
Dipartimento di Matematica
Corso di Laurea Triennale in Matematica

Algorithms for manifold learning and
analysis of their stability

Supervisor:
Dott. Dario Trevisan

Presented by:
Federico Lazzeri

Academic Year 2019/2020



2



Contents

1 Introduction 5

2 Preliminaries 7
2.1 Schatten norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The Singular Value Decomposition (SVD) . . . . . . . . . 7
2.1.2 Min-max theorem . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Schatten norms . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Moore-Penrose Pseudo-Inverse . . . . . . . . . . . . . . . . . . . 10

3 Stability results for manifold learning 13
3.1 Procrustes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Classical Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Euclidean Metric and Gram Matrices . . . . . . . . . . . 21
3.2.2 CMDS Algorithm and perturbation bounds . . . . . . . . 24
3.2.3 Computational cost and the Lanczos algorithm . . . . . . 28

3.3 Trilateration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Isomap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Further experiments on graphs 43

3



4 CONTENTS



Chapter 1

Introduction

Manifold learning is an approach to non-linear dimensionality reduction. Algo-
rithms for this task are based on the idea that the dimensionality of many data
sets is only artificially high. High-dimensional data sets can be very difficult to
visualize. While data in two or three dimensions can be plotted to show the
inherent structure of the data, equivalent high-dimensional plots are much less
intuitive. To aid visualization of the structure of a dataset, the dimension must
be reduced in some way. The simplest way to accomplish this dimensionality
reduction is by taking a random projection of the data. Though this allows some
degree of visualization of the data structure, the randomness of the choice leaves
much to be desired. In a random projection, it is likely that the more interest-
ing structure within the data will be lost. To address this concern, a number of
supervised and unsupervised linear dimensionality reduction frameworks have
been designed. One of this is the multidimensional scaling.

Multidimensional scaling (MDS) can be defined as the task of embedding an
itemset as points in a (typically) Euclidean space based on some dissimilarity
information between the items in the set. Since its inception, MDS has been
one of the main tasks in the general area of multivariate analysis, a.k.a. unsu-
pervised learning. One of the main methods for MDS is called classical scaling,
which consists in first double-centering the dissimilarity matrix and then per-
forming an eigen-decomposition of the obtained matrix. This is arguably still
the most popular variant, even today, decades after its introduction at the dawn
of this literature. Despite its wide use, its perturbative properties remain lit-
tle understood. In the Section 3.2 we analyze the method and some of these
perturbative properties, following [1].

In order to quantify the difference between two configuration of points we
introduce the orthogonal procrustes problem (Section 3.1). This is a method

5



6 CHAPTER 1. INTRODUCTION

which can be used to find out the optimal rotation and/or reflection (i.e., the
optimal orthogonal linear transformation) that carries an itemset to the best
approximation of another one.

In Section 3.3, it is described the trilateration algorithm, a procedure that
can find a point using the positions of other points (called landmarks) and their
distances from it. This technique allows us to simplify the multidimensional
scaling. Indeed through the trilateration method, we can reconstruct an entire
configuration of points simply knowing few of them and the distances between
them and the ones that we want to find. Therefore, instead of applying MDS
on the whole itemset, we can do it just with a small subset and then use the
trilateration to find the others. This variation of multidimensional scaling is
called landmark multidimensional scaling (LMDS).

The last algorithm that we consider is called Isomap (Section 3.4). This
algorithm tries to better represent the itemset embedded by using a distance
that approximates the one on the manifold. Fixed a radius r, it makes a weighted
distance graph with points as nodes; if the Euclidean distance between two
points is smaller then r, it links the two corresponding nodes with an edge with
the distance as weight. Then it is calculated the shortest-path distances graph.
Finally, the distance matrix containing the values of the edges of this last graph
is passed to the classical MDS, that computes the representation.

The work is organized in this way: in chapter 2 there are some preliminaries
on matrix algebra; in chapter 3, as mentioned above, there are the algorithms
and perturbation bounds for them; in chapter 4 there are other experiments
made on graphs.



Chapter 2

Preliminaries

2.1 Schatten norms

2.1.1 The Singular Value Decomposition (SVD)

Theorem 1. Let A ∈ Cm×n have rank r. Then there are unitary matrices U
and V such that

UHAV =

(
Σ+ 0

0 0

)
,

where Σ = diag(σ1, . . . , σr) with σ1 ≥ · · · ≥ σr > 0.

Proof. Let the eigenvalues of AHA be σ2
1 ≥ · · · ≥ σ2

r > 0 = σ2
r+1 = · · · = σ2

n.
Let V = (V1 V2), V1 ∈ Cn×r be a unitary matrix formed from the corresponding
eigenvectors of AHA. Then

V HAHAV =

(
Σ2

+ 0

0 0

)
,

where Σ+ is defined above. Thus we have

V H
1 AHAV1 = Σ2

+, V H
2 AHAV2 = 0, (2.1.1)

and from the second of these relations we conclude that

AV2 = 0. (2.1.2)

Now let

U1 = AV1Σ−1+ . (2.1.3)

7



8 CHAPTER 2. PRELIMINARIES

Then from (2.1.1) we have UH
1 U1 = I. Choose U2 so that (U1 U2) is unitary.

Then from (2.1.1)-(2.1.3) we get

UHAV =

(
UH
1 AV1 UH

1 AV2
UH
2 AV1 UH

2 AV2

)
=

(
Σ+ 0

0 0

)
.

2.1.2 Min-max theorem

Let A ∈ Cn×n Hermitian. We consider the Rayleigh-Ritz quotient
RA : Cn \ {0} → R defined by

RA(x) =
(Ax, x)

(x, x)
.

Theorem 2 (Min-max theorem). Let A ∈ Cn×n Hermitian with eigenvalues
ν1 ≥ · · · ≥ νn then

νk = min
U
{max

x
{RA(x)|x ∈ U, x 6= 0}|dim(U) = n− k + 1}

and
νk = max

U
{min

x
{RA(x)|x ∈ U, x 6= 0}|dim(U) = k}.

Proof. Since the matrix A is Hermitian, it is diagonalizable and we can find
an orthonormal basis of eigenvectors {u1, . . . , un}, respectively corresponding
to the eigenvalues {ν1, . . . , νn}.

If U is a subspace of dimension n − k + 1 then its intersection with the
subspace span{u1, . . . , uk} is not zero and hence there exists a vector v 6= 0 in
this intersection that we can write as

v =

k∑
i=1

αiui

and whose Rayleigh quotient is

RA(v) =

∑k
i=1 νiα

2
i∑k

i=1 α
2
i

≥ νk

(as all νi ≥ νk for i = 1, . . . , k) and hence

max{RA(x)|x ∈ U, x 6= 0} ≥ νk.

Since this is true for all U , we can conclude that

min{max{RA(x)|x ∈ U, x 6= 0}|dim(U) = n− k + 1} ≥ νk.



2.1. SCHATTEN NORMS 9

To establish the other inequality, we can choose the specific (n-k+1)-dimensional
subspace V = span{uk, . . . , un}, for which

max{RA(x)|x ∈ V, x 6= 0} ≤ νk.

because νk is the largest eigenvalue in V . Therefore, also

min{max{RA(x)|x ∈ U, x 6= 0}| dim(U) = n− k + 1} ≤ νk.

Similarly we can achieve the second part of the thesis.

2.1.3 Schatten norms

Let A ∈ Rm×d with singular values ν1(A) ≥ ν2(A) ≥ · · · ≥ νd(A).
Let p > 0; we define ‖·‖p the following Schatten quasi-norm1

‖A‖p ≡ (

d∑
i=1

νi(A)p)1/p

which is a norm if p ∈ [1,∞). We also define ‖·‖∞ as the usual operator norm:
‖A‖∞ = max‖x‖∞=1‖Ax‖∞; we denote it also by ‖·‖.

