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Introduction

The minimum spanning tree is one of the easiest problem of combinatorial optimisation

to define and consists , given a connected graph, in finding the spanning acyclic subgraph

(tree) with the smallest total edge weight. Its applications span a multitude of fields, the

most obvious being computer science and communication networks, but it is also widely

used as a tool for clustering and classification problems, image processing and automatic

speech recognition, to name a few. A common instance of this problem in applications, is

when the nodes of the graph are points inRd and the length of edges of the graph are a power

of the euclidean norm of the points, called Euclidean minimum spanning tree.

The aim of this work is to study the properties of the Euclidean MST where the points

are not supposed to be fixed, but are uniform random variables in [0,1]d . While there is

a good amount of articles that study the properties of the MST on the complete random

graph generated by the points, very few works about the bipartite case have been published.

However, recently in [2] it was studied the bipartite problem when d = 1 and found an exact

formula for the average cost . Part of the work on this thesis was dedicated to try to extend

the results to a generic d and to our knowledge we discovered this new result:

Theorem. In the Euclidean bipartite toroidal model:

βB
T (d) := lim

n→∞
E [Tn]

n
d−1

d

= Γ
( 1

d

)
d(cd )

1
d

+
∞∑

k=2

Γ
(
k + 1

d −1
)

dk

k−2∑
j=0

η j ,k (d)

j !(k − j −1)!

η j ,k (d) =
∫
Θ j ,k (1)

(
g j ,1(bu1, . . . ,bu j )+ gk− j−1,1(r u1, . . . ,r uk− j−1)

)−(k+ 1
d −1) dbu1 . . .dbu j dr u1 . . .dr uk− j−1

where

• E [Tn] is the average cost of a bipartite MST on n random uniform points in the torus

[0,1]d / ∼

• Θ j ,k (1) is the subset made by every element of Θk (z) having exactly j blue nodes, which
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in turn is the subset of Rd×(k−1) made by every red and blue points, {x1, . . . xk−1}, such

that there exists a tree that connects the points with edges of length ≤ 1

• gs,z(x1 . . . xs−1) is the the volume of
⋃s−1

j=0 B(x j , z).

In chapter 1, after a brief section dedicated to some essential definitions of graph theory,

we focus on the minimum spanning tree problem showing some of its defining characteris-

tics and the classic algorithms used to solve it.

In chapter 2 we explore the properties of the deterministic Euclidean minimum span-

ning tree, in particular we show a bound for its cost that depends only on the number of

nodes, we prove that the degree is limited in any dimension d and also prove some relations

that bind two MSTs of different sets of vertices.

In Chapter 3 we study the asymptotics of the mean cost of the random Euclidean MST.

By using two different approaches, one that considers the points in the cube and the other

that assume the points to be in a torus, we prove a result of convergence of the weighted

mean cost for the MST problem.

In chapter 4 we switch our attention to the MST problem when the graph is bipartite.

First we present an algorithm that is a direct generalisation of the algorithm presented in

[2] in dimension d . Then we prove some deterministic bounds for the cost and use them

to show some bounds on the constant of the mean weight. Then we concentrate on the

maximum degree of the nodes and prove a bound when the blue points are on a grid and

the red ones are uniformly distributed. Finally we prove the result of convergence of the

mean weight when the points are in the torus.



Chapter 1

The minimum spanning tree problem

This chapter is dedicated to provide an introduction of the general problem, defining the

setting of graph theory and every element needed for the following analysis as done in [3].

After a brief exposition of the essential definitions, there is a description of some classic

algorithms used to solve the minimum spanning tree problem in generic graphs, that will

be later used as theoretical tools to prove our statements.

1.1 Graphs

Definition 1.1. A graph G is a pair of sets (V ,E) where V is the finite set of the vertices (or

nodes) of the graph and E ⊂ V ×V is the set of the edges of the graph. Given a function

W : E →R, G = (V ,E ,W ) is called a weighted graph.

We say that u, v ∈ V are adjacent if (u, v) ∈ E , while w ∈ V is incident to e = (x, y) ∈ E if

x = w or y = w . We call N (u) the set of the nodes adjacent to u while #N (u) is called the

degree of u.

A path is a sequence of edges (e1, . . . ,ek ) such that ei = (vi−1, vi ) for a sequence of ver-

tices (v0, . . . , vk ). If v0 = vk the path is called a cycle. Graphs containing no cycles are called

acyclic. From paths we can define what connection means in graphs: two nodes u and v are

connected if there is a path whose starting node is u and ending node is v . A graph is then

connected if every couple of vertices is connected.

If E =V ×V , namely for any couple of vertices there is an edge that connects them, then

G is called complete.

Given a graph G = (V ,E) and G ′ = (V ,E ′), G ′ is a subgraph of G if V ⊂V and E ′ ⊂ E . If G is
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a weighted graph, the weight (equivalently cost or length) of G ′ is defined as

∑
e∈E ′

W (e).

A maximal connected subgraph of a graph G is called a component of G .

A multigraph is a graph where there can be more than one edge that connects two node.

We note that if we are dealing with a weighted multigraph two edges connecting the same

nodes can have different lengths.

1.2 The problem

Given a graph G = (V ,E) a spanning tree T = (V ′,E ′) is a connected acyclic subgraph of G

such that V ′ =V .

Given a connected weighted graph G = (V ,E ,W ), T is a minimum spanning tree of G if it

is a spanning tree of G of minimum weight among all the possible spanning trees of G.

We note that we can suppose, without loss of generality, that the weights of G are all

different, as one can set an ordering even among the edges of same weight.

We now present some basic property of the MST functional:

Given a graph G a cut is any set C ⊂ E of edges such that G ′ = (V ,E −C ) is not connected.

Theorem 1.1. Given a graph G = (V ,E ,W ) (where all weights are different), a minimum span-

ning tree T = (V ,E ′), and an edge e ∈ E, we have:

a) e ∈ E ′ if and only if there is a cut C such that e ∈C and e is the edge of minimum weight

in C

b) e ∉ E ′ if and only if there is a cycle C ′ such that e ∈ C ′ and e is the edge of maximum

weight of C ′

Proof. a)If e is an edge of T , then by removing it from the tree we get a partition of the nodes

V ′ and V ′′. We consider the cut C made by all edges that connects a node in V ′ to a node in

V ′′. If e was not the minimum among the edges in C , then one could replace e with another

edge and get a tree of cost less than the cost of the minimum spanning tree.

On the other hand if there is a cut C where e is of minimum length, then if e ∉ E ′, when

added to E ′ it forms a cycle. This means that there is at least another node e ′ in the cycle

that is in C . Thus, deleting e ′ from T and adding e generates another spanning tree of cost

strictly inferior than the cost of T .
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b) if e ∉ E ′, then E ∪ {e} has a cycle C ′ and e ∈ C ′. If there was an edge e ′ ∈ C ′ such that

W (e ′) >W (e) then E ∪ {e} \ {e ′} would be a spanning tree of cost less than the cost of T .

If there is a cycle C ′ such that e ′ is the edge of maximum weight in C ′, then if e was also

an edge of the minimum spanning tree, one could remove it and add one of the edges of the

cycle that is also in the cut generated by e. The tree generated would have weight strictly

inferior to the one of T .

1.3 Algorithms

In this section we will present some classic algorithms used to solve the MST problem. Apart

from being useful as they provide an easy solution to the minimum spanning tree problem,

they are also used as a tool for the theoretical aspect of the problem.

Kruskal’s algorithm

Kruskal’s algorithm starts with E ′ =∅ and considers the set of the edges ordered according

to their weight, in ascending order. Then, one by one, every edge (u, v) is either added to

(V ,E ′) or skipped:

• if u and v are already connected in (V ,E ′), then (u, v) cannot be added or it would

generate a cycle;

• if u and v are not already connected, then it is possible to find a cut that divides them

and, since the edges are ordered and no other edge of the cut was added before, then

(u, v) is an edge of the minimum spanning tree.

After n −1 edges have been added, (V ,E ′) is a tree and the algorithm stops.

The following is a pseudo code for Kruskal algorithm where G = (V ,E), Sor t (E) is a func-

tion that returns the elements of the set E in descending order and Component (E ′,u, v) is

a function that returns true if u and v are in the same component in (V ,E ′) and false other-

wise:
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function K r uskal ( G) {

E ′ =∅ ;

X = Sor t (E);

while
(|E ′| < n −1

)
{

remove from X the first edge (u, v);

if ( Component (E ′,u, v) )

E ′ = E ′∪ {(u, v)};

}

return T = (V ,E ′)
}

The most critical point of the algorithm is how to implement Component , but one can

use a data structure to keep track of the components at every iteration, granting cost O(1)

for every call of Component . Thus the cost of the algorithm is given by the sorting, that can

be done in O(|E |log (|E |) and the while cycle that contains only O(1) operations leading to a

cost of O(|E |) for the whole cycle. Since |E | can be at most V 2 then the run-time of K r uskal

is O(|E |log (|V |).

Prim’s algorithm

While Kruskal’s algorithm adds one by one every edge until the tree is built, Prim’s algorithm

works on the nodes of the graph: given V ′ and E ′ the nodes and the edges added until that

step, Prim’s algorithm adds to E ′ the edge (u, v) of minimum weight in the cut (V −V ′,V ′) as

well as v to N ′. The process is repeated until V ′ =V .

