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Introduction

In this work, we show the results we obtained studying two optimal transport
problems on a finite space S: the first problem is a two marginal transport
problem (i.e. we want to minimize a probability distribution on S × S, with
a cost function c : S × S → [0, 1]) and the other is a three marginal transport
problem (the same of the first problem but we want to find a probability
distribution on S × S × S that minimizes a function c : S × S × S → [0, 1]).
These problems could be solved using the simplex algorithm, but in this work
we consider the problems modified, adding a positive convex function (the
Kullback-Leibler divergence between the unknown probability distribution and
the uniform distribution) multiplied by a constant ε > 0 in the cost functions
to make them convex. We modify the problem to find some algorithms more
efficient than the simplex method. So we expose some algorithms to solve
these problems, and we show the convergence and the accuracy of them. All
the algorithms are based on the Bregman iterative method, a large class
of algorithms to solve convex programming problems. Then we study, by
numerical experiments, the efficiency of these algorithms and we compare
them.

We study some intrinsic properties of the first two problems: we generate
the cost functions randomly, with the uniform distribution on [0, 1], and
we study the expected values of the optimal values of the two problems as
a function of n ∈ N. By numerical experiments we conjecture that those
sequences tend to 0, and moreover we can say the infinitesimal orders using
the Dyer-Frieze-McDiarmid inequality, an important result of probability in
linear programming. Then we show a good choice for the constant ε > 0
used in the modification of the problems, because we want that the solutions
of the original problems and the solutions of the modified problems are
‘near’. Finally, we study the Kullback-Leibler divergence between the optimal
transport plans of the first two problems and the uniform distribution: this is a
way to show that these transport plans are ‘far’ from the uniform distribution,
just like we can expect.
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Chapter 1

Optimal transport problems

In this chapter we’ll show the optimal transport problems.

1.1 A two-marginal transport problem

Let S be a finite set and let n ∈ N be its cardinality. Suppose we have a
function

C : S × S → [0, 1]

the first problem we want to solve is

min
π∈Sn

∑
i∈S

Ci,π(i) (1.1)

where Sn is the symmetric group of {1, . . . , n}, i.e. Sn is the group whose
elements are all the bijections from {1, . . . , n} to itself. Note that, this
problem is equivalent to the following problem of integer linear programming

min
∑
i,j∈S

Ci,jπi,j (1.2)

n∑
j=1

πi,j = 1 ∀i = 1, . . . , n

n∑
i=1

πi,j = 1 ∀j = 1, . . . , n

πi,j ∈ {0, 1} ∀i, j = 1, . . . , n
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Integer linear programming problems are, generally, NP-problems, but in this
case we have a theorem that assures us that 1.2 is equivalent to

min
∑
i,j∈S

Ci,jπi,j∑
j

πi,j = 1 ∀i ∈ {1, . . . , n}∑
i

πi,j = 1 ∀j ∈ {1, . . . , n}

πi,j ≥ 0 ∀i, j ∈ {1, . . . , n}

(1.3)

and this is a linear programming problem which could be solved using the
simplex algorithm.

We could give a probabilistic interpretation to the problem (1.3). Let pi,j =
πi,j
n

,
the problem with the variables pi,j is

min
∑
i,j∈S

Ci,jpi,j

∑
j

pi,j =
1

n
∀i ∈ {1, . . . , n}

∑
i

pi,j =
1

n
∀j ∈ {1, . . . , n}

pi,j ≥ 0 ∀i, j ∈ {1, . . . , n}

(1.4)

This is an optimal transport problem, i.e. in this problem we want to minimize
the cost of a distribution of probability on S×S and the constraints assign the
two marginal distributions: in this case both the marginals are the uniform
distribution.

1.1.1 A modification of the problem

The problem (1.4) could be solved using the simplex algorithm, since it is
a linear programming problem. But, in this work, we will analyze another
iterative algorithm to approximate the solution of a modification of the classic
transport problem: using the convex function f(x) = x log(x) we will make
the function to minimize strictly convex. To introduce the new problem, we
need to give a definition.