The Schatten quasi-norms are unitarily invariant and they satisfy the fol-
lowing inequality

‖AB‖p ≤ ‖A‖∞‖B‖p (2.1.4)

for all A,B with compatible sizes.
If p ≥ 1, the norm ‖·‖p is submultiplicative (it follows by (2.1.4), noting that

‖A‖∞ ≤ ‖A‖p ∀p ≥ 1)
Moreover, ‖A‖p = ‖AT ‖p and ‖A‖p = ‖ATA‖1/2p/2 = ‖AAT ‖p/2p/2 due to the

fact that
‖A‖pp =

∑
j

νj(A)p =
∑
j

νj(A
TA)p/2 = ‖ATA‖p/2p/2.

If A and B are positive semidefinite and they satisfy A � B, where � denotes
the Loewner order2, then ‖A‖p ≤ ‖B‖p. In fact, using the variational principle
of eigenvalues (min-max Courant-Fischer theorem), for all j we have

νj(A) = min
V : dim(V )=n−j+1

max
v∈V,‖v‖=1

vTAv

≤ min
V : dim(V )=n−j+1

max
v∈V,‖v‖=1

vTBv = νj(B).

1a quasi-norm satisfies the norm axioms, except that the triangle inequality is replaced by
‖x+ y‖ ≤ K(|x‖+ ‖y‖), K ≥ 1

2A � B if B −A is positive semidefinite



10 CHAPTER 2. PRELIMINARIES

2.2 Moore-Penrose Pseudo-Inverse

Let A ∈ Rm×k with m ≥ k and let A = UDV T be a singular value decom-
position with U ∈ Rm×k, V ∈ Rk×k orthogonal and D ∈ Rk×k diagonal with
diagonal entries ν1 ≥ · · · ≥ νl > 0 = · · · = 0. The pseudo-inverse of A is
A‡ = V D‡UT where D‡ = diag(ν−11 , . . . , ν−1l , 0, . . . , 0). If the matrix A is tall
and full rank, then A‡ = (ATA)−1AT . In particular, if a matrix is square and
non-singular, its pseudo-inverse coincides with its inverse.

Theorem 3 (Wedin). Let A be an m × n matrix with m ≥ n and Ã = A + E

denote a perturbaiton of A. The error Ã‡ −A‡ has the following bound:

‖Ã‡ −A‡‖ ≤ 3 max{‖A‡‖22, ‖Ã‡‖22}‖Ã‖ (2.2.1)

Proof. Let P,R be respectively the projection onto the column space and onto
the row space of A. The complementary projectors will be denoted by P⊥ and
R⊥. Moreover, consider P̃ , R̃, P̃⊥ and R̃⊥ as the analogous matrices for Ã.
Let E = Ã − A. By replacing all quantities by their definitions in terms of
A, Ã, A‡, Ã‡ and symplifying, we have

Ã‡ −A‡ = −Ã‡EA‡ + Ã‡P⊥ − R̃⊥A‡,

Ã‡ −A‡ = −Ã‡P̃ERA‡ + Ã‡P̃P⊥ − R̃⊥RA‡,

and

Ã‡ −A‡ = −Ã‡P̃ERA‡ + (ÃHÃ)‡R̃EHP⊥ + R̃⊥E
HP (AAH)‡.

Taking norms in the last equation we achieve the thesis.

Theorem 4 (Mirsky). Let X and X̃ be matrices of the same dimensions with
singular values

σ1 ≥ σ2 ≥ · · · ≥ σp,

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃p.

Then for any p ≥ 1,

‖diag(σ̃i − σi)‖p ≤ ‖X̃ −X‖p. (2.2.2)

See ([3],Thm III.3.8) for a proof.

Lemma 1. Let A be a tall full rank matrix. Then A‡ is nonsingular and for
all B of compatible size

‖B‖p ≤ ‖A‡‖∞‖AB‖p.



2.2. MOORE-PENROSE PSEUDO-INVERSE 11

Proof. Since A is tall and full rank, A‡A = I, so that

‖B‖p = ‖A‡AB‖p ≤ ‖A‡‖∞‖AB‖p

by (2.1.4).

Lemma 2. Let A and B be matrices of same size. Then, for p ∈ {2,∞}

‖B‡ −A‡‖p ≤
√

2‖A‡‖2‖B −A‖p
(1− ‖A‡‖‖B −A‖)2+

.

Proof. From the Theorem of Wedin, we have

‖B† −A†‖p ≤
√

2(‖B‡‖ ∨ ‖A‡‖)2‖B −A‖p, p ∈ {2,∞}. (2.2.3)

Assuming B has exactly k nonzero singular values and using Mirsky’s inequality,
we have

‖B‡‖−1 = νk(B) ≥ (νk(A)− ‖B −A‖)+ ≥ (‖A‡‖−1 − ‖B −A‖)+. (2.2.4)

By combining (2.2.3) and (2.2.4), we get

‖B‡ −A‡‖p ≤
√

2
(
‖A‡‖ ∨ 1

(‖A‡‖ − ‖B −A‖)+

)2
‖B −A‖p,

from which the result folllows.

Lemma 3. Let A and B be matrices of the same size such that ATB = 0 or
ABT = 0. Then

‖A+B‖p ≥ ‖A‖p ∨ ‖B‖p.

Proof. We assume without lost of generality that ATB = 0; then (A+B)T (A+

B) = ATA+BTB. Due to the fact that ATA � ATA+BTB and the properties
listed above,

‖A‖p = ‖ATA‖1/2p/2 ≤ ‖A
TA+BTB‖1/2p/2 = ‖A+B‖p.

Similarly,

‖B‖p ≤ ‖A+B‖p.

Lemma 4. For any matrix A and any positive semidefinite matrix B, we have

‖A‖p ≤ ‖A(B + I)‖p,

where I denotes the identity matrix with the same dimension as B.



12 CHAPTER 2. PRELIMINARIES

Proof.

A(B + I)(B + I)TAT = A(B2 + 2B + I)AT = AAT +A(B2 + 2B)AT .

Since A(B2 + 2B)AT � 0, for all k we have

νk(A(B + I)(B + I)TAT ) ≥ νk(AAT ),

which then implies that νk(A(B + I)) ≥ νk(A) and so the thesis.



Chapter 3

Stability results for manifold
learning

We will denote with O the orthogonal group of matrices in the appropriate
Euclidean space (which will be clear from context) and with ‖·‖, when applied
to a vector, the Euclidean norm.

3.1 Procrustes

The orthogonal procrustes problem is that of aligning two ordered point sets (of
same cardinality) using an orthogonal transformation. In formulas, given two
point sets, x1, . . . , xn and y1, . . . , yn in Rd, the task consists in solving

min
Q∈O

n∑
i=1

‖yi −Qxi‖2.

In matrix form, the problem can be posed as follows. Given matrices X,Y ∈
Rn×d, solve

min
Q∈O
‖Y −XQ‖2,

where ‖·‖2 denotes the Frobenius norm. Indeed

‖Y −XQ‖2 =
( n∑
j=1

n∑
i=i

|(Y −XQ)j,i|2
)1/2

=
( n∑
i=1

‖yi −QTxi‖2
)1/2

,

and the square root is monotone.
We want to minimize

n∑
i=1

‖yi−QTxi‖2 = tr[(Y−XQ)(Y−XQ)T ] = tr(Y Y T )+tr(XXT )−2 tr(QY TX),

13



14 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

therefore we want to maximize tr(QY TX). The problem is solved by choosing
Q = UV T , where U and V are d-by-d orthogonal matrices obtained by a singular
value decomposition of XTY = UDV T , where D is the diagonal matrix with
the singular values on its diagonal. It follows from the next lemma, taking
A = Y TX.

Lemma 5. Let A be a d × d matrix with singular value decomposition A =

V DUT where V and U are orthogonal matrices and D = diag(δ1, . . . , δd), where
each δj ≥ 0. Then for all orthogonal Q,

tr(QA) ≤ tr[(ATA)1/2]

with equality if Q = UV T .