By the end of the algorithm we will have a connected graph (N ,E ′) that contains only

edges of the minimum spanning tree thanks to the cut property a), meaning that (N ,E ′) is

the minimum spanning tree of G.

In order implement it one can just calculate the minimum edge that crosses the cut at

every iteration, but the run-time would be of O(|E ||V |). A more efficient way to do this is to

keep track, for every v ∈V −V ′, of the minimum edge that connects V ′ to v at every iteration,

for example by storing the vertices in a priority queue. By doing this, every time a node v is

added to V ’ one has to just check the edges that connect v to V −V ′ and update the queue.

If the costs of the operations inside the queue are low enough, for example by using an heap,

it is possible to get a run-time of O(|E |log (V )) for the whole algorithm.

Here a pseudo code for the algorithm where PQ is the priority queue, decr easeke y(PQ,u, v)

rearranges the order of the elements of the queue according to the weight of (u, v), wei g ht [v]
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the weight of the smallest edge that connects the node u to the tree and pr ed [v] is the node

u ∈ N ′ such that (u, v) ∈ PQ. pr ed is also the vector that represents the tree.

procedure Prim( G ) {

choose a node r in N

foreach( i ∈V ) {

pr ed [i ] = r ;

wei g ht [i ] =∞;

}

PQ = {r };

while(PQ 6=∅){

let u be the first element of the queue

PQ = PQ −u;

foreach((u, v), v ∈V −V ′) {

if (w(u, v) < wei g ht [v]) {

decr easeke y(PQ,u, v);

pr ed [v] = u;

wei g ht [v] = w(u, v);

if (v ∉ PQ) then PQ = PQ ∪ {v};

}

}

}

}
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Chapter 2

Euclidean MST

In this chapter we consider complete graphs where the vertices are points in [0,1] and the

length of the edges are a function ψ of the Euclidean norm. This particular case comes out

as one of the most natural to study and it can be traced as far back as when the minimum

spanning tree problem was first defined. Here we will show some very unique and useful

properties of this case, as presented in [5], that arise due to the geometrical nature of the

problem.

Figure 2.1: A Euclidean minimum spanning tree in the plane

Given n distinct points S = {x1, x2, . . . xn} ⊂Rd andψ :R+ →R+ we call G(S) = (S,S×S,W )

the graph generated from S with edge weight function ψ, where W ((xi , x j )) = ψ(|xi − x j |)
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and | · | is the Euclidean norm on Rd . We call MST (S) the minimum spanning tree of G and

M(S) the length of MST (S). We will also refer to MST (S) as the minimum spanning tree of

S.

Letψ(x) = |x|, we define vd (x) as the function counting the number of edges of the min-

imum spanning tree of {x1, . . . , xn} whose length is greater than x, namely:

#
{

e
∣∣∣ |e| > x

}
Through Lemma 2.1 we capture some information about the lengths of the edges, prov-

ing that they do not depend on n.

Lemma 2.1. There is a constant γd that depends only on the dimension d such that:

vd (x) ≤ γd x−d

for every 0 < x <∞.

Proof. First we note, as a consequence of the pigeonhole principle, that there is a constant

αd such that for every set of k points in [0,1]d one can pick two points xi x j such that

∣∣xi −x j
∣∣<αd k− 1

d . (2.1)

In fact if for any constant α we had a configuration such that
∣∣xi −x j

∣∣ ≥ αd k− 1
d for any

i 6= j , then there would be at least a region of the form B(x j ,2−1αd k− 1
d )∩[0,1]d around each

point x j , devoid of any other point, where B(x,r ) is the d-ball of centre x and radius r . The

area of these regions is minimised when the point x j is in a corner of [0,1]d and equals to

cd 2−2dαd
d k−1, where cd is the area of unit ball in Rd . Then by summing every area around

every point we would get that

cd 2−2dαd
d ≤ 1

for any constant αd which is absurd.

Let then {x1, . . . xn} ∈ [0,1]d , and E ′ the set of the edges of the minimum spanning tree of

the graph generated by xi .

We now consider Prim’s algorithm.

If e j , 1 < j < n are the edges added by the algorithm ordered according to when they

are selected, when e j is added there are exactly (n − j + 1) connected components in the

graph built until that time. Then by choosing a vertex from every component we can apply

inequality 2.1 and get:
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∣∣e j
∣∣≤αd (n − j +1)−

1
d .

Thus if ei j 1 < j < k are any edges of E ′, since they are added in ascending order we have:

k∑
j=1

∣∣∣ei j

∣∣∣≤ n−1∑
n−k

∣∣e j
∣∣≤αd

k+1∑
i=2

i−
1
d ≤ α̃d k

d−1
d

for a new constant α̃d . We apply the last inequality to k = vd (x) and get:

xvd ≤ ∑
e∈T|e|>x

|e| ≤ α̃d v
d−1

d
d .

Thus rearranging the terms we finally get γd = α̃d
d .

Thanks to Lemma 2.1 we can now prove some very useful bounds for M(x1, . . . xn) when

ψ(x) is a power function:

Theorem 2.2. For any ψ(x) = |x|a and any minimal spanning tree T of {x1, . . . , xn} we have:

a)
∑

e∈T |e|a ≤ γ′(a,d)n
d−a

d for 0 < a < d

b)
∑

e∈T |e|d ≤ γ′(d)log n

c)
∑

|e|≥y |e|a ≤ γ′(a,d)y a−d for 0 < y <∞ and 0 < a < d.

Proof. We fix λ> 0 and have:

∑
e∈T

|e|a = ∑
|e|≤n−λ

|e|a + ∑
|e|>n−λ

|e|a .

The first sum can be bounded by n1−λa , as the number of edges whose length is ≤ n−λ is

n −1− vnλ . The second sum can be rewritten as an integral, getting us to:

∑
e∈T

|e|a ≤ n1−λa +
∫ p

d

n−λ
xad(n −1− vd (x)).

Applying integration by parts:

∑
e∈T

|e|a ≤ n1−λa +n−λa vd (n−λ)+a
∫ p

d

n−λ
xa−1vd (x)d x.
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Thanks to 2.1 we can bound vd (x) with γd x−d , so we get:

a
∫ p

d

n−λ
xa−1vd (x)d x ≤ aγd

∫ p
d

n−λ
xa−1−d d x = a

d −a
γd

(
n−λ(a−d) −

p
d

a−d)
≤ a

d −a
γd n−λ(a−d)

and

∑
e∈T

|e|a ≤ n1−λa +γd n−λ(a−d) + a

d −a
γd n−λ(a−d).

The result then follows by setting λ= 1
d .

The other two result derive from similar arguments:

∑
e∈T

|e|d ≤ n1−λd +γd n−λ(d−d) +dγd

∫ p
d

n−λ
xd−1−d d x ≤ n1−λd +dγd

(
log (

p
d)+λlog n

)
and λ= 1

d ,

∑
|e|>y

|e|a ≤
∫ p

d

y
xad(n −1− vd (x)) = y a vd (y)+a

∫ p
d

y
xa−1vd (x)d x ≤ γd y a−d + a

d −a
γd y a−d .

In the next proposition we will provide some bounds on M(x1, . . . , x̂i , . . . xn) given M(x1, . . . xn)

and viceversa, where M(x1, . . . , x̂i , . . . xn) is the minimum spanning tree of the graph made

from the points {x j } j=1...n except xi .

Proposition 2.3. For any edge weight function ψ we have:

M(x1, . . . , xn) ≤ M(x1, . . . x̂i , . . . xn)+min
j 6=i

ψ(|xi −x j |).

Furthermore if ψ is not decreasing we have:

M(x1, . . . x̂i , . . . xn) ≤ M(x1, . . . , xn)+ ∑
j∈N (i )

ψ(2|xi −x j |)

where N (i ) is the set of all nodes adjacent to xi in M(x1, . . . , xn).

Proof. The first inequality comes from the fact that any spanning tree of {x1, . . . x̂i . . . , xn} can

be completed as a spanning tree on {x1, . . . , xn} by simply adding an edge that connects any

x j to xi .
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For the second inequality we consider x ′, an element of N (i ) that satisfies:

|x ′−xi | = min
x j∈N (i )

|x j −xi |

Then we build a connected graph spanning {x1, . . . , x̂i , . . . xn} from T , a spanning tree of

{x1, . . . xn}: first we consider the edges of T , then we delete every edge of T that connects

xi to its adjacent nodes, finally for any x j ∈ N (i ) apart from x ′, we add the edge that con-

nects x j to x ′.
Clearly we have:

M(x1, . . . , x̂i , . . . xn) ≤ M(x1, . . . xn)− ∑
j∈N (i )

ψ(|x j −xi |)+
∑

j∈N (i )
ψ(|x ′−x j |).

Now using the triangle inequality and the fact that x ′ minimizes the distance from xi :

|x ′−x j | ≤ |x ′−xi |+ |xi −x j | ≤ 2|xi −x j |

for any x j ∈ N (i ).

Since ψ is nondecreasing

ψ
(|x ′−x j |

)≤ψ(
2|xi −x j |

)
and

ψ
(|xi −x j |

)≤ψ(
2|xi −x j |

)
.

Providing:

M(x1, . . . x̂i , . . . xn) ≤ M(x1, . . . xn)− ∑
j∈N (i )

ψ(|x j −xi |)+
∑

j∈N (i )
ψ(|x ′−x j |

≤ M(x1, . . . , xn)+ ∑
j∈N (i )

ψ(2|xi −x j |).