Random optimal transport problems 5



Definition 1. If P and Q are discrete probability distributions on a space
Ω, we define the Kullback-Leibler divergence as

KL(P ||Q) =
∑
x∈Ω

P (x) log

(
P (x)

Q(x)

)
Remark 2. In our case, the space Ω = S × S is finite, and given another
probability distribution q on it the Kullback-Leibler divergence is∑

i,j

pi,j log

(
pi,j
qi,j

)
Remark 3. If we consider q as the uniform distribution on S × S, we obtain

KL(p||q) = 2 log(n) +
∑
i,j

pi,j log pi,j

Proposition 4. If P,Q are discrete probability distributions on Ω, then

KL(P ||Q) ≥ 0

with equality if and only if P = Q.

Proof. We observe that

−KL(P ||Q) =
∑
i,j

(pi,j log qi,j − pi,j log pi,j)

is a strictly concave function in the variables pi,j (due to the fact that the
function −x log x is a strictly concave function). Using Jensen’s inequality,
we obtain

−KL(P ||Q) =
∑
x∈Ω

P (x) log

(
Q(x)

P (x)

)
≤

≤ log

(∑
x∈Ω

P (x)

(
Q(x)

P (x)

))
=

= log

(∑
x∈Ω

Q(x)

)
= log 1 = 0

with equality iff P = Q due to the strictly concavity.
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Now we are ready to modify our problem, making the cost function a strictly
convex function: let ε > 0 be a ‘small’ positive constant, then the modification
of the linear programming problem is

min
∑
i,j∈S

(Ci,jpi,j) + εKL

(
(pi,j)||

(
1

n2

))
∑
j

pi,j =
1

n
∀i ∈ {1, . . . , n}

∑
i

pi,j =
1

n
∀j ∈ {1, . . . , n}

pi,j ≥ 0 ∀i, j ∈ {1, . . . , n}

(1.5)

where
(

1
n2

)
is the uniform distribution on S × S.

1.2 A three-marginal transport problem

Following the structure of the problem (1.4) we can define a transport problem
with three marginals. Precisely, we consider a function

C : S × S × S → [0, 1]

and, like in the previous section, we define the problem

min
∑
i,j,k∈S

Ci,j,kpi,j,k

∑
j,k

pi,j,k =
1

n
∀i ∈ {1, . . . , n}

∑
i,k

pi,j,k =
1

n
∀j ∈ {1, . . . , n}

∑
i,j

pi,j,k =
1

n
∀k ∈ {1, . . . , n}

pi,j,k ≥ 0 ∀i, j, k ∈ {1, . . . , n}

(1.6)

Remember that in the problem with two marginals, we started from an
assignment problem. With three dimensions, that problem could be written
like

min
π2,π3∈Sn

∑
i∈S

Ci,π2(i),π3(i) (1.7)
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but, in the next chapter (using the simplex algorithm), we’ll see that (1.7)
and (1.6) are not equivalent.

1.2.1 A modification of the problem

Remembering the definition of the Kullback-Leibler divergence, we consider
a modification of the the problem (1.6) adding to the cost function the KL
divergence between p and the uniform distribution

(
1
n3

)
on S × S × S. The

new problem, fixed a positive costant ε > 0, is

min
∑
i,j,k∈S

Ci,j,kpi,j,k + εKL

(
(pi,j,k)||

(
1

n3

))
∑
j,k

pi,j,k =
1

n
∀i ∈ {1, . . . , n}

∑
i,k

pi,j,k =
1

n
∀j ∈ {1, . . . , n}

∑
i,j

pi,j,k =
1

n
∀k ∈ {1, . . . , n}

pi,j,k ≥ 0 ∀i, j, k ∈ {1, . . . , n}

(1.8)

1.3 The simplex algorithm

The simplex algorithm is an iterative algorithm used to solve linear program-
ming problems, i.e. problems with linear cost function and linear constraints.
The algorithm is described in the second chapter.
It solves a wide range of problems, but we can’t guarantee that the algorithm
has polynomial time, in fact we are sure that the algorithm ends in O(2n)
iterations, but this isn’t a good estimation. Experimentally the number of
iteration is far from that estimation, but the problem (1.4) and (1.6) have a
particular form, so we prefer also to find other algorithms to solve them.
In the next section we introduce some algorithms to solve the problem (1.5)
and (1.8).
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1.4 The Sinkhorn algorithms

In this section we’ll show some algorithms to solve the problem (1.5) and
(1.8). The convergence of these algorithms and other theoretical results will
be discussed in the fourth chapter.