Proof.
tr(QA) = tr(QVDUT ) = tr(UTQVD) = tr(ND),

where N = UTQV is an orthogonal matrix, being the product of orthogonal
matrices. Now the elements of an orthogonal matrix cannot exceed 1, so that

tr(ND) =

d∑
j=1

njjδj ≤
d∑

j=1

δj = tr(D) = tr[(DTD)1/2]

= tr[(UTATV V TAU)1/2] = tr[(UTATAU)1/2]

= tr[(AUUTAT )] = tr[(AAT )1/2] = tr[(ATA)1/2].

We have equality when Q = UV T , as

QA = UV TV DUT = UDUT = (UDUTUDUT )1/2

= (UD2UT )1/2 = (UDV TV DUT )1/2 = (ATA)1/2.

Algorithm 1 Procrustes
Input: points sets x1, . . . , xn and y1, . . . , yn in Rd

Output: an orthogonal transformation Q of Rd

1: store the point sets in X = [xT1 · · ·xTn ] and Y = [yT1 · · · yTn ]

2: compute XTY and its singular value decomposition UDV T

Return: the matrix Q = UV T

The following is a code in Matlab:



3.1. PROCRUSTES 15

1 function Q = procrustes(X,Y)
2 Z = X’*Y;
3 [U,D,V] = svd(Z);
4 Q = U*V’;
5 end

To show an example, we generated a data set of n = 1000 points of R3 using
the matlab command normrnd to choose each vector. This command takes in
input two matrices, a.k.a. M and Σ, and returns an array of random numbers
chosen from a normal distribution with mean M and standard deviation Σ;
we choose M = 0 ∈ R3×3 and Σ = I ∈ R3×3, where I denotes the identity
matrix. Taking the norm of these vectors and multiplying the resulting matrix
by a diagonal matrix, we obtaine the ellipsoid stored in the matrix X ∈ Rn×d.
Then we compute Y multiplying X by a random matrix. Finally we apply the
algorithm procrustes to X and Y obtaining the matrix Q, and we plot the
three point sets given by the rows of X,Y and XQ.



16 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

Figure 3.1: In blue the ellipsoid X, in red Y and in yellow XQ, where Q is
obtained applying procrustes to X and Y .

In [1] it is proved the following perturbation bound for procrustes, where the
distance between two configurations of points Y and XQ is bounded in terms
of the distance between XXT and Y Y T .

Theorem 5. Let X,Y ∈ Rn×d be full rank matrices and set ε2 = ‖Y Y T −
XXT ‖p, with p > 0. Then, we have

min
Q∈O
‖Y−XQ‖p ≤

{
‖X‡‖ε2 + ((1− ‖X‡‖2ε2)−1/2‖X‡‖ε2) ∧ (d1/2pε) if‖X‡‖ε < 1,

‖X‡‖ε2 + d1/2pε otherwise.

(3.1.1)



3.1. PROCRUSTES 17

Consequently, if ‖X‡‖ε ≤ 1√
2
, then

min
Q∈O
‖Y −XQ‖p ≤ (1 +

√
2)‖X‡‖ε2. (3.1.2)

Proof. Let P ∈ Rn×n be the orthogonal projection onto the column space of X,
which can be expressed as P = XX‡. Define Y1 = PY and Y2 = (I −P )Y , and
note that Y = Y1 + Y2 with Y T

2 Y1 = 0, and also Y T
2 X = 0.

Define M = X‡Y ∈ Rd×d, and apply a singular value decomposition to
obtain M = UDV T , where U and V are orthogonal matrices of size d, and D is
diagonal with nonnegative entries. Indeed columns of U span the row space of
X and columns of V span the row space of Y . Then define Q = UV T , which is
orthogonal. We show that the bound (3.1.2) holds for this orthogonal matrix.

We start with the triangle inequality.

‖Y −XQ‖p = ‖Y1 −XQ+ Y2‖p ≤ ‖Y1 −XQ‖p + ‖Y2‖p. (3.1.3)

Noting that Y1 = XX‡Y = XM , we have

‖Y1 −XQ‖p = ‖XM −XQ‖p = ‖XUDV T −XUV T ‖p
= ‖XU(D − I)V T ‖p ≤ ‖XU(D − I)‖p.

(3.1.4)

Now by Lemma 4, we have

‖XU(D − I)‖p ≤ ‖XU(D − I)(D + I)‖p = ‖XU(D2 − I)‖p. (3.1.5)

Now by unitary invariance, we have

‖XU(D2−I)‖p = ‖XU(D2−I)UT ‖p = ‖XUD2UT−XUUT ‖p = ‖XUD2UT−X‖p,
(3.1.6)

where in the last step we used the fact that columns of U span the row space of
X and hence UUTXT = XT . Combining (3.1.4), (3.1.5) and (3.1.6), we obtain

‖Y1 −XQ‖p ≤ ‖XUD2UT −X‖p
= ‖(XMMT −X)(X‡X)T ‖p
≤ ‖X‡‖‖XMMTXT −XXT ‖p
= ‖X‡‖‖Y1Y T

1 −XXT ‖p,

(3.1.7)

where the first equality holds since X‡X = I, given that X has full column
rank.

Coming from the other end, so to speak, we have

ε2 = ‖Y Y T −XXT ‖p = ‖Y1Y T
1 −XXT + Y1Y

T
2 + Y2Y

T
2 ‖p (3.1.8)

≥ ‖Y1Y T
1 −XXT + Y1Y

T
2 ‖ ∨ ‖Y2Y T

1 + Y2Y
T
2 ‖p (3.1.9)

≥ ‖Y1Y T
1 −XXT ‖p ∨ ‖Y1Y T

2 ‖ ∨ ‖Y2Y T
1 ‖p ∨ ‖Y2Y T

2 ‖p, (3.1.10)



18 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

using Lemma 3 thrice, once based on the fact that

(Y1Y
T
1 −XXT +Y1Y

T
2 )T (Y2Y

T
1 +Y2Y

T
2 ) = (Y1Y

T
! −XXT + Y2Y

T
1 )Y2︸ ︷︷ ︸

=0

(Y T
1 +Y T

2 ) = 0,

and then based on the fact that

(Y1Y
T
1 −XXT )(Y1Y

T
2 )T = (Y1Y

T
1 −XXT )Y2︸ ︷︷ ︸

=0

Y T
1 = 0,

and
(Y2Y

T
1 )(Y2Y

T
2 )T = Y2 Y

T
1 Y2︸ ︷︷ ︸
=0

Y T
2 .

From (3.1.10), we extract the bound ‖Y1Y T
1 −XXT ‖p ≤ ε2, from which we

get (based on the derivations above)

‖Y1 −XQ‖p ≤ ‖X‡‖ε2. (3.1.11)

Recalling the inequality (3.1.3), we proceed to bound ‖Y2‖p. From (3.1.10), we
extract the bound ‖Y2Y T

2 ‖p ≤ ε2, and combine it with

‖Y2Y T
2 ‖p = ‖Y2‖22p ≥ d−1/p‖Y2‖2p,

where d is the number of columns and the inequality is Cauchy-Schwarz’s, to
get

‖Y2‖p ≤ d1/2pε.

We next derive another upper bound for ‖Y2‖p, for the case that ‖X‡‖ε < 1.
Denote by λ1 ≥ · · · ≥ λd the singular values of X and by ν1 ≥ · · · ≥ νd the
singular values of Y1. Given that X has full column rank we have λd > 0 and
so ‖X‡‖ = 1/λd. Further, by an application of Mirsky’s inequality, we have

max
i
|ν2i − λ2i | ≤ ‖Y1Y T

1 −XXT ‖ ≤ ‖Y1Y T
1 −XXT ‖p ≤ ε2,

using (3.1.10). Therefore ν2d > λ2d− ε2 > 0 by our assumption that ‖X‡‖ε2 < 1,
which implies that Y1 has full column rank. Now, by an application of Lemma
1, we obtain

‖Y2‖p = ‖Y T
2 ‖p ≤ ‖Y

‡
1 ‖‖Y1Y T

2 ‖p ≤ ε2‖Y
‡
1 ‖, (3.1.12)

where we used (3.1.10) in the last step. Also,

‖Y ‡1 ‖ =
1

νd
≤ 1

(λ2d − ε2)1/2
=

λ−1d

(1− ε2λ−2d )1/2
= ‖X‡‖(1− ε2‖X‡‖2)−1/2.