The next lemma provides a bound on the degree of any node in the minimum spanning

tree.

Lemma 2.4. If ψ is strictly increasing, for every MST of n points in Rd there exist a constant

Dd , dependent only on the dimension d , such that the maximum degree of the minimum

spanning tree bounded by Dd .
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Proof. Ifψ(x) = x, then the degree is limited by Nd , the number of spherical caps with angle

60° needed to cover a sphere in Rd . If there was a node x with degree over Nd then there

would be two points, y and z, connected to x whose edges form an angle less than 60°. But

that would be absurd as it would hold

|x − y |+ |x − z| > min
{|x − y |, |x − z|}+|y − z|

meaning that there would be a spanning tree of cost strictly less than the MST.

For a general ψ we recall the Kruskal algorithm for minimum spanning trees. Since the

algorithm orders the edges according to their weight and then adds them one by one, and

ψ is strictly increasing then the ordering would be the same as the Euclidean case, meaning

that also the resulting MST would be the same. Then the lemma is true for every ψ with

Dd = Nd .

We can now prove a bound on the difference of the lengths of minimum spanning trees

of two sets of points, that depends only on how many points they have in common.

Theorem 2.5. Given the weight function ψ= |x|a with 0 < a < d, for every two finite subsets

of [0,1]d , χ and χ′, there exists a constant γ′′(a,d) such that

∣∣M(χ)−M(χ′)
∣∣≤ γ′′(a,d)

∣∣χ4χ′∣∣ d−a
d (2.2)

where χ4χ′ = (
χ∪χ′)\

(
χ∩χ′).

Proof. Using the second part of proposition 2.3 repeatedly from M(χ∪χ′), considering every

node in χ\χ′ we get:

M(χ′) ≤ M(χ∪χ′)+ ∑
x ′∈χ−χ′

∑
x∈N (x ′)

ψ(2|x ′−x|)

Now, let E ′ = {
(x, x ′)

∣∣x ∈ N (x ′), x ′ ∈χ\χ′
}
, and V ′ the set of the nodes incident to any

edge of E ′. Thanks to lemma 4 we know that |V ′| < (1+Dd )|χ\χ′| .

If e belongs to E ′ then it also belongs to MST {x1, .., xn} and as a consequence of the cut

property a), there exists A, Ac ∈ x1, . . . , xn such that:

|e| = min
{
e ∈ E ′ : {e}∩ A∩V ′ 6=∅, {e}∩ Ac ∩V ′ 6=∅

}
which means that e must also be an edge of MST (V ′) leading to:

∑
x ′∈χ−χ′

∑
x∈N (x ′)

ψ(2|x ′−x|) ≤ ∑
e∈MST (V ′)

ψ(2|e|).
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We can then bound this equation with Theorem 2.2 a) together with the bound we have

for |V ′| and write:

M(χ′) ≤ M(χ∪χ′)+2aγ′(a,d) (1+Dd )
d−a

d
∣∣χ\χ′

∣∣ d−a
d .

We now bound M(χ∪χ′) using M(χ). If we consider also M(χ′ \χ) we can build a span-

ning tree for χ∪χ′ by joining the MST of χ∪χ′ and χ′ \χ with an edge. Therefore we have

the inequality:

M(χ∪χ′) ≤ M(χ)+M(χ∪χ′)+ min
x∈χ,x ′∈χ′

ψ(|x −x ′|)

We again use Theorem 2.2 a) to bound M(χ′ \χ) with γ′(a,d)
∣∣χ′ \χ

∣∣ d−a
d and also bound

minx∈χ,x ′∈χ′ψ(|x −x ′|) with d
a
2

Combining the inequalities we finally get:

M(χ′)−M(χ) ≤ γ′(a,d)
(
1+2a (1+Dd )

d−a
d

)∣∣χ′ \χ
∣∣ d−a

d +d
a
2

and by symmetry we also have

M(χ)−M(χ′) ≤ γ′(a,d)
(
1+2a (1+Dd )

d−a
d

)∣∣χ\χ′
∣∣ d−a

d +d
a
2 .

Since both |χ \ χ′| and |χ′ \ χ| are less or equal than |χ4χ′| and we can assume that

|χ4χ′| ≥ 1 (otherwise the result would be trivial), the thesis is verified for

γ′′(a,d) = γ′(a,d)
(
1+2a (1+Dd )

d−a
d

)
+d

a
2 .
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Chapter 3

Asymptotic growth in mean

In this chapter we study the random Euclidean minimum spanning tree problem where the

points are uniform and independent random variables. The main results we are presenting

are given by the asymptotic behaviour of the mean weight of the minimum spanning tree as

the number of points tends to infinity.

We show two proofs as presented in [5] and [6], and in [1] that work with slightly dif-

ferent hypothesis. The first proof considers the points to be in the unitary cube of Rd and

exploits a standard technique of Poissonization and then de-Poissonization of the number

of points. The second one requires the points to be in a toroidal space, in order to avoid

possible changes of distribution near the boundary of the cube. The proof revolves around

extracting the right properties from the model and then applying a general result through

those properties. Indeed it is known, as shown in [4], that in both models the weighted

mean of the cost converges to the same constant.

Both results are supported by experimental evidence as shown in the following charts,

where we used Prim’s algorithm to calculate the minimum spanning tree of n random uni-

form points in Rd , and plot its cost divided by n1− 1
d .

21



22

Figure 3.1: M(x1,...,xn )

n1− 1
d

in [0,1]d

d=2 d=13

Figure 3.2: M(x1,...,xn )

n1− 1
d

in the toroidal model

d=2 d=13

3.1 Cube model

In order to study the properties of the minimum spanning tree functional when the points

are (Xi )n
1 , independent uniform random variables on [0,1]d , we first consider a Poissonized

version of the problem.

Definition 3.1. We consider N , a Poisson random variable with parameter t d and set of

random points (Xi )∞i=0 with uniform distribution in [0, t ]d . We also suppose M and (Xi )∞i=0
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to be independent. We define the Poisson point process on [0, t ]d with parameter t d to be:

µ :Ω→M ([0, t ]d )

ω→µω =
M(ω)∑
i=1

δXi (ω)

where, Ω is a probability space where the variables are defined and M ([0, t ]d ) is the set

of the measures of [0, t ]d .

We also define, given A ⊂ [0, t ]d a Borel subset, πω(A) = {Xi (ω) ∈ A : i < M(ω)} and

µω(A) = #πω(A).

Lemma 3.1. Let A1, A2, . . . , An denote a partition of [0, t ]d where every Ai is a Borel set. Let

also be (Xi )m
i=1 random independent points in [0, t ]d and k1, . . . ,kn ∈N such that k1+. . .+kn =

m. Then

P
(
k1 points are in A1, . . . ,kn points are inAn

)= m!

k1! . . .kn !

1

t md

n∏
i=1

|Ai |ki

where |Ai | is the Lebesgue measure of Ai .

Proof. We know, since the points are uniform on [0, t ]d and independent that:

P
(
X1 ∈ A1, . . . , Xk1 ∈ A1, Xk1+1 ∈ A2, . . . , Xk1+...+kn−1+1 ∈ Akn , . . . , Akn ∈ An

)= 1

t md

n∏
i=1

|Ai |ki

Since the probability is not affected by the order we choose the points, we just need to con-

sider the number of ways which we can choose subsets of k1, . . . ,kn elements from a set of

m elements, which is
m!

k1! . . .kn !

proving the thesis.

Thus we get that, for any A, Borel subset of [0, t ]d :

P(µ(A) = k) =
∞∑

m=k
P

(
µ(A) = k,µ(Ac ) = m −k

∣∣∣N = m
)
P(N = m) =

|A|k
k !

∞∑
m=k

|Ac |m−k

(m −k)!
e−t d = |A|k

k !
e−(t d−|Ac |) = |A|k

k !
e−|A| (3.1)

Since for any bounded Borel set A, the set πω(A) is almost surely a finite set of points,

we can define the quantity M(πω(A)) as the minimum spanning tree of the points of πω(A).
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Now we define φ(t ) = E(M(π([0, t ]d )), that is the expected value of the cost of the minimum

spanning tree on the Poisson point process.

We now prove that φ(t ) is continuous.

First of all we write φ(t ) as:

φ(t ) =
∞∑

n=0
E

[
M(π([0, t ]d )

∣∣∣N = n
] t nd

n!
e−t d

Since t a M(x1, . . . , xn) = M(t x1, . . . , t xn), and by setting mn = E [M(X1, . . . , Xn)], where X1, . . . , Xn

are uniform independent points on [0,1]d we get:

φ(t ) = t a
∞∑

n=0
mn

t nd

n!
e−t d

(3.2)

Since mn is bounded by
p

dn (
p

d is the maximum possible edge in [0,1]d ), we can derive

φ(t )’s continuity from the dominated convergence theorem, as, every term of the sum is a

composition of continuous functions, and if t → t0 the n-th term of the sum is, when t is

sufficiently close to t0, bounded by
p

d (t0+1)nd

(n−1)! e−(t0+1)d
, whose sum over n is

p
d(t0 +1)a+d .

The next step is to prove convergence of φ(t )
t d as t →∞. In order to do that we first need

to find a relationship that ties φ(t ) and φ(t ′) when t ′ > t . The following lemma provides an

almost linear one, with a remainder term that will turn out to be manageable.

