
−
(

N∑
i=1

pi

)
log 1

N
=

=
N∑
i=1

pi

(
log pi − log 1

N

)
=

=
N∑
i=1

pi

(
− log

(
1
pi

1
N

))
>

> − log
(

N∑
i=1

pi
1
pi

1
N

)
= 0

where we used Jensen’s inequality thanks to convexity of − log x and because
of ∑N

i=1 pi = 1. We proceed now with an observation about partitions.
Let (Ei)Ni=1 a finite partition of the metric space X, let µ, ν ∈ P(X), we
want to write the Relative Entropy functional in a more comfortable form.
In the following sums the terms are understood to vanish for all i such that
νn(Ei) = 0. From 1.6

H(ν|µ) =
∫
X

dν

dµ
log

(
dν

dµ

)
dµ =

N∑
i=1

∫
Ei

dν

dµ
log

(
dν

dµ

)
dµ =

=
N∑
i=1

∫
Ei

dν

dµ

(
log

(
dν

dµ

)
− log ν(Ei) + log ν(Ei)

)
dµ =

=
N∑
i=1

∫
Ei

dν

dµ

(
log

(
1

ν(Ei)
dν

dµ

)
+ log ν(Ei)

)
dµ =

=
N∑
i=1

ν(Ei)
(∫

Ei

1
ν(Ei)

dν

dµ

(
log

(
1

ν(Ei)
dν

dµ

)
+ log ν(Ei)

)
dµ

)
=

=
N∑
i=1

ν(Ei)
(∫

Ei

1
ν(Ei)

dν

dµ

(
log

(
1

ν(Ei)
dν

dµ

))
dµ

)
+

+
N∑
i=1

∫
Ei

dν

dµ
log ν(Ei)dµ
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Noting that

H(νEi|µ) =
∫
Ei

1
ν(Ei)

dν

dµ

(
log

(
1

ν(Ei)
dν

dµ

))
dµ

Relative Entropy becomes

H(ν|µ) =
N∑
i=1

ν(Ei)H(νEi |µ) +
N∑
i=1

ν(Ei) log ν(Ei) (2.18)

Applying 2.17 to the second term of 2.18 we get

H(ν|µ) >
N∑
i=1

ν(Ei)H(νEi |µ)− logN

Now we can start with the proof of (H1)⇒(H2). To prove (H2) it suffices to
show that, given ν ∈ P(X) and (νn)n a sequence converging to ν in P(X).

Γ− lim
n
Ha
n(νn) > ν(I)

For δ > 0 and l > 0 let (Ei
δ,l)

Nδ,l
i=0 be a partition as in Lemma 8 with µ = ν.

For i ∈ {0, . . . , Nδ,l} such that νn(Ei
δ,l), we define νin,δ,l := ν

Eiδ,l
n ∈ P(X).

Considering the above observations we get:

H(νn|µn) >
Nδ,l∑
i=1

νn(Ei)H(νin,δ,l|µn)− logNδ,l

and dividing by an

Ha
n(νn) >

Nδ,l∑
i=1

νn(Ei)Ha
n(νin,δ,l)−

1
an

logNδ,l

We take the liminf to both sides

lim
n
Ha
n(νn) > lim

n

Nδ,l∑
i=1

νn(Ei)Ha
n(νin,δ,l) + lim

n

(
− 1
an

logNδ,l

)
>

>
Nδ,l∑
i=1

ν(Ei) lim
n
Ha
n(νin,δ,l) =

∫
X
Jδ,l(x)dν(x)

where
Jδ,l(x) = lim

n
Ha
n(νin,δ,l) if x ∈ Ei

δ,l.

Moreover by Fatou’s lemma on the right hand side of the last inequality

lim
n
Ha
n(νn) >

∫
X

lim
l

lim
δ
Jδ,l(x)dν(x)

but since
lim
l

lim
δ

lim
n
νin,δ,l = δx
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(H1) for definition of Γ-liminf implies

lim
l

lim
δ
Jδ,l(x) > I(x)

therefore the thesis for the initial observation.

(H2)⇒(H1) We can trivially take ν = δx.