(3.1.13)



3.1. PROCRUSTES 19

Combining (3.1.13) and (3.1.12) we obtain

‖Y2‖p ≤ ε2‖X‡‖(1− ε2‖X‡‖2)−1/2, if ‖X‡‖ε < 1. (3.1.14)

Combining the bounds (3.1.12) with (3.1.14) and (3.1.11) in the inequality
(3.1.3), we get (3.1.1). The bound (3.1.2) follows readily from (3.1.1).

We can verify numerically that the distance between X and Y scales linearly
in ε2. Indeed, given a matrix X and a perturbation η, we can construct the
matrix Y = X + ηR, where R is a randomly generated matrix. The theorem
states that we can bound the distance with

ε2 = ‖Y Y T −XXT ‖p = ‖(X + ηR)(X + ηR)T −XXT ‖p
= ‖XXT + η(XRT +RXT ) + η2RRT −XXT ‖p
= ‖η(XRT −RXT ) + η2RRT ‖p



20 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

10 -15 10 -10 10 -5 10 0

eta

10 -15

10 -10

10 -5

10 0

||Y
-X

Q
||

Figure 3.2: Distance between the configurations Y and XQ, where Y = X +

ηR and R contains pseudorandom values drawn from the standard uniform
distribution on the open interval (0, 1), using the matlab command rand.

3.2 Classical Scaling

In multidimensional scaling, we are given a matrix, ∆ = (∆ij) ∈ Rn×n, storing
the dissimilarities between a set of n items. A square matrix ∆ is called dissim-
ilarity matrix if it is symmetric, ∆ii = 0, and ∆ij > 0, for i 6= j (∆ij gives the
level of dissimilarity between items i, j ∈ {1, . . . , n}).

In the following, we represent a data set X = {x1, . . . , xn} ⊂ RD in the
matrix form X = [x1 · · ·xn] ∈ RD×n, where each column of X is a point of X .
Thus, the totality of all columns of the data matrix X constitutes the data set



3.2. CLASSICAL SCALING 21

X . For convenience, we shall identify the data matrix X with the data set X .
Let Dist(i, j) = d2(xi, xj) ∀i, j ∈ {1, . . . , n}, where d2 denotes the distance

induced by the Euclidean norm. Given Dist and a number d, the CMDS al-
gorithm returns a matrix Y ∈ Rn×d whose rows {y1, . . . , yn} are vectors of Rd

such that d2(yi, yj) ≈ d2(xi, xj) ∀i, j ∈ {1, . . . , n}. More precisely

Y = arg min
A∈Rn×d

n∑
i,j=1

(d22(xi, xj)− d22(ai, aj)),

where a1, . . . , an are the rows of A.

3.2.1 Euclidean Metric and Gram Matrices

From the viewpoint of geometry, in a Euclidean space, the distance describes the
dissimilarity of a pair of points while the inner product describes the similarity.
They have a close relationship.

Definition 1. An n × n symmetric matrix D is called a Euclidean distance
matrix (or Euclidean metric) if there exists an integer m > 0 and a vector set
Z = {z1, · · · , zn} ⊂ Rm so that

D = [Dij ] = [d2(zi, zj)]
n
i,j=1.

The vector set Z is called a configurative point set (or a configuration) of D.

We define the Euclidean square-distance matrix as

S = [Sij ] = [d22(xi, xj)]
n
i,j=1.

The Gram matrix on the data set X is defined by

G = [Gij ] = [〈xi, xj〉]ni,j=1.

It is clear that G is a positive semi-definite (psd) matrix. On the other hand,
each psd matrix represents a Gram matrix of a certain data set. Indeed, if an
n× n psd matrix G has rank m, then it has a Cholesky decomposition

G = XTX, (3.2.1)

where X = [x1, · · · , xn] is an m× n matrix. By (3.2.1), G is the Gram matrix
of the data set X ⊂ Rm. Therefore, we can identify a Gram matrix with a psd
matrix.

We now reveal the relation between the Gram matrix G and the Euclidean
distance matrix D of a data set X . Let x, y ∈ RD. By the Law of Cosines,

d2(x, y) =
√
〈x, x〉+ 〈y, y〉 − 2〈x, y〉,



22 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

which yields
Dij = d2(xi, xj =

√
Gii +Gjj − 2Gij . (3.2.2)

The entries of a Gram matrix G are vector inner products which are not shift
invariant. In order to establish a relation between G and D, we shift the data
X by its center. Let x̄ = 1

n

∑n
i=1 xi and the x̄-shift of X be denoted by

X̂ = {x̂1, . . . , x̂n},

where x̂i = xi − x̄. We call X̂ a centered data set and call the corresponding
data matrix X̂ the centered data matrix.

Definition 2. For a given data set X , let X̂ be the centered data set of X .
Then the Gram matrix of X̂

Gc = [〈x̂i, x̂j〉]ni,j=1 = X̂T X̂, (3.2.3)

is called the centering Gram matrix of X .

It is easy to verify that the centering Gram matrix Gc and the Gram matrix
G have the same relationship with the Euclidean distance matrix D descibed in
(3.2.2), namely,

Dij =
√
Gc

ii +Gc
jj − 2Gc

ij . (3.2.4)

Definition 3. Write e = [1, . . . , 1]T ∈ Rn, E = eeT , and let I denote the n×n
identity matrix. Then the n×n matrix H = I − 1

nE is called the n-centralizing
matrix.

If the dimension n is understood, we shall simplify the term "n-centralizing"
to "centralizing".

Lemma 6. The centralizing matrix H has the following properties.

1. H2 = H;

2. eTH = He = 0;

3. X is a centered data set ⇐⇒ XH = X;

4. A psd matrix C is a centering Gram matrix ⇐⇒ HCH = C.

Proof. Since eT e = n, we have Ee = ne, so that

H2 =
(
I − 1

n
E
)2

= I − 2

n
E +

1

n2
EeeT = I − 1

n
E = H,

which yields (1). Furthermore, (2) follows from the fact that Ee = ne, (3) can
be derived from the definition of centered data, and (4) is a direct consequence
of (3).



3.2. CLASSICAL SCALING 23

By applying these properties directly, we have the following

Lemma 7. Let X be a data matrix and G be its Gram matrix. Then the centered
data set of X is XH, and the centering Gram matrix of X is Gc = HGH.

In general, the centering matrix of a symmetric matrix A (not necessary psd)
is defined as Ac = HAH. It is obvious that a symmetric matrix S is centering
if and only if S = HSH. The notion of centering symmetric matrix enables us
to represent the centering Gram matrix in terms of Euclidean square-distance
matrix, reducing the relation (3.2.2) to a very simple form.

Theorem 6. Euclidean square-distance matrix S and the centering Gram ma-
trix Gc of a data set X have the following relation.

Gc = −1

2
Sc.

Proof. It follows from Lemma 6 that Gc has the property
∑n

i=1G
c
ij = 0. Hence,

the relation in (3.2.4) immediately yields both

n∑
i=1

D2
ij = nGc

jj +

n∑
i=1

Gc
ii

and
n∑

j=1

D2
ij = nGc

ii +

n∑
j=1

Gc
jj .

Therefore, the (i, j)-entry of Sc is given by

(Sc)ij = D2
ij −

1

n

( n∑
i=1

D2
ij +

n∑
j=1

D2
ij −

1

n

n∑
i,j=1

D2
ij

)
= D2

ij −Gc
ii −Gc

jj

= −2Gc
ij ,

completing the proof of the theorem.

The following is a consequence of Theorem 6 and (3.2.1).