Lemma 3.2. If ψ(x) = xa , with 0 < a < d , then, for every 0 < t <∞ and m ∈N, m ≥ 1

φ(t ) ≤ mdφ
(m

t

)
+C t amd−a (3.3)

where C is a constant only dependent on a and d .

Proof. Firstly we divide [0, t ]d in md cubes Qi everyone with length t
m . Then from every Qi

we choose a point Yi . Now we can build a spanning tree ofπ([0, t ]d ) by considering the MST

of every cube Qi and then connect all the graphs through the edges of MST (Y1, . . . ,Ymd ).

Knowing from lemma 2, adjusted for [0, t ]d , that

M(Y1, . . . ,Ymd ) ≤ t aγ′(a,d)md−a ,

we get
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M(π[0, t ]d ) ≤
md∑
i=1

M(π(Qi ))+M(Y1, . . . ,Ymd ) ≤
md∑
i=1

M(π(Qi ))+ t aγ′(a,d)md−a . (3.4)

From 3.1 and 3.2 we also have E M(π(Qi )) =φ( t
m

)
, thus we finally get:

φ(t ) ≤ mdφ

(
t

m

)
+ t aγ′(a,d)md−a .

We can now prove convergence for φ(t ):

Theorem 3.3. There exists a constant c(a,d) such that

lim
t→∞

φ(t )

t d
c(a,d).

Proof. We set, for the same C as Lemma 3.2, φ̃(t ) =φ(t )+2C t a . Then right from 3.3 we have:

φ̃(mt ) =φ(mt )+2C (mt )a ≤ md φ̃(t )+C t amd +2C t ama .

Thus there exists a m0 such that for every m ≥ m0 we have 2ma < md and get:

φ̃(mt ) ≤ md φ̃(t ). (3.5)

Let β= liminft→∞
φ̃

t d . For every ε there exists a t0 such that:

φ̃(t0)

t d
≤β+ε.

Sinceφ(t ) is continuous φ̃(t ) is also continuous, meaning that there is an interval [t0, t0+
δ] where φ̃(t )/t d ≤ β+ ε. As a consequence of 3.5 we have that the same inequality is also

true for
⋃∞

m=m0
[mt0,m(t0 +δ)].

Since if m > t0
δ the intervals overlap, we have for t ′ = max{m0, t0

δ }

[t ′,∞) ⊂
∞⋃

m=m0

[mt ,m(t +δ)].

Hence

limsup
t→∞

φ̃

t d
≤β+ε.

Since this holds for every ε and a < d then φ(t ) ∼βt d .
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We finally extract the asymptotic behaviour of mn from φ(t ).

Theorem 3.4. There exists a constant βM (a,d) such that:

lim
n→∞

mn

n
d−a

d

=βM (a,d)

Proof. We consider Ñ a Poisson variable of mean n and set:

E [mÑ ] =φ(n
1
d ) =

∞∑
k=0

mk
nk

k !
e−k .

Then by taking expectations from 2.2 we can bound:

|mn −E [mÑ ]| ≤
∞∑

k=0
|mn −mk |

nk

k !
e−k ≤ γ′′(a,d)

∞∑
k=0

|n −k| d−a
d

nk

k !
e−k .

We apply ||X ||1 ≤ ||X ||p , that holds for every random variable and p ≥ 1, with p = 2d
d−a :

|mn −E [mÑ ]| ≤β′′(a,d)

( ∞∑
k=0

|n −k|2 nk

k !
e−k

) d−a
2d

But we just got the expression of V ar (Ñ ) that is equal to n, thus:

|mn −E [mÑ ]| ≤β′′(a,d)n
d−a
2d .

We have just proven |an −E [aÑ ]| =O(n
d−a
2d ) and, from Theorem 3.3, we have

n
a
d E [mÑ ] =φ(n

1
d ) ∼ c(a,d)n as n →∞

leading to:

βM (a,d) := lim
n→∞

mn

n
d−a

d

= c(a,d).

3.2 Toroidal model

Now we are going to present another point of view, where we identify some essential prop-

erties of the model that allow us to prove a convergence result.
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Let Gn = (V ,E ,W ) be a graph such that V = {v1, . . . , vn} and di , j , the weight of the edge

that connects vi and v j , is a random variable defined on some probability space for any

i , j = 1, . . . ,n. We denote by Gn(z) the sub-graph of Gn made by all the edges (vi , v j ) such

that di , j ≤ z.

Then for cd , the volume of the unitary ball in Rd , we assume for any the following prop-

erties:

I for every k, s = 1, . . . ,n there exists a permutation π such that π(k) = s and the ma-

trix
(
di , j

)n
i , j=1 has the same distribution as

(
dπ(i ),π( j )

)n
i , j=1. We will refer to this as the

exchangeability property.

Thanks to property I it’s well defined for any k ∈N, k 6= 0:

Pk,n(z) =P[
a given point belongs to a component of Gn(z) having exactly k elements

]
and we can state the remaining properties.

II For any fixed k there exists a function fk (y) such that:

lim
n→0

Pk,n

[(
y

ncd

) 1
d

]
= fk (y)

III For any k < n, there exists lk (y) such that

Pk,n

[(
y

ncd

) 1
d

]
≤ lk (y)

and ∫ ∞

0
lk (y)y

1
d −1d y ≤∞

IV For all K and n,

∣∣∣∣∣n 1
d

∫ ∞

0

(
n∑

k=K

1

k
Pk,n(z)− 1

n

)
d z

∣∣∣∣∣=O
(
K 1− 1

d

)
,

the implicit constant being independent of n.

We note that the properties shift the focus of the problem from the vertices towards the

edges, as originally in [1] they were developed as a way to unify the Euclidean model and the

independent model, where it is the edges that are random independent variables.
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We now prove, given the properties, a result of convergence:

Theorem 3.5. Let {Gn}∞n=1 be a sequence of graphs of a model that satisfies the properties I, II,

III, IV and let {Tn}∞n=1 be the sequence of the lengths of their minimum spanning trees. Then:

β(d) = lim
n→∞

E [Tn]

n
d−1

d

= 1

d(cd )1/d

∞∑
k=1

1

k

∫ ∞

0
fk (y)y

1
d −1d y

Proof. Let Cn(z) the number of components of the graph formed by the edges of length less

or equal than z. We first show that:

Tn =
∫ ∞

0
[Cn(z)−1]d z.

To prove it we consider 0 = z0 < z1 < z2 . . . < zn−1 , where z j is the smallest distance such that

Cn(z j ) ≥ n − j .

Then: ∫ ∞

0
[Cn(z)−1]d z =

∫ zn

0
[Cn(z)−1]d z =

n−1∑
j=1

∫ z j

z j−1

[Cn(z)−1]d z

=
n−1∑
j=1

(n − j )(z j − z j−1) =
n−1∑
j=1

z j .

Now since during the j -th step of Prim’s algorithm an edge of length exactly z j is added

to the minimum spanning tree, then Tn =∑n−1
j=1 z j and the equality is proven.

Consequently, as Cn(z)−1 ≥ 0 we can use Fubini-Tonelli’s theorem to get:

E [Tn] =
∫ ∞

0
E [Cn(z)−1]d z. (3.6)

Then we rewrite Cn(z) as:

Cn(z) =
n∑

k=1

n∑
i=1

Xi ,k (z)

k

where Xi ,k (z) is a random variable such that:

Xi ,k =
1 if the node i belongs to a component of Gn(z) of k nodes

0 otherwise.

Taking the expectation, and using the exchangeability property I:

E [Cn(z)] = n
n∑

k=1

Pk,n(z)

k
.
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Then we can substitute this in equation 3.6 and divide by n
d−1

d :

E [Tn]

n
d−1

d

= n
1
d

∫ ∞

0

(
n∑

k=1

Pk,n(z)

k
− 1

n

)
d z.

Then we can take the limit and for any given K we can split the sum:

β(d) = lim
n→∞

E [Tn]

n
d−1

d

= lim
n→∞n

1
d

∫ ∞

0

(
K−1∑
k=1

Pk,n(z)

k

)
d z +n

1
d

∫ ∞

0

(
n∑

k=K

Pk,n(z)

k
− 1

n

)
d z.

Now we apply property IV:

β(d) = lim
n→∞n

1
d

∫ ∞

0

(
K−1∑
k=1

Pk,n(z)

k

)
d z +O(K −1+ 1

d )

By linearity of the integral and taking the limit inside the sum:

β(d) =
K−1∑
k=1

1

k

(
lim

n→∞

∫ ∞

0
Pk,n(z)n

1
d d z

)
+O(K −1+ 1

d ).

In each integral we apply the change of variables z =
(

y
ncd

) 1
d

and thus:

β(d) = 1

(dcd )
1
d

K−1∑
k=1

1

k

(
lim

n→∞

∫ ∞

0
Pk,n

[(
y

ncd

) 1
d

]
y

1
d −1d y

)
+O(K −1+ 1

d ).

Thanks to property III we can now use dominated convergence and take the limit inside

of the integral that we know converges for property II:

β(d) = 1

(dcd )
1
d

K−1∑
k=1

1

k

(∫ ∞

0
fk (y)y

1
d −1d y

)
+O(K −1+ 1

d ).

Since the equality holds for every K then the thesis is proven thanks to property IV.

We now consider the Euclidean toroidal model and show that all four properties hold in

this setting. The model considers a graph whose nodes are random uniform independent

points in the metric space Td defined as [−1
2 , 1

2 ]d with the Lebesgue measure and with the

equivalence relation that states that two points are the same if their coordinates are equal

mod 1. The length an edge is defined as the minimum, among every element of the class of

the points, of the distances between the points.
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The main reason to use this model is that, unlike the one where the points are in the

cube, the distribution of the points and the edges does not change towards the boundary.