(H2)⇒(P2) Let (ϕn)n be a sequence of measurable functions as in hypothesis of (P2)
statements. First of all we consider the sequence of probability measures
(νn)n ⊆ P(X) defined as follows:

νn(dx) = e−anϕn(x)

µn(e−anϕn)µn(dx) (2.19)

that implies the following relative density:

dνn
dµn

= e−anϕn(x)

µn(e−anϕn) (2.20)

Let us note that in the statement of implication (H1)⇒(H2) the measures
νn are not involved so we can choose them. Moreover µn(e−anϕn) is a real
fixed number, thus we can treat it as a constant inside an integral.
We start from the alternative definition of Relative Entropy (1.6) and (2.20)
to do some reckoning. Choosing ν = νn and µ = µn in (1.6) we have:

H(νn|µn) =
∫
X

dνn
dµn

log
(
dνn
dµn

)
dµn =

∫
X

log
(
dνn
dµn

)
dνn =

=
∫
X

log
(
e−anϕn(x)

µn(e−anϕn)

)
dνn =

=
∫
X

log
(
e−anϕn(x)(µn(e−anϕn))−1

)
dνn

=
∫
X

log
(
e−anϕn(x)

)
dνn −

∫
X

log
(
µn(e−anϕn)

)
dνn =

=
∫
X
−anϕn(x)dνn − log µn(e−anϕn) =

= −anνn(ϕn)− log µn(e−anϕn)

(2.21)

At this point dividing by an and rearranging terms ensue that

1
an

log µn(e−anϕn) = −νn(ϕn)−Ha
n(νn)

The last equality will be quite useful for our goal. In the following lines we
show how the hypothesis of (P2) ensues a classical tightness of the sequence
(νn)n. We observe indeed that given A Borel set of X, using (2.19)

νn(A) =
∫
X
χAdνn =

∫
X
χA

e−anϕn(x)

µn(e−anϕn)dµn =

= µn

(
χAe

−anϕn(x)

µn(e−anϕn)

) (2.22)
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From (2.9) formula, we easily deduce:

∀ε > 0 ∃Kε compact s.t. lim
n

µn(1Kc
ε
e−anϕn)

µn(e−anϕn) 6 ε

and as a consequence, setting A = Kε in (2.22) we get

lim
n
νn(Kε) 6 ε

This proves tightness for (νn)n ⇒ (νn)n is precompact for Prokhorov’s the-
orem. Let ν ∈ P(X) such that exists a subsequence (νkn)n of (νn)n and
νkn → ν in P(X), existing for precompactness.

lim
n

1
an

log µn(e−anϕn) 6 lim
n

(−νn(ϕn)−Ha
n(νn)) 6

6 lim
n

(−νn(ϕn)) + lim
n

(−Ha
n(νn)) 6 − lim

n
νn(ϕn)− lim

n
Ha
n(νn)

for (H2) hypothesis (2.12) of Theorem 12 and formula (1.8), so optimizing
on x the right hand side, we arrive to

lim
n

1
an

log µn(e−anϕn) 6 −ν(Γ− lim
n
ϕn)− ν(I) 6

6
∫
X

sup
x∈X
{−Γ− lim

n
ϕn(x)− I(x)}dν 6

6 sup
x∈X
{−Γ− lim

n
ϕn(x)− I(x)}

∫
X
dν 6

6 sup
x∈X
{−Γ− lim

n
ϕn(x)− I(x)}.

We proved the thesis.

(P2)⇒(P1) Let K be any compact in X and M any positive real fixed. We fix the
following sequence of measurable functions: ϕn(x) ≡ 1Kc(x) = ϕ(x) ∀x ∈
X ∀n ∈ N. We can start verifying that ϕn satisfies (2.9). Let us do some
trivial reckoning.

µn(1Kce−anϕn) =
∫
X

1Kc(x)e−Man1Kc (x)dµn =
∫
Kc
e−Man1Kc (x)dµn =

= µn(Kc)e−Man

µn(e−anϕn) =
∫
X
e−Man1Kc (x)dµn =

=
∫
K

1dµn +
∫
Kc
e−Mandµn = µn(K) + µn(Kc)e−Man

Joining the previous equalities we get:

0 6
µn(1Kce−anϕn)
µn(e−anϕn) = µn(Kc)e−Man

µn(K) + µn(Kc)e−Man
=

= µn(Kc)e−Man

 1
1 + eMan µn(K)

µn(Kc)