1.4.1 Problem with two marginals

Before introducing the algorithm, we are going to do a consideration on the
form of the solution using the method of Lagrange multipliers. The cost
function f of our problem is∑

i,j

(
ci,jpi,j + εpi,j log pi,j + εpi,j log n2

)
and it has the following gradient

(∇f)i,j = ci,j + ε log pi,j + ε+ ε log n2

With the method of Lagrange multipliers we obtain that the minimum point
p satisfies

ci,j + ε log pi,j + ε+ ε log n2 + αi + βj = 0

where αi and βj are two multipliers. So the minimum point has this form

pi,j =
1

n2
e−

ci,j
ε
−1e−α(i)e−β(j)

Now, we illustrates the steps of the algorithm known as Sinkhorn’s algorithm:

1. let p0(0)i,j = 1
n2 e
−

ci,j
ε
−1

2. suppose we have pk(0), we define pk(1) = Lkpk(0) where

Lk = diag

(
lk
n

)
∈ Rn×n with lk(i) =

(
n∑
j=1

pk(0)i,j

)−1

∀i = 1, . . . , n

3. we define pk(2) = pk(1)Rk where

Rk = diag
(rk
n

)
∈ Rn×n with rk(j) =

(
n∑
i=1

pk(1)i,j

)−1

∀j = 1, . . . , n

4. let pk+1(0) = pk(2) and go to step 2

In the numerical experiments, we will use a tolerance τ > 0 to define the
stopping criterion: in the step 4 we will control if ‖pk(2)− pk(0)‖2 < τ ,
in that case we stop the algorithm, otherwise we go to step 2.
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1.4.2 Problem with three marginals

Using the Lagrange multipliers method for the cost function of the problem
(1.8), we can do the same considerations done for the problem (1.5), and to
obtain that the minimum point is of the form

pi,j,k =
1

n3
e−

ci,j,k
ε
−1e−α(i)e−β(j)e−γk

For the problem (1.8) we’ll introduce three algorithm, all based on the same
idea, but with different features. Let’s see the first algorithm: this is the
same algorithm used for the problem with two marginals, adapted for this
problem. These are the steps to follow:

1. let p0(0)i,j,k = 1
n3 e
−

ci,j,k
ε
−1

2. suppose we have ph(0), we define ph(1) = ph(0) ∗ (αh
⊗

Id
⊗

Id) where

αh(i) =
1

n

(∑
j,k

ph(0)i,j,k

)−1

∀i = 1, . . . , n

3. let ph(2) = ph(1) ∗ (Id
⊗

βh
⊗

Id) where

βh(j) =
1

n

(∑
i,k

ph(1)i,j,k

)−1

∀j = 1, . . . , n

4. let ph(3) = ph(2) ∗ (Id
⊗

Id
⊗

γh) where

γh(k) =
1

n

(∑
i,j

ph(2)i,j,k

)−1

∀k = 1, . . . , n

5. let pk+1(0) = pk(3) and go to step 2

where: Id = (1, . . . , 1) ∈ Rn; given three vector a, b, c ∈ Rn as a
⊗

b
⊗

c we
indicate a tensor T such that T (i, j, k) = a(i)b(j)c(k); the operation ∗ is the
component-wise multiplication between two tensors.

We observe that in the Sinkhorn algorithm for every iteration, we adopted
the same order for the operations that update the tensor ph. In the others
two algorithm we’ll adopt different strategy. We will call operation one the
operation we did in step 2, operation two the one we did in step 3, operation
three the one we did in step 4. Let’s see the other two algorithms:
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• (Randomized Sinkhorn algorithm) in the first algorithm, for every itera-
tion, we choose randomly the order in which to do the three operations
(note that there are 6 different ways), for example the algorithm could
apply first the operation three using ph(0) to calculate ph(1), then it
could calculate ph(2) using ph(1) and the operation one, and finally it
could apply the last operation remained (the second) to calculate ph(3)
using ph(2) and then it continues choosing another permutation of the
three operations