Property I is then verified as it is a direct consequence from the fact that the nodes are

i.i.d. vectors.

Now for properties II, III, IV a little more work is needed:

II. for x0 = 0 we define Θ′
k (z) as the subset of Tk made by every {x1, . . . xk−1} such that there

exists a tree that connects the points with edges of length ≤ z, or equivalently, such that the

union of the closed spheres in T, B ′(x j , z
2 ), is a connected set. If k=1 we define Θ′

1(z) as the

torus.

Now we consider how to compute Pk,n(z) using Θ′
k (z). We will consider the case k ≥ 2

and treat k = 1 separately. Firstly, without losing generality, we can suppose that the node

taken into consideration is X0, as they all have the same distribution. Then since Pk,n(z)

does not really depend on where X0 falls, but only on how the other nodes around it are

placed, we can always translate every node so that X0 = 0, without affecting the probability.

By definition Pk,n(z) is the probability that 0 is in a component of Gn(z) having exactly k

nodes, namely the probability that 0 is in one of the configurations ofΘ′
k (z) where the other

k −1 can be any subset of k −1 elements of all the nodes apart from x0, and the other n −k

nodes are not connected with any node of the configuration in Gz . Thus we can write.

Pk,z =
(

n −1

k −1

)∫ ′

Θ′
k (z)

[
1− g ′

k,z(x1 . . . xk−1)
](n−1)−(k−1)

d x1 . . .d xk−1

where g ′
k,z(x1 . . . xk−1) is the volume of

⋃k−1
j=0 S′(x j , z), and

∫ ′
refers to the integral over

Tk−1.

Since sets not touching the torus boundary are the same on the torus and Rd , for z ≤ 1
2k

we get:

Pk,n(z) =
(

n −1

k −1

)∫
Θk (z)

[
1− gk,z(x1 . . . xk−1)

]n−k d x1 . . .d xk−1

where:

• Θk (z) is the subset of Rd×(k−1) made by every {x1, . . . xk−1} such that there exists a tree

that connects the points with edges of length ≤ z

• gk,z(x1 . . . xk−1) is the the volume of
⋃k−1

j=0 B(x j , z)

•
∫

is the integral over (Rd )k−1.
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We now apply the change of variables u j = x j

z , and since gk,z(zu1 . . . zuk−1) = zd gk,1(u1 . . .uk−1)

we have:

Pk,n(z) =
(

n −1

k −1

)
zd(k−1)

∫
Θk (1)

[
1− zd gk,1(u1 . . .uk−1)

]n−k
du1 . . .duk−1

Let z =
(

y
ncd

) 1
d

. We can still assume z ≤ 1
2k as we are going to take the limit n →∞.

Then:

Pk,n

((
y

ncd

) 1
d

)
= yk−1

ck−1
d (k −1)!

k−1∏
j=1

(
1− j

n

)∫
Θk (1)

[
1− y

ncd
gk,1(u1 . . .uk−1)

]n−k

du1 . . .duk−1.

Now we take the limit on n, and since |Θk (1)| is bounded and
[

1− y
ncd

gk,1(u1 . . .uk−1)
]n−k ≤

1 we can apply dominated convergence to get:

fk (y) = lim
n→∞Pk,n

((
y

ncd

) 1
d

)
= yk−1

ck−1
d (k −1)!

∫
Θk (1)

exp

[
− y

cd
gk,1(u1 . . .uk−1)

]
du1 . . .duk−1.

If k = 1 instead, P1,n(z) is the same as the probability that the other n −1 points do not

belong to B(0, z), and thus:

fk (y) = lim
n→∞Pk,n

((
y

ncd

) 1
d

)
=

[
1− cd

y

ncd

]n−1

= e−y .

III. Since 1−x ≤ e−x , for k = 1 we have:

P1,n

((
y

ncd

) 1
d

)
=

[
1− cd

y

ncd

]n−1

≤ e−y (n−1)
n ≤ e− y

2 .

If k ≥ 2, for z ≥
p

d
2 , Pk,n(z) = 0. So we can assume z <

p
d

2 .

Since g ′
k,z(x1, . . . xk−1) ≤ cd zd we have:
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Pk,z =
(

n −1

k −1

)∫ ′

Θ′
k (z)

[
1− g ′

k,z(x1 . . . xk−1)
](n−1)−(k−1)

d x1 . . .d xk−1

≤
(

n −1

k −1

)∫ ′

Θ′
k (z)

exp
[
−(n −k)g ′

k,z(x1 . . . xk−1)
]

d x1 . . .d xk−1

≤ nk−1

(k −1)
e−(n−k)cd zd

∫ ′

Θ′
k (z)

d x1 . . .d xk−1.

Now we bound |Θ′
k (z)| with kk−2(cd z)d , as we note that given xi one can choose xi+1 only in

the ball of radius z centred in xi , and those nodes can be connected in at most kk−2 trees.

We also use n
n−k ≥ 1

k+1 , and get:

Pk,z ≤
nk−1

(k −1!)
e− n

k+1 cd zd
kk−2(cd zd )k−1.

And for z =
(

y
ncd

) 1
d

:

Pk,n

((
y

ncd

) 1
d

)
≤ lk (y) = yk−1

(k −1)!
kk−2e− y

k+1

and since
∫ ∞

0 lk (y)y
1
d −1d y <∞ property III is also verified.

IV. Let CK ,n(z) be the number of components, formed by K nodes or more, of Gn(z). Then

for the same argument used in Theorem 3.5 we have:

E
[
Cn,K

]= n
n∑

k=K

Pk,n(z)

k

Therefore, knowing that there a constant M that bounds the length of the edges, we can

write:

n
1
d

∫ ∞

0

[
n∑

k=K

Pk,n(z)

k
− 1

n

]
d z = 1

n1− 1
d

∫ M

0

(
E

[
CK ,n(z)

]−1
)

d z

≥− M

n1− 1
d

≥− M

K 1− 1
d

.

(3.7)

We call J the set of the z j , where j ≥ 1 and z j ≤ z j+1, such that there is an edge of such

length that once added increases or decreases the value of CK ,n(z). Thus we have:
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∫ M

0

(
CK ,n(z)−1

)
d z =

#J−1∑
j=1

(CK ,n(z j )−1)(z j+1 − z j )+ z1CK ,n(0)

and by applying summation by parts with z0 = 0 we get∫ M

0

(
CK ,n(z)−1

)
d z = ∑

zi∈J−
z−

i − ∑
zi∈J+

z+
i ≤ ∑

zi∈J−
z−

i .

Where J+ ⊂ J is the set of the lengths of the edges that, when added, increase CK ,n , and

J− is the same for the edges that make CK ,n decrease. We notice that the edges that the

elements of J− represent form a tree on clusters of points. Since every time an edge of J− is

added Cn,K (z) decreases it means that there are two connected components made by at least

K nodes that were previously not connected. This means that those edges connects clusters

of points that were not previously connected, forming a tree on the multigraph generated

by the clusters as vertices and keeping the edges of the graph as edges of the multigraph.

Now from a direct consequence of Theorem 2.2 we have that also trees on multigraphs of r

elements in Rd have length bounded by kd r
d−1

d . Knowing that |J−| ≤ n
K we get

n
1
d

∫ ∞

0

[
n∑

k=K

Pk,n(z)

k
− 1

n

]
d z ≤ 1

n1− 1
d

kd

( n

K

) d−1
d = kd

K 1− 1
d

. (3.8)

Thus equation 3.7 and 3.8 give us the thesis.

Combining the general theorem with what we have just developed about the Euclidean

MST:

Theorem 3.6. In the Euclidean toroidal model:

βT (d) := lim
n→∞

E [Tn]

n
d−1

d

= Γ
( 1

d

)
d(cd )

1
d

+
∞∑

k=2

Γ
(
k + 1

d −1
)

d(k !)

∫
Θk (1)

gk,1(u1, . . .uk−1)−(k+ 1
d −1)du1 . . .duk−1

where

• Θk (z) is the subset of Rd×(k−1) made by every points {x1, . . . xk−1}, such that there exists a

tree that connects the points with edges of length ≤ 1

• gk,1(x1 . . . xk−1) is the the volume of
⋃k−1

j=0 B(x j ,1).

In order to prove the properties when the weight function isψ(x) = xa one can just repeat

the same steps as the Euclidean case with minor adjustments.
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Chapter 4

The bipartite case

The main goal of this section is to discuss whether the same techniques used for the random

Euclidean MST can be adapted to the bipartite case. We recall that a graph is bipartite if the

vertices can be partitioned in two different subsets, the red ones and the blue ones, such

that the only edges in the graph are those who connects a node of one subset to a node of the

other one. We will consider then the problem of finding some result of mean convergence

in the case where there is an even number of random uniform points 2n, where n are red

and the others are blue. To stress the difference between the two problems we will also refer

to the problem on the complete graph as the monopartite case.

Figure 4.1: A Euclidean monopartite and bipartite minimum spanning tree of the same set of points in the
plane

35
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4.1 An algorithm

In this section we present an algorithm specific for the Euclidean bipartite graph. First a

definition:

Definition 4.1 (Voronoi diagram). Let S denote a set of n points (called sites) in [0,1]d . Given

p ∈ S, the set of points of [0,1]d for which p is the closest site is called the Voronoi region of

p. The partition that the regions generate, V (S), is called the Voronoi diagram of S.