Theorem 7. Let A be a symmetric matrix. Then

1. A is a Gram matrix of a data set ⇐⇒ A is a psd matrix;

2. A is a centering Gram matrix ⇐⇒ A is a centering psd matrix;

3. A is a Euclidean square-distance matrix ⇐⇒ − 1
2A

c is a centering psd
matrix.



24 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

Proof. The first and the second statements are trivial. We prove the third one.
Write G = − 1

2A
c. If G is a centering psd matrix, by (3.2.3), there is an m× n

centered matrix V = [v1 · · · vn] with m ≤ n such that

G = V TV.

By Theorem 6, the matrix A, defined by Ac = −2Gc, is a Euclidean square-
distance matrix. On the other hand, if A is the Euclidean square-distance matrix
of a data set X , then Gc = − 1

2A
c is the centering Gram matrix of X so that it

is a centering psd matrix.

Lemma 8. Assume that an n× n matrix D = [dij ] is a Euclidean metric and
S = [d2ij ] is the corresponding square-distance matrix. Let Gc = − 1

2S
c. If

the rank of Gc is r, then there is an r-dimensional centered vector set X =

{x1, . . . , xn} ⊂ Rr such that

d2(xi, xj) = dij , 1 ≤ i, j ≤ n. (3.2.5)

Proof. By Theorem 7, Gc is a centering Gram matrix. Since the rank of Gc is
r, there exists an r × n centered data matrix X such that Gc = XTX. Then
the centered data set X satisfies (3.2.5). The lemma is proved.

3.2.2 CMDS Algorithm and perturbation bounds

Algorithm 2 Classical Scaling
Input: square-distance matrix S ∈ Rn×n, embedding dimension d
Output: set of points y1, . . . , yn ∈ Rd

1: compute the matrix Gc = − 1
2HSH

2: let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of Gc, with corresponding eigen-
vectors u1, . . . , un
3: compute Y ∈ Rn×d as Y = [

√
λ1,+u1, . . . ,

√
λd,+ud]

Return: the row vectors y1, . . . , yn di Y

1 function [Y,ev] = cmds(Dist ,d)
2 sz = size(Dist);
3 n = sz(1);
4 E = ones(n);
5 H = eye(n) - E/n;
6 S = Dist.*Dist;
7 Gc = -(H*S*H)/2;
8 [Ud ,Dd] = eigs(Gc,d);
9 Zd = sqrt(max(Dd,zeros(d)));

10 Y = Ud*Zd;



3.2. CLASSICAL SCALING 25

11 ev = diag(Zd);
12 end

We tried this algorithm with many manifolds. The torus is one of them: we
take a parameterization


x(u, v) = (R+ r cosu) cos v

y(u, v) = (R+ r cosu) sin v

z(u, v) = r sinu

with R = 2, r = 1 and u, v chosen uniformly from the interval [0, 2π]. Then we
apply cmds to scale it in 2 dimension. The distance we use to make the distance
matrix is the Euclidean one.

(a) Torus in R3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(b) Representation of the torus in R2, ob-
tained applying cmds

We have done the same thing with the Klein bottle:


x(u, v) = − 2

15 cosu(3 cos v − 30 sinu+ 90 cos4 u sinu− 60 cos6 u sinu+ 5 cosu cos v sinu)

y(u, v) = − 1
15 sinu(3 cos v − 3 cos2 u cos v − 48 cos4 u cos v + 48 cos6 u cos v − 60 sinu

+5 cosu cos v sinu− 5 cos3 u cos v sinu− 80 cos5 u cos v sinu+ 80 cos7 u cos v sinu)

z(u, v) = 2
15 (3 + 5 cosu sinu) sin v;

with u chosen uniformly from the interval [0, π] and v = 2u.



26 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

(c) Klein bottle in R3

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) Representation of the Klein bottle in
R2, obtained applying cmds

In the description, we use the notation a+ = max(a, 0) for a scalar a. The
basic idea of classical scaling is to assume that the dissimilaries are Euclidean
distances and then find coordinates that explain them.

For a general dissimilarity matrix ∆, the doubly centered matrix ∆c may
have negative eigenvalues and that is why in the construction of Y , we use the
positive part of the eigenvalues. However, if ∆ is an Euclidean dissimilarity
matrix, namely ∆ij = ‖xi − xj‖2 for a set points {x1, . . . , xn} in some ambient
Euclidean space, then ∆c is a positive semi-definite matrix. This follows from
the following identity relating a configuration X with the corresponding squared
distance matrix ∆:

−1

2
H∆H = HXXTH. (3.2.6)

We perform a perturbation analysis of classical scaling, by studing the effect
of perturbing the dissimilarities on the embedding that the algorithm returns.
This sort of analysis helps quantify the degree of robustness of a method to
noise, and is particularly important in applications where the dissimilarities are
observed with some degree of inaccuracy, which is the case in the context of
manifold learning.

Definition 4. We say that ∆ ∈ Rm×m is a d-Euclidean dissimilarity matrix if
there exists a set of points {x1, . . . , xm} ⊂ Rd such that ∆ij = ‖xi − xj‖2.

Corollary 1. Let Λ,∆ ∈ Rm×m denote two d-Euclidean dissimilarity matrices,
with ∆ corresponding to a centered and full rank configuration Y ∈ Rm×d. Set
ε2 = 1

2‖H(Λ−∆)H‖p. If it holds that ‖Y ‡‖ε ≤ 1√
2
, then classical scaling with

input dissimilarity matrix Λ and dimension d returns a centered configuration



3.2. CLASSICAL SCALING 27

Z ∈ Rm×d satisfying

min
Q∈O
‖Z − Y Q‖p ≤ (1 +

√
2)‖Y ‡‖ε2.

Since H has one zero eigenvalue and d− 1 eigenvalues equal to one, ‖H‖p =

(d− 1)1/p. It follows that ε2 ≤ 1
2d

2/p‖Λ−∆‖p.

Proof. We have

‖Λc −∆c‖p =
1

2
‖H(Λ−∆)H‖p = ε2.

Note that since ∆ and Λ are both d-Euclidean dissimilarity matrices, using
identity (3.2.6), the doubly centered matrices ∆c and Λc are both positive semi-
definite and of rank at most d. Indeed, since Y is full rank (rank d) and cen-
tered, then (3.2.6) implies that ∆c is of rank d. Therefore, for the underlying
configuration Y and the configuration Z, returned by classical scaling, we have
∆c = Y Y T and Λc = ZZT . We next simply apply Theorem 5, which we can do
since Y has full rank by assumption, to conclude.

We try to appreciate the variation of the configuration that the algorithm
returns if we perturb the matrix ∆. So we take Λ as ∆ + ηR, where R con-
tains pseudorandom values drawn from the standard uniform distribution on
the open interval (0, 1), and we apply cmds to both, obtaining respectively the
configurations Y and Z. Then, to quantify the difference between Y and Z, we
use the algorithm procrustes.



28 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

10 -15 10 -10 10 -5 10 0

eta

10 -15

10 -10

10 -5

10 0

||Y
-X

Q
||

Figure 3.3: Distance between the configurations Y and ZQ.

3.2.3 Computational cost and the Lanczos algorithm

Classical scaling amounts to performing an eigen-decomposition of the dissimi-
larity matrix after double-centering. Only the top d eigenvectors are needed if
an embedding in dimension d is desired. Using iterative methods such as the
Lanczos algorithm, classical scaling can be implemented with a complexity of
O(dn2), where n is the number of items (and therefore also the dimension of
the dissimilarity matrix).

The matlab command eigs that we have used in cmds, is an implemen-
tation of the Lanczos algorithm that returns only the top d eigenvalues and
eigenvectors.