• (Bregman algorithm) in this algorithm, for every iteration we apply the
three operations using ph(0) (i.e. ph(1) =operation one applied using
ph(0), ph(2) =operation two applied using ph(0), ph(3) =operation three
applied using ph(0)). Given two tensor x, y ∈ Rn×n×n, we define

D(x, y) =
∑
i,j,k

yi,j,k − xi,j,k + xi,j,k(log xi,j,k − log yi,j,k)

and then we define mh(i) = D(ph(i), ph(0)) ∀i = 1, 2, 3. Now we choose
the index l ∈ {1, 2, 3} (or one of the indexes) that realizes

max
i∈{1,2,3}

mh(i)

to define ph+1(0) = ph(l), and then we repeat this procedure.

The convergence of the Sinkhorn’s algorithm for the problem with two
marginals, i.e. (1.5), has been largely analyzed in other papers. In this
work our purpose is to study some algorithms to solve the problem with
three marginals (1.8). For this reason we didn’t give a stop criterion for the
three algorithms presented for that problem: in the next chapter we’ll show
the numerical experiments, and for these algorithms we will give in input a
number maxit ∈ N that will be the number of iteration the algorithms will
do.
In the next chapter we’ll see the proof of the convergence of these algorithms,
but the proof won’t give us how they converge: also for this reason we didn’t
give a stop criterion for the algorithms for the problem (1.8)

The Lagrange multipliers method suggests us to choose as initial point for
our algorithms the global minimum point for the cost function: in the next
chapter we’ll see that this choice is fundamental to obtain the convergence of
the algorithms to the minimum point of our problems.
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Chapter 2

Algorithmic results

2.1 The simplex algorithms

In this section, we will summarize briefly the simplex algorithms (primal
algorithm and dual algorithm). They are used to solve linear programming
problems, i.e. problems like (primal problem)

max c · x
A · x ≤ b

(P)

where c : Rn → R, x ∈ Rn, A ∈ Rm×n, b ∈ Rm, and m is the number of
constraints. Note that every linear programming problem can be written in
that canonic form even if some constraints are = or ≥. In general m > n and
rank(A) = n. The elements of the set {x ∈ Rn | A · x ≤ b} are called feasible
solutions of the problem (P).

Definition 5. Given the problem (P), we define the dual problem as follows

min b · y
AT · y = c

y ≥ 0

(D)

We call feasible solutions for the problem (D) the y ∈ Rm such that y ·A = c
and y ≥ 0.

Remark 6. The dual of the dual problem is the primal problem.

It’s very easy to prove that, for every feasible x ∈ Rn and for every feasible
y ∈ Rm we have that c · x ≤ b · y. Now we need an important linear algebra
lemma that allow us to prove the theorem (8) (duality theorem).
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Lemma 7. Let A ∈ Rm×n, c ∈ Rn, the two systems{
A · x ≤ 0

c · x > 0

{
yT · A = c

y ≥ 0

are mutually exclusive.

The proof of this lemma is not difficult, it is based on the fact that the
representation of a cone is the set {x | A · x ≤ 0} for some matrix A.

Theorem 8. If (P) and (D) has both feasible solutions, we have that

z(P ) = max{c · x | A · x ≤ b} = min{b · y | AT · y = c , y ≥ 0} = z(D)

Proof. (D) has feasible solutions, so, for the inequality c ·x ≤ b ·y we have that
(P) has a finite optimal solution. If c = 0, z(P ) = 0 and y = 0 is feasible and
optimal for (D). So, suppose that c 6= 0. Let x be an optimal solution for (P).
We call I(x) the set of the active constraints of x, i.e. I(x) = {i | Ai · x = bi}.
Observe that I(x) 6= ∅, because x is an optimal solution and if I(x) = ∅ we
could find an admissible growing direction. Now, if we could find a ξ ∈ Rn
s.t. {

AI(x) · ξ ≤ 0

c · ξ > 0

x wouldn’t be an optimal solution for (P), so the following system has a
solution {

νT · AI(x) = c

ν ≥ 0

Let yI a solution of that system, we have that y = [yI , 0] is a feasible solution
for (D). The following equalities conclude the proof:

y · b = yI · bI = yI · AI · x = c · x

Remark 9. We defined I(x) = {i | Ai·x = bi}. For the dual problem we define
the active constraints of a feasible dual solution y like J(y) = {i | yi > 0}.