The Voronoi diagram is known to be useful in many problems of computational geom-

etry, as it can be calculated with relative ease and has a lot of interesting properties. As

far as the Euclidean bipartite minimum spanning tree is concerned it is possible to use the

Voronoi diagram to start building it.

Proposition 4.1. Given a bipartite graph G = (R ∪B ,E), and a red point r ∈ G , let V o(R) be

the Voronoi diagram built using the red points as sites. Then if b is a blue point that is in the

Voronoi region of r the edge (r,b) is in the minimum spanning tree of G .

Proof. If this wasn’t true, one could try to add (r,b) to the tree, generating a cycle where there

is an edge of length greater than the one (r,b), as b must be connected to at least another

red point outside of the Voronoi region of r .

The strategy to build the tree is then:

• generate the Voronoi diagram of the red points

• connect every blue node to the site of the Voronoi region they are in

• find the minimum spanning tree of the multigraph generated by the connected com-

ponents built so far.

This strategy is simple enough in dimension 1 and has been used as a theoretical tool to

prove the asymptotics of the mean cost of the MST as shown by [2].

The idea is, after connecting the red nodes to the site of their Voronoi region, to connect

them by paying attention on the ticks that divides the region. For each tick, we select its

closest red point, that could end up on its right or left, and connect it to the first blue point

on the opposite side of the tick. This method generates exactly the minimum possible edge

for every couple of consecutive nodes of the multigraph and since the resulting graph is

connected, it generates its minimum spanning tree.

However, this strategy seems hard to be exploited in higher dimensions as one site may

share an edge with any number of sites.
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4.2 Properties

In this section we discuss the properties of the Euclidean bipartite MST, in particular making

a parallelism with what we showed in the monopartite case.

Weight

A first major difference from the monopartite MST is that there is not a bound on its cost

that is true in every instance of the problem as the one in Theorem 2.2. Indeed, the only true

bound that depends only on the number of points, depends linearly from n as the points can

be split according to their color and be on opposite corners of a square. As a consequence

even Theorem 2.5 is not verified in the bipartite case.

Figure 4.2: Example of bipartite MST whose cost scales linearly on the num-
ber of nodes

Even so, we can still prove a bound for mB
n , the mean cost when the points are n inde-

pendent uniform random variables on [0,1]d , that points to the right scaling of the cost.

Lemma 4.2. Given a set of 2n points in Rd that form a bipartite graph made by r1, . . . ,rn

red points and b1, . . . ,bn blue points call M B (r1, . . . ,rn ,b1, . . . ,bn) the cost of the minimum

spanning tree on the graph. Then

M(r1, . . . ,rn ,b1, ..bn) ≤ M B (r1, . . . ,rn ,b1, ..bn)
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M B (r1, . . . ,rn ,b1, ..bn) ≤
n∑

i=1
min

j=1,...,n
|ri −b j |+2

n∑
j=1

min
i=1,...,n

|b j − ri |+M(b1, . . .bn)

where M(·) is the cost of the monopartite minimum spanning tree on the points.

Proof. The first equation is consequence of the fact that the bipartite graph is a subgraph of

the monopartite one.

We now prove the second equation. If we consider the Voronoi diagram made by the

blue points as sites, we know that every edge connecting any red points to the site of the

Voronoi region it is in, is an edge of the minimum spanning tree 4.1.

We now consider the monopartite minimum spanning tree on the blue points. We have

built a spanning tree on the regular Euclidean case. From this we want to build a connected

graph for the bipartite case (it will not be necessarily a tree).

We pick a blue node b and we know that we can visit every node of the blue MST. We

consider a depth first search visit of the graph, where we explore as far as possible along the

paths before backtracking, that allows us to associate to every other blue node a unique edge

of the blue MST, the edge that connects it from its father, if we consider b to be the root of

the tree.

Now we bound every edge by using its associated node: let (bh ,bk ) an edge of the tree.

We remove and replace it with (bh ,rsk ) and (rsk ,bk ) where rsk is the closest red node to bk .

By repeating this process throughout every edge, we have a connected graph that is allowed

in the bipartite problem whose weight is bounded by:

n∑
i=1

min
j=1,...,n

|ri −b j |+
n∑

j=1
min

i=1,...,n
|b j − ri |+

∑
(h,k) such that

(bh ,bk )∈MST (b1,...bn )

|bh − rsk |.

Then by using the triangular inequality we have |bh − rsk | ≤ |bh −bk |+ |bk − rsk | leading

to:

M B (r1, . . . ,rn ,b1, ..bn) ≤
n∑

i=1
min

j=1,...,n
|ri −b j |+2

n∑
j=1

min
i=1,...,n

|b j − ri |+M(b1, . . .bn).

In order to complete the result we need to study the asymptotics of E
[∑n

j=1 mini=1,...,n |b j − ri |
]

.

The sum on the red points will give the same result as the points have all the same distribu-

tion. We note that due to linearity of the expected value and the fact that the minimum is

taken on the red points, we have to study only:

E

[
min

i=1,...,n
|b − ri |

]
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where b is a fixed blue point. The following lemma is a particular case of Lemma 2.1.1 of [6]

when p = 1.

Lemma 4.3. There exists a constant γmi n(d) such that

E

[
min

i=1,...,n
|b − ri |

]
≤ γmi n(d)n− 1

d

Proof. If we consider any blue point b we have, for B(b,λ) the ball of radius λ and centre b

and 0 < l < 1, that the volume of B(x,λ)∩ [0,1]d is minimized when b is in a corner of [0,1]d .

We then have for any b ∈ [0,1]d :

∣∣∣B(b,λ)∩ [0,1]d
∣∣∣≥ cdλ

d 2−d .

Thus

P

[
min

j=1,...,n
|b − r j | ≥λ

]
≤

(
1− cdλ

d 2−d
)n ≤ exp(−ncdλ

d 2−d )

and

E

[
min

i=1,...,n
|b − ri |

]
=

∫ ∞

0
P

[
min

j=1,...,n
|b − r j | ≥λ

]
dλ≤

∫ ∞

0
exp(−ncdλ

d 2−d )dλ.

We then apply the change of variables y = ncdλ
d 2−d and get:

E

[
min

i=1,...,n
|b − ri |

]
≤ 2d(cd n)−

1
d

∫ ∞

0
y

1
d −1e−y dy .

And the thesis is proven for γmi n(d) = 2dc
− 1

d
d Γ( 1

d ).

Thus combining Lemma 4.2, taking expectations and using the linearity of the expected

value together with Lemma 4.3 we get:

21− 1
d βM (1,d)) ≤ liminf

n→∞
mB

n

n1− 1
d

≤ limsup
n→∞

mB
n

n1− 1
d

≤βM (1,d))+3γmi n(d).

We note that this result confirms that the growth rate of the mean cost of the Euclidean

bipartite minimum spanning tree, even if there is not convergence, is the same as the monopar-

tite Euclidean case.
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Degree

Another difference is that there is no constant M , independent from the number of points,

that bounds the degree of a node as in Lemma 2.4 since, if the vertices are divided according

to their color in clusters that are far enough apart, except for one blue node that is in the

cluster of red nodes, then every red node will be connected to that blue one.

Figure 4.3: Example of bipartite MST where a node has degree n

However, we prove a result when M is dependent on n but does not scale linearly on it,

and the red points are random independent and uniform on [0,1]d , while the blue ones are

arranged as grid in the unitary cube. For the sake of the argument we will assume that the

points are 2nd in order to have the region divided by the grid of the blue points in cubes of

side exactly 1
n .

Theorem 4.4. We consider a distribution of points where there are nd blue points arranged

as a grid, and the red ones are nd random uniform independent points in [0,1]d . We call TB

the bipartite minimum spanning tree on those points. We then set:

PM =P(there is at least one red node such that deg(r ) ≥ M in TB ).

Then there is a constant C dependent only on d such that if M ∼C log(nd ) then:

lim
n→∞PM = 0
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Proof. We want to bound PM with

P(there is a spherical region of area A that has no red points).

Now if the minimum spanning tree connects a red node r with a blue node b with an

edge of length L, then we consider S, the sector of 60o of the circle around r of radius L−
p

d
2n ,

whose central radius is collinear to the edge that connects r and b. We will prove that S

cannot have any red points.

To prove this we use the property a) and reach a contradiction. If there was a red point,

r ′ in S we consider the MST of the graph and delete the edge (r,b). There are two cases:

• r ′ is in the same component as r : since S ⊂ B(b,L) then the length of (r ′,b) is < L but

this means that there is an edge whose length is less than the one of (r,b) that connects

the component of r and b .

• r ′ is in the same component as b. we call br the blue point that is in the same cell as r .

then (r ′,br ) ≤ (r ′,r )+ (r,br ) ≤ L−
p

d
2n +

p
d

2n ≤ L.

We found then a region that must have no red points if there is an edge of length L.

Thus there must be a spherical region with no red points, within the sector associated

with the edge of furthest length. Given that there are at least M nodes connected to r, it

means that the minimum possible maximum edge, is less than ρ̃, the radius of the sphere

of volume M
nd . Thus there is always a sphere of radius ρ = 1

3

(
ρ̃−

p
d

2n

)
that contains no red

points. Hence:

PM ≤ P [there is a sphere of radius ρ that has no red points]

We now divide [0,1]d in squares Qi , i = 1, . . .
⌈p

d
ρ

⌉d
of side length 1⌈p

d
ρ

⌉ . Since we know

there is a sphere of radius ρ with no red points, we know that at least one of the squares must

have no red points.