 6 µn(Kc)e−Man 6 e−Man .
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But an → +∞ thus

lim
n

µn(1Kce−anϕn)
µn(e−anϕn) 6 lim

n
e−Man = 0

that implies (2.9). So we can use (P2) with the chosen sequence (ϕn)n. Fur-
thermore we know that ϕ = Γ− limn ϕn because ϕ is lower semicontinuous.
Moreover

1K(x) 6 e−anM1Kc (x) ⇒
∫
X

1K(x)dµn 6
∫
X
e−anM1Kc (x)dµn

whereupon dividing by an and using (P2), with the result ϕ = Γ− limn ϕn,
yield to

lim
n

1
an

log µn(K) 6 lim
n

1
an

log µn(e−Man1Kc) 6 sup
x∈X
{−I(x)−M1Kc(x)}

(P1) follows by the limit M → +∞.

(P3)⇒(P1) Trivial.

(P4)⇒(P2) Assuming (P4), (P2) is already proved.

From now on we will assume Theorem 11.

(P1)⇒(P3) Trivial as above.

(P2)⇒(P4) The idea to prove the implication is the following: remembering the proof
of implication (H2) ⇒ (P2), we note that the hypothesis (2.9) is used only
for existence of a subsequence of (νn)n that converges to a limit point ν.
Let us note that we already proved the equivalence (H2)⇔(P2), so assuming
(P2) we also assume (H2). Moreover assuming Theorem 10 we also assume
point (H) i.e. equicoercivity of Ha

n in P(X). We define as above some new
probability measures νn:

νn(dx) = e−anϕn(x)

µn(e−anϕn)µn(dx) (2.23)

Showing that exists, up to subsubsequences, a convergent subsequence of
(νn)n, will allow to reproduce the same final steps of (H2) ⇒ (P2), that
yield to thesis. For existence we can use equicoercivity of Ha

n, so we need to
find constant l > 0, n0 ∈ N such that Ha

n(νn) > l ∀n > n0. We also note
that if (2.9) holds, we already get the thesis because of (P2). By 2.21,

Ha
n(νn) = −νn(ϕn)− 1

an
log µn(e−anϕn)

where, being −ϕn(x) 6 B ∈ R because bounded from below,

−νn(ϕn) =
∫
X

−ϕn(x)e−anϕn(x)

µn(e−anϕn) dµn 6
B

µn(e−anϕn)

∫
X
e−anϕndµn 6 B
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whereupon of course there exists n0 s.t. an > 1 ∀n > n0 ⇒ 1
an

6 1 ∀n >
n0. We conclude that

Ha
n(νn) 6 B − log µn(e−anϕn)

The final step is therefore obtain a bound, up to subsequences, on the term
− log µn(e−anϕn).
If (2.9) does not hold, it means that, given K compact of X,

lim
n

µn(1Kce−anϕn)
µn(e−anϕn) = λ ∈ (0, 1]

and there exists a subsequence (νkn)n that realizes limsup. For sake of sim-
plicity of notation, we will use νn in place of νkn . From

lim
n

µn(1Kce−anϕn)
µn(e−anϕn) = λ ∈ (0, 1]

we can find n0 ∈ N and η > 0 such that λ− η > 0 and

∀n > n0
µn(1Kce−anϕn)
µn(e−anϕn) > λ− η

At this point we estimate µn(1Kce−anϕn) as follows:

µn(1Kce−anϕn) 6 eBanµn(Kc)

but we can also use the hypothesis of exponential tightness of (µn)n. Indeed

∀ε > 0 ∃K := Kε : µn(Kc) < e−εan

and setting ε = B

µn(1Kce−anϕn) 6 eBanµn(Kc) 6 1

Putting the last inequality in one of the previous ones yields to

∀n > n0
1

λ− η
> µn(e−anϕn)

arriving to what we really need to use equicoercivity:

Ha
n(νn) 6 B − log µn(e−anϕn) 6 B + log(λ− η)
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Chapter 3

Some results in Large Deviations
theory

In this chapter we will prove some classical results of Large Deviations theory using
the theorems of chapter 2. In particular we will prove an analogous of Schilder’s
theorem in a special case, using the probability laws given by Gaussian random
variables. It is not of course the easiest way to catch on to the theorem, but
applying the results to a relatively straightforward case could be clarifying. First
of all we state Schilder’s theorem with a quite general formulation, in order to
understand the setting with a view from above.