Now we know that if both the problem has feasible solutions, they have the
same optimal value. So we have that

c · x = y · b ⇐⇒ y · A · x = y · b ⇐⇒ y · (b− A · x) = 0 (2.1)

We say that x and y are complementary solutions if they respect the last
equality in (2.1). An obvious consequence of these results is:

Random optimal transport problems 13



Proposition 10. Let x be a feasible solution for (P), x is an optimal solution
if and only if there exists a feasible y for (D) complementary to x.

Definition 11. Let B ⊂ {1, . . . ,m}. B is a base if and only if |B| = n
and AB is a non-singular matrix. We will call x = A−1

B · bB the primal base
solution and y = [c · A−1

B , 0] the dual base solution. Moreover, we say that a
base is primal admissible if A · x ≤ b, and it is dual admissible if y ≥ 0.

Note that, if x = A−1
B · bB is a feasible solution, then it is a vertex of the

polytope generated by the constraints. Vice versa, every vertex of the polytope
is determined by a primal admissible base (these facts are very easy to prove).
Now, we want to obtain a dual solution that is complementary to x = A−1

B ·bB,
a base feasible solution of the primal problem. If we call N = {1, . . . ,m} \B,
we can associate to B the dual base solution

y = [yB, yN ] = [c · A−1
B , 0]

This solution satisfies y · A = c and the couple (x, y) is complementary.
But when is this a feasible solution for the dual problem? To answer this
question we need to observe that to a single vertex of the polytope, there
could correspond more than a base, in fact if |I(x)| > n, we can obtain more
than a base that represent x. In this case we say that x is a degenerate base
solution.

Theorem 12. Let x be a feasible base solution for (P). x is an optimal
solution if and only if there exists a base B such that x = A−1

B · bB and
y = [c · A−1

B , 0] is a feasible solution for (D).

Proof. (⇐) It is a consequence of (2.1).

(⇒) Suppose that the thesis is false, so for all B base such that x = A−1
B · bB

there exists an index i ∈ B such that yi < 0. Now, for all B we call
h = min{i ∈ B | yi < 0} and then we define ξB = −A−1

B · eB(h), where
B(j) is the j-th index in the base B and ej is the vector that has 1 in the
j-th element and 0’s in the other positions. We note that c · ξB > 0, so it
cannot be an admissible direction for the primal problem. Moreover, the
dual problem cannot be empty, so AN · ξB � 0: now we call λB = min{λi =
bi−Ai·x
Ai·ξB

| Ai · ξB > 0 , i ∈ N} and k = min{i ∈ N | λi = λB}. Now we define

B̂ = B ∪ {k} \ {h} and we observe the following facts: the direction ξ is
perpendicular to the constraints Aj s.t. j ∈ B , j 6= h; λB is the length of the

step we could do in the direction ξ and B̂ is a base that determines the ‘new’
base solution obtained by a step of length λB in the direction ξ. We have said
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before that ξ cannot be an admissible direction, so λB = 0 and B̂ is another
base that determines the point x. With this method we change base for the
point x, but for the assumptions at the beginning of the proof we can’t obtain
that y is a feasible dual solution. If we show that iterating this method we
can’t go twice or more times on a base, we have the thesis, because there is a
finite number of bases for a point (this is called Blend anticycle rule).

Suppose that a base B is visited twice. We define B(i), h(i) and k(i) re-
spectively the base, the incoming index and the outgoing index at the i-th
iteration. There are two iteration v < l such that B(v) = B(l) = B and
B(i) 6= B ,∀ v < i < l. We define

r := max{h(i) | v ≤ i ≤ l} = max{k(i) | v ≤ i ≤ l}

Let p be an iteration such that r is the incoming index, and let q be an
iteration such that r is the outgoing index. We call y = [yB(p), 0] the dual

solution at the p-th iteration and let ξ = −A−1
B(q) · eB(h(q)). Remember that

c · ξ > 0 and yB(p) · AB(p) = c, so

c · ξ = yB(p) · AB(p) · ξ =
∑
i∈B(p)

yiAi · ξ > 0

Now, analyzing three cases, we’ll show that every factor of the sum is less or
equal than 0:

• i = r: r is the outgoing index at the iteration p, so yr < 0, while at the
iteration q, r is the incoming index, so Ar · ξ > 0

• i > r: by definition of r, all the indexes i > r s.t. i ∈ B(v) they also
belong to all the bases visited between B(p) and B(q). No one of these
indexes could be h(q), the outgoing index at the iteration q, so for all
of these indexes i we have i ∈ B(q) and i 6= h(q), so Ai · ξ = 0

• i < r: we have

r = min{j ∈ B(p) | yi < 0} = min{j ∈ I(x) \B(q) | Aj · ξ > 0}

From the first relation we have that yi ≥ 0 for all i < r. From the
second relation we obtain Ai · ξ ≤ 0 for i < r, in fact if i ∈ B(q) we
have Ai · ξ ≤ 0 by construction, if i /∈ B(q), r is the minimum index
such that Aj · ξ > 0.

So we have concluded the proof.
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The whole primal simplex algorithm follows from this proof! Here is the
description of the algorithm in pseudocode:

procedure Primal_Simplex(A,b,c,B,state){

for(state=‘‘’’; ; ){

x = D^(-1) * d;

y = [y1,y2] = [c * D^(-1),0];

if(y1>=0) then {state=‘‘optimal’’; break;}

h = min {i \in B | y1(i)<0};

z = -D^(-1) * e(B(h));

if(F*z<=0) then {state=‘‘P illimitate’’; break;}

l = min {(b(i)-A_i*x)/(A_i*z) | A_i*z>0, i \in N};

k = min {i \in N | (b(i)-A_i*x)/(A_i*z)=l};

B = (B \cup {k})\{h};

}

}

where D = AB, F = AN , x = x, y = [y1, y2] = [yB, yN ] = y, d = bB, A i
is the i-th row of A. Let’s analyze the algorithm: it receives in input the
description of the problem (P) and a primal admissible base B, and then it
iterates the following steps:

1. it checks the optimality of the primal base solution, in that case the
algorithm stops and it provides us the primal solution x and the dual
solution y. In the other case it finds a growth direction and go to step 2

2. it computes the maximum step we can do in that direction (it could be 0
in the case we have a degenerate base and it could be +∞ if AN · z ≤ 0,
in this case the primal is unlimited and the dual is empty)

3. it updates the base with h and k selected with the Blend anti-cycle rule
and go to step 1

Thanks to the theorem (12) we know that this algorithm ends in finite steps,
solving both the problem (P) and (D).

Let’s see now the dual simplex algorithm: it is simply the primal simplex
algorithm applied to the problem (D), but with some changes. We write the
procedure in pseudocode and then we’ll analyze it:

procedure Dual_Simplex(A,b,c,B,state) {

for(state=‘‘’’; ; ) {
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x = D^(-1) * d;

y = [y1,y2] = [c * D^(-1),0];

if(F*x<=f) then {state=‘‘optimal’’; break;}

k = min {i \in N | A_i*x>b(i)};

eta = A_k*D^(-1);

if(eta<=0) then {state=‘‘Empty primal’’; break;}

Theta = min {y1(i)/eta(i) | eta(i)>0, i \in B};

h = min {i \in B | y1(i)/eta(i)=theta };

B = (B \cup {k})\{h};

}

}

with the same notation used for the primal simplex algorithm, and more
f = bN . Let’s analyze this algorithm: it receives in input the description of
the problems and a dual admissible base and then it iterates the following
steps:

1. it checks if the primal base solution is admissible, in that case the
algorithm ends. In the other case it calculates η = Ak ·A−1

b , that let us
to determine a decreasing direction d for y, defined as follow

di =


−ηi if i ∈ B

1 if i = k

0 otherwise

Let’s see that it is a decreasing direction: we define y(θ) = y + θd, with
θ >= 0, so for all θ > 0 we have

y(θ) · b = (yB − θη) · bB + θbk = yB · bB + θ(bk − Ak · A−1
B · bB)