Writing the down the expressions we get:

ρ̃ =
(

M

cd nd

) 1
d

ρ =
(

M

3d cd nd

) 1
d −

p
d

6nd

where cd is the volume of the d-sphere.
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And thus

PM ≤P[one of the Qi has no red points] =
⌈p

d

ρ

⌉d
1− 1⌈p

d
ρ

⌉d


nd

≤
⌈p

d

ρ

⌉d

exp

−nd 1⌈p
d
ρ

⌉d

≤
(p

d +ρ
ρ

)d

exp

−nd 1(p
d+ρ
ρ

)d

 .

Given the the dependence of ρ on nd we can safely assume that ρ < p
d , for nd large

enough, and write:

PM ≤
(

2
p

d

ρ

)d

exp

(
−nd

(
ρ

2
p

d

)d
)

=

 2
p

d(
M

3d cd nd

) 1
d −

p
d

6nd


d

exp

(
− M

3d cd (2
p

d)d
+o

(
1

nd

))

=
 (2

p
d)d

M
3d cd nd +o

(
1

nd

)
exp

(
− M

3d cd (2
p

d)d
+o

(
1

nd

))
.

Thus, for C = 3d cd (2
p

d)d , if M ∼C log(nd ), we get that

PM ≤
 (2

p
d)d

M
3d cd nd +o

(
1

nd

)
exp

(
− M

3d cd (2
p

d)d
+o

(
1

nd

))
∼ C

log(nd )
.

4.3 Asymptotics of the mean weight

In this section we discuss the asymptotics of the mean cost of the random Euclidean bi-

partite minimum spanning tree. Again convergence seems supported by experimental evi-

dence in both the Euclidean model and the toroidal model. In the following charts we used

again Prim’s algorithm to calculate the bipartite minimum spanning tree of 2n random uni-

form points, n red and n blue, in Rd , and plot its cost divided by n1− 1
d .
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Figure 4.4: M B (x1,...,xn )

n1− 1
d

in [0,1]d

d=2 d=13

Figure 4.5: M B (x1,...,xn )

n1− 1
d

in the toroidal model

d=2 d=13

We first look at 3.1 that works with uniform independent points in [0,1]d . Even with the

results of the previous section the proof does not look easily adaptable. The crucial point

is given by the argument used to get 3.4, that provides a relation between Poisson point

processes of different intensities. Essentially, the argument revolves around dividing the

region in cubes and connecting them back, however, when dividing the region into cubes, it

is not clear how many nodes will still need to be connected for each cube, as it may happen

that only nodes of the same color are in there and they all still need to be connected. This
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property in particular does not look as easily provable with high probability as the previous

ones and constitutes the biggest difficulty in adapting the first approach.

We prove convergence instead through the second approach, in the toroidal model, by

showing that the four properties in I, II, III, IV can still be proven in the bipartite case.

I. in order to define the random vectors {d1, j }2n
j=l , .., {d2n, j }2n

j=1 we note that the model is

equivalent (in the sense that they generate the same minimum spanning tree) to the same

graph where we add an edge of length
p

d to connect every pair of vertices of the same

colour. Then we have that if k and s are indexes of points of the same color, then permu-

tation (k, s) gives a matrix of the same distribution as
(
di , j

)2n
i , j=1. On the other hand, if k

and j represent points of different colors, then we just need to consider a permutation that

exchange every index of a red point with an index of a blue point.

Again, for properties II,III and IV a little more work is needed:

II. As we did in the monopartite case, for x0 = 0, that we suppose to be a blue point, we

define Θ′
k (z) as the subset of Tk made by every {x1, . . . xk−1} such that there exists a tree that

connects the points with edges of length ≤ z, or equivalently, the union out of every way

to pick j blue points and k − j −1 red points such that there exists a tree that connects the

points with edges of length ≤ z for j = 0. . .k −2.

Now we consider how to compute Pk,n(z) using Θ′
k (z). We will consider the case k ≥ 2

and treat k = 1 separately.

Firstly, without losing generality, we can suppose that the node taken into consideration

is X0 and is blue , as they all have the same distribution.

Then since Pk,n(z) does not really depend on where X0 falls, but only on how the other

nodes around it are placed, we can always translate every node so that X0 = 0 without af-

fecting the probability. By definition Pk,n(z) is the probability that 0 is in a component of

G(z) having exactly k nodes, namely the probability that 0 is in one of the configurations of

Θ′
k (z) where the other k −1 points can be any subset of k −1 elements of all the nodes apart

from 0, and the other n −k nodes are not connected with any node of the configuration in

Gz . Thus we can write:

Pk,z =
k−2∑
j=0

(
n −1

j

)(
n

k − j −1

)∫ ′

Θ′
j ,k (z)

[
1− g ′

j ,z(b1, . . . ,b j )
](n−(k− j−1))

×
[

1− g ′
k− j−1,z(r1, . . . ,rk− j−1)

](n−1)− j
db1 . . .db j dr1 . . .drk− j−1 (4.1)
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whereΘ′
j ,k (z) is the subset ofΘ′

k (z) where every element has exactly j blue nodes, g ′
s,z(x1 . . . xs−1)

is the volume of
⋃s−1

j=0 S′(x j , z), and
∫ ′

refers to the integral over Tk−1.

As we noticed in the monopartite case, sets not touching the torus boundary are the

same on the torus and Rd , thus for z ≤ 1
2k we get:

Pk,z =
k−2∑
j=0

(
n −1

j

)(
n

k − j −1

)∫
Θ j ,k (z)

[
1− g j ,z(b1, . . . ,b j )

](n−(k− j−1))

× [
1− gk− j−1,z(r1, . . . ,rk− j−1)

](n−1)− j db1 . . .db j dr1 . . .drk− j−1 (4.2)

where:

• Θ j ,k (z) is the subset made by every element ofΘk (z) having exactly j blue nodes, which

in turn is the subset of Rd×(k−1) made by every red and blue points, {x1, . . . xk−1}, such

that there exists a tree that connects the points with edges of length ≤ z;

• gs,z(x1 . . . xs−1) is the the volume of
⋃s−1

j=0 B(x j , z);

•
∫

is the integral over (Rd )k−1.

We now apply the change of variables Ru j = R j

z and Bu j = B j

z and, since gk,z(zx1 . . . zxk−1) =
zd gk,1(x1 . . . xk−1), we have:

Pk,z =
k−2∑
j=0

(
n −1

j

)(
n

k − j −1

)
zd(k−1)

∫
Θ j ,k (1)

[
1− zd g j ,1(bu1, . . . ,bu j )

](n−(k− j−1))

×
[

1− zd gk− j−1,1(r u1, . . . ,r uk− j−1)
](n−1)− j

dbu1 . . .dbu j dr u1 . . .dr uk− j−1. (4.3)

Let z =
(

y
ncd

) 1
d

. We can still assume z ≤ 1
2k as we are going to take the limit on n.

Then:

Pk,n

((
y

ncd

) 1
d

)
=

k−2∑
j=0

j∏
s=1

(
1− s

n

)k− j−1∏
i=1

(
1− i

n

)
yk−1

ck−1
d j !(k − j −1)!

∫
Θ j ,k (1)

[
1− y

ncd
g j ,1(bu1, . . . ,bu j )

](n−(k− j−1))

×
[

1− y

ncd
gk− j−1,1(r u1, . . . ,r uk− j−1)

](n−1)− j

dbu1 . . .dbu j dr u1 . . .dr uk− j−1.

(4.4)
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Now we take the limit on n, and since |Θ j ,k (1)| is bounded for every j and
[

1− y
ncd

gk,z(u1 . . .us−1)
]n−s ≤

1 we can apply dominated convergence to get:

fk (y) = lim
n→∞Pk,n

((
y

ncd

) 1
d

)
=

k−2∑
j=0

yk−1

ck−1
d j !(k − j −1)!

∫
Θ j ,k (1)

exp

[
− y

cd
g j ,1(bu1, . . . ,bu j )

]
×exp

[
− y

cd
gk− j−1,1(r u1, . . . ,r uk− j−1)

]
dbu1 . . .dbu j dr u1 . . .dr uk− j−1. (4.5)

If k = 1 instead, P1,n(z) is the same as the probability that the other n red points do not

belong to B(0, z), and thus:

fk (y) = lim
n→∞Pk,n

((
y

ncd

) 1
d

)
= lim

n→∞

[
1− cd

y

ncd

]n

= e−y

III. Since 1−x ≤ e−x , for k = 1 we have:

P1,n

((
y

ncd

) 1
d

)
=

[
1− cd

y

ncd

]n

≤ e−y

If k ≥ 2, for z ≥
p

d
2 , Pk,n(z) = 0. So we can assume z <

p
d

2 .