Theorem 13 (Schilder’s Theorem). Let B be a standard Brownian motion in d-
dimensional Euclidean space Rd starting at the origin. Given ε > 0 let Wε be the
law of

√
εB. Fixing T ∈ R+ let us denote

C0 = C0([0, T ]) := {f : [0, T ]→ Rd|f is continuous on [0, T ] and f(0) = 0}

that is a Banach space equipped with the supremum norm || · ||∞. Then we define
the rate function J : C0 → R ∪ {+∞} as

J(ω) = 1
2

∫ T

0
|ω̇(t)|2dt

if ω ∈ W 1,2([0, T ]) ∩ C0 and +∞ otherwise.
Thus the probability measures Wε satisfy the Large Deviations principle with

good rate function J , i.e. for every open set O ⊆ C0 and every closed set C ⊆ C0
the following inequalities hold:

lim
ε→0

ε logWε(C) 6 − inf
ω∈C

J(ω)

and
lim
ε→0

ε logWε(O) > − inf
ω∈G

J(ω).

3.1 A classical result in finite dimension
Now we will apply the results we found to prove a finite dimensional version
of Schilder’s theorem in a special case. We are going to use the implications
(H2)⇒(P1) of Theorem 11 and (H2)⇒(P3) of Theorem 12.
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Proposition 14. Let V : Rd → R+
0 be a continuous function such that

lim inf
x→+∞

V (x)
||x||2

> 0

Let (µn)n be the sequence of probability measures in P(Rd) such that

µn(dx) = cne
−nV (x)dx,

where
cn =

(∫
X
e−nV (x)dx

)−1
.

Moreover, denoting with λ the Lebesgue measure, we assume that

lim
n

1
n

log λ
({
x ∈ Rd|V (x) 6 1

n

})
= 0

Then µn satisfies a Large Deviations lower bound and a Large Deviations upper
bound with speed an = n and with rate I : Rd → R where I(x) = V (x).

Proof. By theorems 11 and 12 we use the implications (H2)⇒(P1) of Theorem 11
and (H2)⇒(P3) of Theorem 12 to prove our claim. Thus we need to prove that,
for any ν ∈ P(Rd) the following inequalities hold:

inf
{

lim
n

1
n
H(νn|µn)

∣∣∣∣ νn → ν
}
6
∫
Rd
Idν

for Theorem 11 and

inf
{

lim
n

1
n
H(νn|µn)

∣∣∣∣ νn → ν
}
>
∫
Rd
Idν

for Theorem 12. Let (νn)n be a sequence such that νn → ν in P(Rd). We denote
ρn := dνn

dx
if νn � µn and ρ := dν

dx
. First of all we do some reckoning useful both

for liminf inequality and for limsup inequality. Noting that

dνn
dµn

= ρn(x)
e−nV (x)

it is possible write down the following:

H(νn|µn) = H(ρn(x)dx|e−nV (x)+log cndx) =
∫
Rd

dνn
dµn

log
(
dνn
dµn

)
dµn =

=
∫
Rd

ρn(x)
e−nV (x)cn

log
(

ρn(x)
e−nV (x)+log cn

)
e−nV (x)cndx

=
∫
Rd
ρn(x) log

(
ρn(x)

e−nV (x)+log cn

)
dx =

=
∫
Rd
ρn(x) log

(
ρn(x)enV (x)

)
dx− log cn =

=
∫
Rd
ρn(x) log (ρn(x)) dx+

∫
Rd
ρn(x)nV (x)dx+ log 1

cn
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and dividing by n we get

Hn(νn) = 1
n

∫
Rd
ρn(x) log (ρn(x)) dx+

∫
Rd
V (x)dνn + 1

n
log 1

cn
(3.1)

Inter alia from 3.1 we get

lim
n
Hn(νn) 6 lim

n

1
n

∫
Rd
ρn(x) log (ρn(x)) dx+ lim

n

∫
Rd
V (x)dνn + lim

n

1
n

log 1
cn

and

lim
n
Hn(νn) > lim

n

1
n

∫
Rd
ρn(x) log (ρn(x)) dx+ lim

n

∫
Rd
V (x)dνn + lim

n

1
n

log 1
cn

From hypothesis we get
e−V (x) ∈ L1(Rd,B(Rd)).

Moreover
1
cn

=
∫
X
e−nV (x)dx = 1

c1

∫
X
e−(n−1)V (x)e−V (x)c1dx 6

1
c1

∫
X
e−V (x)c1dx 6

1
c1
,

therefore
lim
n

1
n

log 1
cn

6 0.