This algorithm allows us to decompose a Hermitian matrix A ∈ Rn×n in the



3.3. TRILATERATION 29

product V TV H where V ∈ Rn×s is a matrix whose columns are orthonormal
and T ∈ Rd×d is a tridiagonal matrix. If λ is an eigenvalue of A and x is
an eigenvector of T corresponding to λ then y = V x is an eigenvector of A
corresponding to λ. Indeed Ay = AV x = V TV HV x = V Tx = V λx = λV x =

λy. Therefore the Lanczos algorithm trasforms the decomposition problem of
A in the decomposition problem of T . As T is tridiagonal, there are specialized
algorithms, whose complexity is generally lower, to compute its decomposition.

3.3 Trilateration

In applications, particularly if the intent is visualization, the embedding di-
mension d tends to be small. Even then, the resulting complexity of cmds is
quadratic in the number of items n to be embedded. There has been some effort
in bringing this down to a complexity that is linear in the number of items. We
introduce a new algorithm in order to decrease the computational cost of the
scaling.

The procedure proposed by de Silva and Tenenbaum (2004), which they
called landmark MDS (LMDS) works by selecting a small number of items, per-
haps uniformly at random from the itemset, and embedding them via classical
scaling. These items are used as landmark points to enable the embedding of the
remaining items. The second phase consists in performing trilateration, which
aims at computing the location of a point based on its distances to known (land-
mark) points. Note that this task is closely related to, but distinct, from trian-
gulation, which is based on angles instead. If l items are chosen as landmarks
in the first step (out of n items in total), then the procedure has complexity
O(dl2 + dln). Since l can in principle be chosen on the order of d, and d ≤ n

always, the complexity is effectively O(d2n), which is linear in the number of
items. A good understanding of the robustness properties of LMDS necessitates
a good understanding of the robustness properties of not only classical scaling
(used to embed the landmark items), but also of trilateration (used to embed
the remaining items).

The problem of trilateration is that of positioning a point, or a set of points,
based on its (or their) distances to a set of points, which in this context serve as
landmarks. In detail, given a set of landmark points y1, . . . , ym ∈ Rd and a set
of dissimilarities δ̃1, . . . , δ̃m, the goal is to find ỹ ∈ Rd such that ‖ỹ−yi‖2 is close
to δ̃i over all i ∈ {1, . . . ,m}. The following algorithm describes the trilateration
method simultaneously applied to multiple points to be located.



30 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

Algorithm 3 Trilateration
Input: centered point set y1, . . . , ym ∈ Rd, dissimilarities ∆̃ = (δ̃i,j) ∈ Rn×m

Output: points ỹ1, . . . , ỹn ∈ Rd

1: compute ā = 1
n

∑n
i=1 ai, where ai = (δ̃i1, . . . , δ̃im)

2: compute the pseudo-inverse Y ‡ of Y = [y1 · · · ym]T

3: compute Ỹ T = 1
2Y
‡(ā1T −∆T )

Return: the row vectors of Ỹ , denoted ỹ1, . . . , ỹn ∈ Rd

1 function Yt = trilateration(Y,D2)
2 sz = size(D2);
3 n = sz(1);
4 a = sum(D2)/n;
5 piY = pinv(Y);
6 e = ones(1,n);
7 Yt = piY*(a’*e-D2 ’)/2;
8 Yt = Yt ’;
9 end

Algorithm 4 Landmark Multidimensional Scaling
Input: data points x1, . . . , xn ∈ RD, embedding dimension d, number of land-
marks l
Output: embedding points {zi : i ∈ L} ∪ {z̃i : i /∈ L} ⊆ Rd

1: select L ⊂ [n] of size l
2: compute the square-distance matrix Sl ∈ Rl×l of the points in {xi : i ∈ L}
3: apply classical scaling with input Sl and d, resulting in (landmark) points
zi ∈ Rd, i ∈ L
4: for each i /∈ L, apply trilateration based on {zi : i ∈ L} e ∆̃ = (δ̃i,j) =

‖xi − xj‖2 ∈ Rl×(n−l), with i ∈ L and j /∈ L to obtain {z̃j : j /∈ L} ⊂ Rd

Return: points {zi : i ∈ L} ∪ {z̃i : i /∈ L}

1 function Ytot = lmds(X,d,l)
2 sz = size(X);
3 D = sz(1);
4 n = sz(2);
5 vl = sort(randperm(n,l));
6 L = zeros(D,l);
7 L = X(:,vl);
8 DistL = zeros(l);
9 for i=1:l

10 for j=1:l
11 if j>i
12 DistL(i,j) = norm(L(:,i)-L(:,j));
13 end



3.3. TRILATERATION 31

14 end
15 end
16 DistL = DistL + DistL ’;
17 [Y,~] = cmds(DistL ,d);
18 vnl = 1:n-l;
19 j = 1;
20 k = 1;
21 for i=1:n-l
22 while k<=l && j==vl(k)
23 k = k + 1;
24 j = j + 1;
25 end
26 vnl(1,i) = j;
27 j = j + 1;
28 end
29 D2 = zeros(n-l,l);
30 for i=1:n-l
31 for j=1:l
32 D2(i,j) = norm(X(:,vnl(1,i))-L(:,j))^2;
33 end
34 end
35 Yt = trilateration(Y,D2);
36 Ytot = zeros(n,d);
37 Ytot(vl ,:) = Y;
38 Ytot(vnl ,:) = Yt;
39 end

We generated a data set of n = 1000 points of R10 using the matlab command
normrnd to choose each vector. Taking the norm of these vectors, we obtain a
10-dimensional sphere. Instead of using directly cmds on all the n points, we
randomly selecte l = 4 landmarks and we apply the algorithm to the Euclidean
distance matrix of these points. Then the entire representation is reconstructed
thanks to the algorithm trilateration.



32 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

Figure 3.4: 10-dimensional sphere represented in 3 dimensions thanks to the
algorithm lmds. The red points are the embedding of the 4 landmarks.

Then, in order to analyze how the difference between the representations of
the same point set changes when varying the landmarks considered, we make
the following experiment. We take as landmarks, in one case the first j points,
in the other the last j. Increasing the number of landmarks, we observe that the
difference between the configurations decrease, until it gets to 0 when j = n.



3.3. TRILATERATION 33

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Figure 3.5: Difference of representation when varying the number of lankmarks
considered.

Actually, article [1] does not investigate this aspect, but it prefers to focus
on other stability result, like the following.

We perturb both the dissimilarities and the landmark points, and quantita-
tively characterize how it will affect the returned position by trilateration. For
a configuration Y = [y1, · · · , ym]T , define its max-radius as

ρ∞(Y ) = max
i∈{1,...,m}

‖yi‖,

and note that ρ(Y ) ≤ ρ∞(Y ). We limit ourselves with a bound in Frobenius
norm1

1All Schatten norms are equivalent here up to a multiplicative constant that depends on
d, since the matrices that we consider have rank of order d.



34 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

Theorem 8. Consider a centered configuration Y ∈ Rm×d that spans the whole
space Rd, and for a given configuration Ỹ ∈ Rn×d, let ∆̃ ∈ Rn×m denote the
matrix of dissimilarities between Ỹ and Y , namely ∆̃ij = ‖ỹi − yj‖2. Let Z ∈
Rm×d be another centered configuration that spans the whole space, and let Λ̃ ∈
Rn×m be an arbitrary matrix. Then, trilateration with inputs Z and Λ̃ returns
Z̃ ∈ Rn×d satisfying

‖Z̃ − Ỹ ‖2 ≤
1

2
‖Z‡‖‖Λ̃− ∆̃‖2 + 2‖Ỹ ‖‖Z‡‖‖Z − Y ‖2

+ 3
√
m(ρ∞(Y ) + ρ∞(Z))‖Z‡‖‖Z − Y ‖2 + ‖Y ‖‖Ỹ ‖‖Z‡ − Y ‡‖2.

(3.3.1)

We see that the first term captures the effect of the error in the dissimilarity
matrix, i.e. ‖∆̃−Λ̃‖, while the other three terms reflect the impact of the error in
the landmark positions, i.e. ‖Z−Y ‖. As we expected, we have a more accurate
embedding as these two terms get smaller and in particular, when ∆̃ = Λ̃ and
Y = Z (no error in inputs), we have exact recovery.