Since g ′
k,z(x1, . . . xk−1) ≥ cd zd we have:

Pk,z =
k−2∑
j=0

(
n −1

j

)(
n

k − j −1

)∫ ′

Θ′
j ,k (z)

[
1− g ′

j ,z(b1, . . . ,b j )
](n−(k− j−1))

×
[

1− g ′
k− j−1,z(r1, . . . ,rk− j−1)

](n−1)− j
db1 . . .db j dr1 . . .drk− j−1

≤
k−2∑
j=0

(
n −1

j

)(
n

k − j −1

)∫ ′

Θ′
j ,k (z)

exp
(
−(n − (k − j −1))g ′

j ,z(b1, . . . ,b j )
)

×exp
(
−(n −1− j )g ′

k− j−1,z(r1, . . . ,rk− j−1)
)

db1 . . .db j dr1 . . .drk− j−1

≤
k−2∑
j=0

nk−1

j !(k − j −1)!
e−(n−k)cd zd

∫ ′

Θ′
j ,k (z)

db1 . . .db j dr1 . . .drk− j−1.

Again, for every j , we bound |Θ′
j ,k (z)| with kk−2(cd z)d , as we note that given xi one can

choose xi+1 only in the ball of radius z centred in xi , and those nodes can be connected in

less than kk−2 trees.
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We also use n
n−k ≥ 1

k+1 , and get:

Pk,z ≤
(

k−2∑
j=0

nk−1

j !(k − j −1)!

)
e− n

k+1 cd zd
kk−1(cd zd )k−1.

Then for z =
(

y
ncd

) 1
d

:

Pk,n

((
y

ncd

) 1
d

)
≤ lk (y) =

(
k−2∑
j=0

1

j !(k − j −1)!

)
yk−1kk−1e− y

k+1 .

Thus, since
∫ ∞

0 lk (y)y
1
d −1d y <∞ , property III is also verified.

Before proving property IV we first need a lemma corresponding to Lemma 4.3 in the

toroidal case.

Lemma 4.5. Given b ∈ [0,1]d and r1, . . . ,rn random uniform independent points in [0,1]d ,

there exists a constant βmi n(d) such that

lim
n→∞n

1
d E

[
min

i=1,...,n
|b − ri |

]
=βmi n(d).

Proof. Since we are working on the torusP
[
min j=1,...,n |b − r j | ≥λ

]
does not depend on where

b is, but only on how the other points around it are placed. Thus we can always translate ev-

ery point so that b = 0 without affecting the probability. We then have for λ≤ 1
2 :

P

[
min

j=1,...,n
|b − r j | ≥λ

]
=

(
1− cdλ

d
)n

.

We note that
(
1− cd 2−d

)n
provides an upper bound for P

[
min j=1,...,n |b − r j | ≥λ

]
when

1
2 <λ<p

d and there cannot be any point further from b than
p

d . Thus:

n
1
d

∫ 1
2

0

(
1− cdλ

d
)n

dλ≤ n
1
d E

[
min

i=1,...,n
|ri −b j |

]
≤ n

1
d

∫ 1
2

0

(
1− cdλ

d
)n

dλ+n
1
d

∫ p
d

1
2

(
1− cd 2−d

)n
dλ.

(4.6)

The last integral is bounded by

n
1
d (
p

d − 1

2
)exp(−ncd 2−d ).
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On the first integral we apply the change of variables y = ncdλ
d and get:

n
1
d

∫ 1
2

0

(
1− cdλ

d
)n

dλ= d(cd )−
1
d

∫ ∞

0
y

1
d −1

(
1− y

n

)n
1[0,cd 2−d n](y)d y.

Where 1Ais the indicator function of the set A.

Finally we take the limit on equation 4.6 and apply the dominated convergence theorem

on y
1
d −1 (

1− y
n

)n
1[0,cd 2−d n](y) getting:

lim
n→∞n

1
d E

[
min

i=1,...,n
|ri −b j |

]
= d(cd )−

1
d Γ

(
1

d

)
=:βmi n(d).

We are now ready to prove IV.

IV. Let CK ,n(z) be the number of components, formed by K nodes or more, of Gn(z). Then

for the same argument used in Theorem 3.5 we have:

E
[
Cn,K

]= n
n∑

k=K

Pk,n(z)

k
.

Therefore, knowing that there a constant M that bounds the length of the edges, we can

write:

n
1
d

∫ ∞

0

[
n∑

k=K

Pk,n(z)

k
− 1

n

]
d z = 1

n1− 1
d

∫ M

0

(
E

[
CK ,n(z)

]−1
)

d z ≥− M

n1− 1
d

≥− M

K 1− 1
d

. (4.7)

As we noticed in the proof of IV for the monopartite case:∫ M

0

(
CK ,n(z)−1

)
d z = ∑

zi∈J−
z−

i − ∑
zi∈J+

z+
i ≤ ∑

zi∈J−
z−

i .

Where J+ ⊂ J is the set of the lengths of the edges that, when added, increase CK ,n , and

J− is the same for the edges that make CK ,n decrease.

We call m = |J−| and try to bound
∑

zi∈J− z−
i .

Since they represent the shortest nodes that connects cluster of points they from a tree

on a multigraph, we can bound its cost by picking any representatives in the clusters, as the

tree on the multigraphs will pick the edges that connects the closest nodes. We then choose

w1, . . . wm to be all blue and build the usual monopartite MST. Its length might actually be

smaller than the minimum spanning tree in the bipartite case but it is possible to have sim-
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ilar edges by replacing every edge (wi , w j ) with wi ,rk j ), where rk j is the closest red node to

w j , and then connecting it back to w j .

We note that since every zi
− connects only clusters of k points then, if k ≥ 2, every

w j must be already connected to another red vertex through an edge that, by definition

of Gn(z), must have length less than z. But this means, again by definition of Gn(z), that

w j must be already connected to their closest red point too and thus we just have to con-

sider (wi ,rk j ) that are edges of the multigraph. We then got a graph that connects the rep-

resentatives in the bipartite case and by the triangular inequality we get that: |(wi ,rk j )| ≤
|(wi , w j )|+ |(w j ,rk j )| leading to:

MB (w1, . . . wm) ≤ M(w1, . . . wm)+
m∑

j=1
min

i=1,...,n
|ri −w j |.

We can now bound M(w1, . . . wm) using Theorem 2.2 as we did in the monopartite case,

while we still need a little more work for the second term.

By taking expectations we get:

n
1
d

∫ ∞

0

[
n∑

k=K

Pk,n(z)

k
− 1

n

]
d z ≤ 1

n1− 1
d

E

[ ∑
zi∈J−

z−
i

]

≤ 1

n1− 1
d

kd

( n

K

) d−1
d + 1

n1− 1
d

E

[
m∑

j=1
min

i=1,...,n
|ri −w j |

]
.

Now as a consequence of Lemma 4.5 we can choose ε> 0 and ñ such that for every n > ñ

and any b ∈ [0,1]d

E

[
min

i=1,...,n
|ri −b|

]
≤ n− 1

d (βmi n(d)+ε).

Since m = |J−| ≤ n
K , we have:

E

[
m∑

j=1
min

i=1,...,n
|ri −w j |

]
≤


p

d ñ
K if n ≤ ñ

n1− 1
d

K (γ+ε) if n > ñ

and then:

E

[
m∑

j=1
min

i=1,...,n
|ri −w j |

]
≤ γ′(d)

n1− 1
d

K
≤ γ′(d)

( n

K

)1− 1
d

where γ′(d) = (
p

dñ +βmi n(d)+ε).

Then,
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n
1
d

∫ ∞

0

[
n∑

k=K

Pk,n(z)

k
− 1

n

]
d z ≤ 1

n1− 1
d

C
( n

K

) d−1
d = C

K 1− 1
d

(4.8)

Where C = kd +γ′
Thus equation 4.7 and 4.8 give us the thesis.

Combining the general theorem with what we have just developed about the Euclidean

bipartite MST:

Theorem 4.6. In the Euclidean bipartite toroidal model:

βB
T (d) := lim

n→∞
E [Tn]

n
d−1

d

= Γ
( 1

d

)
d(cd )

1
d

+
∞∑

k=2

Γ
(
k + 1

d −1
)

dk

k−2∑
j=0

η j ,k (d)

j !(k − j −1)!
(4.9)

for

η j ,k (d) =
∫
Θ j ,k (1)

(
g j ,1(bu1, . . . ,bu j )+ gk− j−1,1(r u1, . . . ,r uk− j−1)

)−(k+ 1
d −1) dbu1 . . .dbu j dr u1 . . .dr uk− j−1

where

• Θ j ,k (1) is the subset made by every element of Θk (z) having exactly j blue nodes, which

in turn is the subset of Rd×(k−1) made by every red and blue points, {x1, . . . xk−1}, such

that there exists a tree that connects the points with edges of length ≤ 1

• gs,1(x1 . . . xs−1) is the the volume of
⋃s−1

j=0 B(x j ,1).



Conclusions and perspectives

In this thesis we have analyzed the random Euclidean MST problem, when the points are in-

dependent uniformly distributed random variables. While for the monopartite case the re-

sults were well established, we had to find some new arguments to adapt the techniques for

the bipartite case. In chapter 2 we showed some deterministic properties for the monopar-

tite problem and in chapter 3 we have proven through two different techniques that there is

convergence for its mean cost.

It would be interesting to find when convergence is still verified, if the nodes are not uni-

form but have another distribution, even if the red and blue vertices have different distribu-

tions. Also another interesting variant of the problem is the case when the bipartite graph

has also a constraint on the maximum degree of the nodes. Speaking of the maximum de-

gree we also would like to know whether the bound that was proven on Theorem 4.4 is tight

and it’s possible to find a lower bound that is asymptotically similar. Finally another ques-

tion that comes out naturally is if similar results can be generalised in the k-partite version

of the problem, when the nodes are divided in k subsets of different colors.
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