On the other hand
1
cn

=
∫
X
e−nV (x)dx >

∫
{x|V (x)6 1

n
}
e−nV (x)dx =

∫
{x|V (x)6 1

n
}
e−1dx,

therefore
lim
n

1
n

log 1
cn

> 0.

Because of these comments we can go on without loss of generality starting
from

Hn(νn) = 1
n

∫
Rd
ρn(x) log (ρn(x)) dx+

∫
Rd
ρn(x)V (x)dx (3.2)

instead of (3.1).
After this heavy but essential introduction we are going to prove the liminf

inequality and the limsup inequality.

Liminf inequality In the following paragraph (νn)n is a generic sequence of
probability measures converging to ν in P(Rd). Without loss of generality we are
going to assume Hn(νn) < +∞ ∀n .

Starting from (3.2), for Fatou’s lemma

lim
n

∫
Rd
ρn(x)V (x)dx >

∫
Rd
ρ(x)V (x)dx = ν(I)

Showing
lim
n

1
n

∫
Rd
ρn(x) log (ρn(x)) dx > 0
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yields to our thesis because of

lim
n
Hn(νn) > lim

n

1
n

∫
Rd
ρn(x) log (ρn(x)) dx+ ν(I)

Let us denote dγ = µ1 and dγ(dx) = γ(x)dx = c1e
−V (x)dx.

1
n

∫
Rd
ρn(x) log (ρn(x)) dx = 1

n

∫
Rd
ρn(x) log

(
ρn(x)γ(x)

γ(x)

)
dx

= 1
n

∫
Rd
ρn(x) log

(
ρn(x)
γ(x)

)
dx+ 1

n

∫
Rd
ρn(x) log (γ(x)) dx

= 1
n

∫
Rd

ρn(x)
γ(x) log

(
ρn(x)
γ(x)

)
dγ + 1

n

∫
Rd
ρn(x) (−V (x) + log c1) dx

⇒ lim
n

1
n

∫
Rd
ρn(x) log (ρn(x)) dx > lim

n

1
n

∫
Rd

ρn(x)
γ(x) log

(
ρn(x)
γ(x)

)
dγ =

= lim
n

1
n

∫
Rd

νn
dγ

log
(
νn
dγ

)
dγ =

= H(νn|dγ) > 0

Limsup inequality In order to obtain the limsup inequality we are going to
show the existence of a recovery sequence that satisfies it. We fix ν ∈ P(Rd).
Let X be a ν-measurable random variable and N be a Gaussian random variable
where N ∼ N(0, I). Let ε be a real positive number that will be specified later,
and will be n-dependent, so ε = ε(n), in particular ε(n)→ 0 when n→ +∞. We
assume X and N independent.

As first observation, we have

E[|X + εN |2] = E[X2] + ε2E[N2]→ E[X2] =
∫
Rd
X2dν if n→ +∞

In particular we choose as recovery sequence, the sequence of laws given by the
random variables X+εN , that is the convolution ρε ∗ν. The sequence is indicized
on n, because ε = ε(n). We observe that

||ρε ∗ ν||∞ 6
∫
Rd

e−
||x||2

2

(2πε) d2
ν(x)dx 6 (2πε)− d2

Moreover ∫
Rd

(ρε ∗ ν)(x) log((ρε ∗ ν)(x))dx 6
∫
Rd

log ||ρε ∗ ν||∞dx

6 −d2 log(2πε)

Therefore using Fatou’s lemma and (3.2) we get

lim
n
Hn(νn) 6 lim

n

1
n

∫
Rd
ρn(x) log (ρn(x)) dx+ lim

n

∫
Rd
ρn(x)V (x)dx 6

6 −d2 log(2πε) 1
n

+ ν(I)
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and choosing
ε(n) = 1

n

we get the thesis.
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Appendix A

Partitions of a metric space

In the following propositions to focus on some properties of the partitions of the
space X proposed in Remark 3.9 of the article [6] by M.Mariani. The construction
of the partition is a little bit technical but not so much sophisticated. Let X be
a complete metric separable space and {Ck}k∈N+ be a sequence of compacts of X
such that exists µ ∈ P(X) for which

lim
k→+∞

µ(Ck) = 1

and let ϕ, {ϕn}n∈N+ be a sequence of real-valued Borel functions such that
ϕn → ϕ pointwise µ-a.e. . Moreover we assume that