Proof. Let ā denote the average dissimilarity vector defined in Algorithm 3 based
on Y and define b̄ similarly on Z. Let Θ denote the matrix of dissimilarities
between Ỹ and Z and let Ỹ denote the result of Algorithm 3 with inputs Z and
Θ. From Algorithm 3, we have

Ỹ T =
1

2
Y ‡(ā1T − ∆̃T ), Ŷ T =

1

2
Z‡(b̄1T −ΘT ), Z̃T =

1

2
Z‡(b̄1T − Λ̃T ),

due to the fact that the algorithm is exact.
We have

‖Z̃ − Ỹ ‖2 ≤ ‖Z̃ − Ŷ ‖2 + ‖Ŷ − Ỹ ‖2.

On the one hand,

2‖Z̃ − Ŷ ‖2 ≤ ‖Z‡‖‖Λ̃−Θ‖2 ≤ ‖Z‡‖(‖Λ̃− ∆̃‖2 + ‖∆̃−Θ‖2).

On the other hand, starting with the triangle inequality,

2‖Ŷ − Ỹ ‖2 = ‖Z‡(b̄1T −ΘT )− Y ‡(ā1T − ∆̃T )‖2
≤ ‖Z‡(b̄1T −ΘT )− Z‡(ā1T − ∆̃T )‖2 + ‖Z‡(ā1T − ∆̃T )− Y ‡(ā1T − ∆̃T )‖2
≤ ‖Z‡‖(‖b̄1T − ā1T ‖2 + ‖Θ− ∆̃‖2) + ‖ā1T − ∆̃T ‖‖Z‡ − Y ‡‖2.

Together, we find that

2‖Z̃−Ỹ ‖2 ≤ ‖Z‡‖(‖Λ̃−∆̃‖2+2‖Θ−∆̃‖2+
√
m‖b̄−ā‖)+‖ā1T−∆̃T ‖‖Z‡−Y ‡‖2.

In the following, we bound the terms ‖ā1T − ∆̃T ‖, ‖Θ − ∆̃‖2 and ‖b̄ − ā‖,
separately.



3.3. TRILATERATION 35

First, using Lemma 1 and the fact that (Y ‡)‡ = Y has full rank,

‖Ỹ ‖ =
1

2
‖Y ‡(ā1T − ∆̃T )‖ ≥ 1

2
‖Y ‖−1‖ā1T − ∆̃T ‖.

Therefore,

‖ā1T − ∆̃T ‖ ≤ 2‖Y ‖‖Ỹ ‖.

Next, set Y = [y1, · · · , ym]T and Z = [z1, · · · , zm]T , as well as Ỹ = [ỹ1, · · · , ỹn]T .
Since

(Θ− ∆̃)ij = 2ỹTi (yj − zj) + ‖zj‖2 − ‖yj‖2,

we have

‖Θ− ∆̃‖2 = ‖2Ỹ (Y T − ZT ) + 1cT ‖2 ≤ 2‖Ỹ ‖‖Y − Z‖2 +
√
m‖c‖,

with c = (c1, . . . , cm) and cj = ‖zj‖2 − ‖yj‖2. Note that

‖c‖2 =
∑
j∈[m]

(‖zj‖2 − ‖yj‖2)2

≤
∑
j∈[m]

‖zj − yj‖2(‖zj‖+ ‖yj‖)2

≤ (ρ∞(Y ) + ρ∞(Z))2‖Z − Y ‖22,

so that

‖Θ− ∆̃‖2 ≤ 2‖Ỹ ‖‖Y − Z‖2 +
√
m(ρ∞(Y ) + ρ∞(Z))‖Z − Y ‖2.

Finally, recall that ā and b̄ are respectively the average of the columns of the
dissimilarity matrix for the landmark Y and the landmark Z. Using the fact
that the y’s are centered and that the z’s are also centered, we get

b̄− ā = c+ cavg1,

where cavg = 1
m

∑
j∈[m] cj and therefore

‖b̄− ā‖2 ≤
∑
j∈[m]

(cj + cavg)2 = ‖c‖2 + 3mc2avg ≤ 4‖c‖2,

using the Cauchy-Schwarz inequality at the last step.
Combining all these bounds, we obtain the bound stated in (3.3.1). The last

part comes from the triangle inequality and an application of Lemma 2.



36 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

3.4 Isomap

When the points belong to a manifold M , we would like to use distances on the
manifold instead of the Euclidean ones to better preserve the properties of the
set considered. For this reason, we introduce a variation in the distance matrix
D ∈ Rn×n:

D = [Dij ] = [d2(xi, xj)I{‖xi−xj‖≤r}]
n
i,j=1,

with r ∈ R+ a fixed parameter. Then we construct a weighted graph in which
the nodes are the points {xi} and there is an edge from the node i to the node j
of weight w if and only if Dij = w (if Dij = 0 there is not the edge). From this
graph, we compute the shortest-path distances graph, i.e. a weighted graph with
the points on the manifold as nodes and the shortest-path distance (calculated
on the previous graph) as edge weights.

The value r plays a basic role: it is the radius of the ball of each point m
within which the others are visible by m. Outside this ball, points are at infinite
distance from the point m. The more we take r small, the more the distance is
similar to the one on the manifold. On the other hand, if we take r too small,
the shortest-path distances graph could be disconnected, since we consider a
finite number of points.

To underline this dependence of the representation on the radius r, we
plot the configurations obtained applying the algorithm isomap on the same
3-dimensional sphere of n = 300 points, the first time with r = 0.5 and the
second time with r = 0.1. The lines link two points if their Euclidean distance
on the sphere is less than r. In yellow, a sphere of radius r centered in a random
point of the representation. The points of the sphere are obtained taking the
norm of the vectors genereted by the matlab command normrnd.



3.4. ISOMAP 37

(a) 3-dimensional sphere represented
through the algorithm isomap with
r = 0.5.

(b) 3-dimensional sphere represented
through the algorithm isomap with r =

0.1: there is only the plot of the connected
component of the random point and the
sphere centered on it.

Isomap is composed by two parts: first, it computes the shortest-path dis-
tances from the r-ball neightborhood graph based on the data points; then it
passes the obtained distance matrix to classical scaling (together with the de-
sires embedding dimension) to obtain an embedding. The algorithm is known
to work well when the underlying manifold is isometric to a convex domain in
Rd. Indeed, assuming an infinite sample size, so that the data points are in
fact all the points of the manifold, as r → 0, the shortest-path distances will
converge to the geodesic distances on the manifold, and thus, in that asymptote
(infinite sample size and infinitesimal radius), an isometric embedding in Rd is
possible under the stated condition. It is interesting however to consider more
general manifolds.

Algorithm 5 Isomap
Input: data points x1, . . . , xn ∈ RD, embedding dimension d, neighborhood
radius r
Output: embedding points z1, . . . , zn ∈ Rd

1: construct the graph on [n] with edge weights wij = ‖xi − xj‖I{‖xi−xj‖≤r}

2: compute the shortest-path distances in that graph Γ = (γij)

3: apply classical scaling with inputs Γ◦2 and d, resulting in points z1, . . . , zn ∈
Rd

Return: the points z1, . . . , zn

1 function Z = isomap(X,d,r)



38 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

2 sz = size(X);
3 D = sz(1);
4 n = sz(2);
5 G = zeros(n);
6 k = 1;
7 for i=1:n
8 for j=1:n
9 if j>i

10 nrm = norm(X(:,i)-X(:,j));
11 if nrm <=r
12 G(i,j) = nrm;
13 end
14 end
15 end
16 end
17 G = G + G’;
18 Gamma = dijkstra(G);
19 [Z,~] = cmds(Gamma.^2,d);
20 end

To calculate the shortest-path distances of the nodes on the graph, we have
used a variant of the Dijkstra’s algorithm.