∀k ≥ 1 ∃Nk ∈ N ∃{Ek
l }

Nk
l=1 : Ck ⊆

Nk⋃
l=1

Ek
l

where El
k are subsets of X with the following properties1 :

• Ek := σ({Ek
l }

Nk
l=1), and lim

k→+∞
sup

16l6k
diam(El) −→ 0

• ∀k ∈ N+ Ek
i ∩ Ek

j = ∅ ∀i, j ∈ {1, ..., Nk} if j 6= i

• ∀k ∈ N+ ∀l ∈ {1, ..., Nk} E̊k
l 6= ∅

Given

x ∈ X\
( +∞⋃
k=1

Nk⋃
l=1

∂Ek
l

)
s.t. µ({x}) 6= 0

is trivial to say that

∃k ∈ N+ ∃!lk(x) ∈ {1, ..., Nk} : x ∈ Ek
lk(x)

For sake of simplicity when we fix k, we call l(x) = lk(x). Now we fix k ∈ N+ and
define an equivalence relation. We say

∀x, y ∈
Nk⋃
l=1

Ek
l , x ∼k y ⇔ l(x) = l(y)

To verify it is an equivalence relation is trivial.
1This is the setting of Lemma 8.
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Proposition 15. Given x as above we call

ϕn,k(x) = inf
y∼kx

ϕn(y) (A.1)

and
ψk(x) = lim

n
ϕn,k(x) (A.2)

thus
sup
k
ψk(x) = Γ− lim

n
ϕn(x) (A.3)

Proof. As a first step we want to prove

sup
k
ψk(x) ≤ inf

{
lim
n
ϕn(xn) | xn → x

}
= Γ− lim

n
ϕn(x) (A.4)

Fixed k, given xn → x we have xn ∼k x definitively in n. So

ϕn,k(x) = ϕn,k(xn) ≤ ϕn(xn)

passing now to liminfs
lim
n
ϕn,k(x) ≤ lim

n
ϕn(xn)

and considering the supremum in k at the left hand side and the infimum varying
xn −→ x at the right hand side we obtain the initial inequality.

Next, we see that

sup
k
ψk(x) ≥ inf

{
lim
n
ϕn(xn) | xn → x

}
(A.5)

To do this, we will choose a particular sequence xn → x whenever n→ +∞.
Fixing x we have that ψk(x) are increasing in k, so calling s(x) = supk ψk(x) =

limk ψk(x). By definition of sup.

∀ε > 0 ∃ k(ε) = kε ∈ N|∀k > kε

we can write
ψk(x) 6 s(x) + ε

and so
lim
n
ϕn,k(x) 6 s(x) + ε

By definition of liminf ∀δ > 0

lim
n
ϕn,k(x) 6 s(x) + ε+ δ

frequently in n thus exists a subsequence hn → +∞ for n→ +∞ such that

ϕhn,k(x) 6 s(x) + ε+ δ

for any n. Recalling the initial definitions

inf
y∼kx

ϕhn,k(y) 6 s(x) + ε+ δ
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therefore ∀η > 0 exists y = y(k, hn, η) ∈ Ei
k such that

ϕhn(y(k, hn, η)) 6 s(x) + ε+ δ + η

At this point we choose (xn)n as follows:

xi =

y(kε + 1, hn, 1
n
) if i = hn

x otherwise

with ε = 1
k
we get the thesis taking limn and supk .

The following proposition is necessary to prove point (vi) of Lemma 8. For sake
of simplicity and understanding of the proof it is appropriate change notations and
work in a little bit different environment from that presented in the lemma.

Proposition 16. Let (An)n be a sequence of σ-algebras and A a σ-algebra such
that:

• An ⊂ An+1 ∀n ∈ N

• σ
( ⋃
n∈N
An
)

= A

Then, given ν, µ ∈ P(X) s.t. ν << µ

HA(ν|µ) = lim
n→+∞

HAn(ν|µ)

Proof. As a first step, we say that HAn(ν|µ) is increasing in n. In fact

HAn(ν|µ) = sup
ϕ∈L∞(X,An,µ)

{ν(ϕ)− log µ(eϕ)} 6

6 sup
ϕ∈L∞(X,An+1,µ)

{ν(ϕ)− log µ(eϕ)} = HAn+1(ν|µ)

Now, given ϕ ∈ L∞(X,A, µ), defined

ϕn = Eµ[ϕ|An] and ϕ = Eµ[ϕ|A]

that is An-measurable for definition. At this point,

∀A ∈ A Eµ(A|An)→ IA µ-almost surley⇒ ϕn → ϕ µ-a.s.

by martingale convergence theorem (see [2]). Moreover ∃M ∈ R+ such that |ϕn| <
M ∀n ∈ N. So by dominated convergence we obtain that∫

X

ϕndν =
∫
X

ϕn
dν

dµ
dµ −→

∫
X

ϕ
dν

dµ
dµ =

∫
X

ϕdν

In the same way ∫
X

eϕndµ −→
∫
X

eϕdµ

and so the thesis with sup and entropy definition.
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Appendix B

Jensen’s inequality in locally
convex spaces

In this appendix we are going to justify some steps of implication (H1)⇒(H2) of
Theorem 11. In particular we will refer to the paper [8], where the author proves
Jensen’s integral inequality for proper convex functions, defined on a convex set in
a topological vector space. The rigorous formalization of how to use the inequality
is quite advanced and requires more theory of that proposed in this thesis, thus
we are going only to outline a sketch of the former, without focusing on details.

The steps that we would like to justify are the following:

• first step:

(Γ− lim
n
Ha
n)(ν) = Γ− lim

n
Ha
n

(∫
P(X)

ν(dx)δx
)

• second step:

Γ− lim
n
Ha
n

(∫
P(X)

ν(dx)δx
)
6
∫
P(E)

ν(dx)(Γ− lim
n
Ha
n)(δx)

The problem is to set up hypothesis and setting of theorems proposed in [8] .

General setting Let E be a Hausdorff locally convex topological vector space,
and (C,Σ, µ) a convex probability space (i.e. a positive measure space such that
µ(C) = 1 and C is a nonempty convex subset of E) such that B(C) ⊆ Σ and
the barycenter xµ of µ exists in E. Let f : C → (−∞,+∞] be a proper convex
function. We assume that C is evenly convex and f is lower semicontinuous. The
topological dual of E is denoted by E∗.

By eco(C) we denote the evenly convex hull of C, that is the intersection od
all open halfspaces containing C, saying that C is evenly convex if eco(C) = C.
The Hahn-Banach separation theorem 1 implies that eco(C) ⊆ C and if C is either
open or closed, thus C is evenly convex.

1See [1].
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Barycenter of a probability measure Let (C,Ω, µ) be a convex space in E
such that B(C) ⊆ Σ. The barycenter xµ is defined as the Pettis integral2 of the
identity mapping I : C → E, I(y) = y or equivalently

x∗(xµ) =
∫
C
x∗dµ, ∀x∗ ∈ E∗

In [8] we find the following theorem:

Theorem 17 (Jensen’s integral inequality). Let E be a Hausdorff locally convex
topological vector space, and (C,Σ), µ) a convex probability space such that B(C) ⊆
Σ and the barycenter xµ of µ exists in E. Let f : C → (−∞,+∞] be a proper
convex function. We assume that C is evenly convex and f is lower semicontinous.
Then:

(a) xµ ∈ C

(b) the Lebesgue integral
∫
C fdµ exists (finite or infinite);

(c) the Jensen’s inequality holds:

f(xµ) 6
∫
C
fdµ (B.1)

We would like to apply the previous theorem with C = P(X), that is not a
topological vector space, but it is a convex set. The idea is to immerge P(X) in
a bigger space that is a topological vector space, equipped with an appropriate
structure of probability space (and so determine an appropriate µ). Moreover
f = (Γ− limnH

a
n), defined of P(X).

The topological vector space we could choose is the space of finite signed mea-
sures over X. The sum of two finite signed measures is a finite signed measure, as
is the product of a finite signed measure by a real number: they are closed under
linear combination. Thus the set of finite signed measures on a measurable space
(X,B(X)) is a real vector space; this is in contrast to positive measures, which are
only closed under conical combination, and therefore form a convex cone but not
a vector space. Moreover the total variation defines a norm in respect to which
the space of finite signed measures becomes a Banach space.

2See Pettis, B. J. On integration in vector spaces. Trans. Amer. Math. Soc. 44 (1938), no.
2, 277–304.
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