The Dijkstra’s algorithm finds the shortest path between two given nodes or
between a given "source" node of the graph and the others, forming a shortest-
path tree. It runs in time O((|V | + |E|) log |V |) (where |V | is the number of
nodes and |E| is the number of edges) if implemented with a priority queue, in
O(|V |2) if implemented with an array and in O(|E|+ |V | log |V |) if implemented
with a Fibonacci heap priority queue.

Actually, we don’t need the shortest path, but the length of it. So we have not
saved all the nodes crossed by the algorithm, but just the sum of the weights
of the edges crossed. At each step, the algorithm select the minimum m of
these shortest-path distances, initialized with the distances of the r-ball neight-
borhood graph, and the node p that realize it. Then it looks at the distances
between this node and the others; if the sum of m and the distance between
p and a node q, a.k.a. d(p, q), is less then the distance between the source
node and q, it updates the value of this distance with m + d(p, q). It repeats
this procedure n times, one per node. In totally, in our case, the complexity is
O(n3).

1 function Gamma = dijkstra(G)
2 sz = size(G);
3 n = sz(1);
4 l = sz(2);
5 M = intmax;
6 Gamma = G;
7 for i=1:n



3.4. ISOMAP 39

8 dist = Gamma(i,:);
9 for j=1:l

10 if j~=i && dist(j)==0
11 dist(j) = M;
12 end
13 end
14 tocheck = 1:l;
15 st = l;
16 [m,t] = min(dist);
17 while st >0 && m<M
18 p = tocheck(t);
19 for j=1:st
20 q = tocheck(j);
21 if G(p,q)~=0 && m+G(p,q)<dist(q)
22 dist(q) = m + G(p,q);
23 end
24 end
25 if st >1
26 temp = zeros(1,st -1);
27 if t~=1
28 temp (1 ,1:(t-1)) = tocheck (1:(t-1));
29 end
30 temp(1,t:(st -1)) = tocheck ((t+1):st);
31 tocheck = temp;
32 [m,t] = min(dist(tocheck));
33 end
34 st = st - 1;
35 end
36 for j=1:l
37 if dist(j)==M
38 dist(j) = 0;
39 end
40 end
41 Gamma(i,:) = dist;
42 end
43 end

In the next example, we see two different configurations returned by the
algorithm applied on two different tori; the first one, is the torus described
above (Section 3.2.2). The second one is obtained looking at the torus as the
quotient R2/Z2: we uniformly take points in the square [0, 1]2 and we compute
the distance as follows:

d(xi, xj) = min
k∈Z2
‖xi − xj + k‖.

This is the so-called flat distance.



40 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

(c) Torus in 3 dimensions achieved
through the algorithm isomap with r =

0.5, using the Euclidean distance.

(d) Torus in 3 dimensions achieved
through the algorithm isomap with r =

0.08, using the flat distance.

As above, we link the points whose distance is less than r.

(e) Torus in 2 dimensions achieved
through the algorithm isomap with r =

1.4, using the Euclidean distance.

(f) Torus in 2 dimensions achieved through
the algorithm isomap with r = 0.08, using
the flat distance.

Also in this case, in order to reduce the computational cost, it is preferable to
use the landmark version of the algorithm, i.e. the landmark isomap: instead of
applying the algorithm cmds on the shortest-path distances graph, it is applied
to a subgraph of it, formed by a small number l of nodes. Finally, using the
trilateration, the entire representation is reconstructed.



3.4. ISOMAP 41

Algorithm 6 Landmark Isomap
Input: data points x1, . . . , xn ∈ RD, embedding dimension d, neighborhood
radius r, number of landmarks l
Output: embedding points {zi : i ∈ L}∪{z̃i : i /∈ L} ⊆ Rd for a choice of |L| = l

landmarks
1: construct the graph on [n] with edge weights wij = ‖xi − xj‖I{‖xi−xj‖≤r}

2: select L ⊂ [n] of size l
3: compute the shortest-path distances in that graph Γ = (γij) for (i, j) ∈ [n]×L
4: apply classical scaling with inputs Γ◦2L×L and d, resulting in (landmark) points
zi ∈ Rd, i ∈ L
5: for each i /∈ L, apply trilateration based on {zj : j ∈ L} and Γ◦2i×L to obtain
z̃i ∈ Rd

Return: points {zi : i ∈ L} ∪ {z̃i : i /∈ L}

1 function Z = landisomap(X,d,r,l)
2 sz = size(X);
3 D = sz(1);
4 n = sz(2);
5 G = zeros(n);
6 for i=1:n
7 for j=1:n
8 if j>i
9 nrm = norm(X(:,i)-X(:,j));

10 if nrm <=r
11 G(i,j) = nrm;
12 end
13 end
14 end
15 end
16 G = G + G’;
17 vl = sort(randperm(n,l));
18 GL = G(:,vl);
19 Gamma = dijkstra(GL);
20 GammaL = Gamma(vl ,:);
21 [Y,~] = cmds(GammaL .^2,d);
22 vnl = 1:n-l;
23 j = 1;
24 k = 1;
25 for i=1:n-l
26 while k<=l && j==vl(k)
27 k = k + 1;
28 j = j + 1;
29 end
30 vnl(1,i) = j;
31 j = j + 1;
32 end



42 CHAPTER 3. STABILITY RESULTS FOR MANIFOLD LEARNING

33 D2 = zeros(n-l,l);
34 for i=1:n-l
35 for j=1:l
36 D2(i,j) = Gamma(vnl(1,i),j)^2;
37 end
38 end
39 Yt = trilateration(Y,D2);
40 Z = zeros(n,d);
41 Z(vl ,:) = Y;
42 Z(vnl ,:) = Yt;
43 end



Chapter 4

Further experiments on
graphs

We have modified the algorithm cmds, in order to apply MDS also to data sets
with non-Euclidean distances. We have taken the absolute values of the eigen-
values of Gc; indeed, if the distance is not Euclidean, they could be negative.
The first example is the Hamming cube. Its vertex are the strings of 0 and 1

of length D and the distance between two vertex is the number of positions at
which the corresponding symbols are different. This cube cannot be embedded
in an Euclidean space. Indeed, for example, if we take D = 2 and we com-
pute the spectrum of Gc = − 1

2S
c, where S is the square-distance matrix of

the cube, we obtain Spec(Gc) = {−1, 0, 2} and therefore Gc is not a centering
psd matrix. Thus, for the theorem 7 (Section 3.2.1), S cannot be an Euclidean
square-distance matrix.

In the following examples, we will link two nodes if their distance is equal
to 1.

43



44 CHAPTER 4. FURTHER EXPERIMENTS ON GRAPHS

Figure 4.1: Hamming cube with 64 vertices

An other examples of non-Euclidean distance is the geodesic one: the dis-
tance between the node n and the node m is the number of edges of a shortest
path between n andm. We will see two graphs and their representation obtained
with this distance: a complete binary tree and a complete graph.

A complete binary tree is a tree in which all the nodes, apart from the leaves,
has two sons.



45

Figure 4.2: Complete binary tree of height 5

In the representation there are not many nodes and edges; this is due to the
fact that the algorithm cmds returns coincident points.

A complete graph is a graph in which every node is linked by an edge with
each of the others.



46 CHAPTER 4. FURTHER EXPERIMENTS ON GRAPHS

Figure 4.3: Complete graph formed by 10 nodes



Bibliography

[1] Ery Arias-Castro, Adel Javanmard, Bruno Pelletier, Perturbation Bounds for
Procrustes, Classical Scaling, and Trilateration, with Applications to Mani-
fold Learning, (2019)

[2] Jianzhong Wang, Geometric Structure of High-Dimensional Data and Di-
mensionality Reduction, (2011)

[3] G. W. Stewart, Ji-guang Sun, Matrix Perturbation Theory, (1990)

[4] George A. F. Seber, Multivariate observations, (1984)

[5] https://en.wikipedia.org/wiki/Lanczos_algorithm

[6] https://scikit-learn.org/stable/modules/manifold.html

47