= y · b+ θ(bk − Ak · x) < y · b

Moreover we have, with an easy proof, that y(θ) · A = c

2. to ensure that it is an admissible direction, we need to verify y(θ) ≥ 0
for an appropriate step θ. Obviously only the indexes in B create a
problem: fixing and index i ∈ B, if ηi ≤ 0 we have y(θ)i ≥ 0; if ηI > 0,
y(θ)i ≥ 0 if and only if θ ≤ yi

ηi
. So, the maximum step we can do in the

direction d is

Θ = min

{
yi
ηi
| i ∈ B, ηi > 0

}
If we could do an infinite step, we could say that the dual problem is
unllimited and the primal problem is empty
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3. now, choosing

h = min{i ∈ B | Θ =
yi
ηi
}

we select another base as described in the code, and we can go to the
step 1

To show the convergence of this algorithm, we need the following theorem.

Theorem 13. Let y = [c · A−1
B , 0] be a dual admissible base solution. y is an

optimal solution for (D) if and only if there exists a base B’ associated to y
such that the primal base solution x = A−1

B · bB is an admissible solution.

Proof. The proof of this theorem is the same as the proof of the theorem
(12).

In both algorithm, we supposed to have, respectively, a primal admissible
base and a dual admissible base. It’s not easy to determine them, but in both
the situation, we can use others linear programming problems for which we
know, respectively, a primal admissible base and a dual admissible base, and
from those we can find the base to start the algorithm described previously.
To be short we won’t show these procedure. Regarding the Blend anticycle
rule, it assures us the convergence of the algorithms, but it is not efficient:
there is a problem (in primal form) on an ipercube in Rn that need to do 2n

steps using these rules (in fact the algorithm analyze every vertex to solve
the problem). But, experimentally the algorithm ends in fewer steps using
better rules for the choice of the indexes h and k. Sometimes this strategy
is adopted: the vector c is lightly perturbed to assures us that every vertex
of the polytope is determined by only one base, so we don’t need the Blend
anticycle rule to have the convergence of the algorithm.

Let’s analyze the problems (1.4) and (1.6): to solve them we will use the
function linprog on Matlab; it uses an implementation of the simplex algorithm.
Remember that the two algorithms described in this section are only a general
scheme for the implementations we find in some programming languages.

2.1.1 Equivalence between two problems

We want to show that exists a point that realizes the minimum for both of
the problems (1.2) and (1.4). If we show that the polytope formed by the
constraints of (1.4) has integer vertex (∈ Zn2

) we have proved the thesis,
because the minimum is realized in one of the vertex.
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First, we look at the problem (1.4) in graph-theoretical terms: in fact it is
a matching problem, that could be interpreted with a flow problem on a
bipartite graph.

Definition 14. We say that a graph G = (V,E) is a bipartite graph if the
vertex set V (G) has a partition into V1 and V2 such that the edge of E has
one vertex in V1 and one vertex in V2.

Definition 15. Let G = (V,E) be a bipartite graph, with A = (ave) we call
the vertex-edge incidence matrix defined by

ave = 1 if v ∈ e and ave = 0 if v /∈ e

It’s easy to show that the problem (1.4) is equivalent to the following problem

min
∑
i,j∈S

Ci,jpi,j

A · p = 1

pi,j ≥ 0 ∀i, j ∈ N

(2.2)

in fact, they have the same restrictions. It’s important to note that the matrix
A is a 0− 1 matrix with a column for each edge and a row for each vertex.

Lemma 16. If A is the vertex-edge incidence matrix of a bipartite graph,
then every square sub-matrix of A has determinant 0,1 or -1.

Proof. We suppose that S is a k × k sub-matrix of A and we will show that
det(S) ∈ {0, 1,−1}. The case k = 1 is easy since A is a 0− 1 matrix. Now,
consider the possible column expansions of det(S). Since each edge meets two
vertices, each column of S has at most two 1’s. If some column has no 1’s,
det(S) = 0, if one column has just a 1, we can expand about that column and
proceed by induction. So, now suppose that every column has exactly two 1’s.
Then the sum of the V1-class rows of S is equal to (1, . . . , 1) and similarly for
V2. Then we have a linear dependency between the rows, so det(S) = 0.

Now, as we have seen in the previous paragraph, we know that every vertex
of the polytope described by constraints like

A · x ≤ b

is of the kind x = xB = A−1
B · bB, where A ∈ Rm×n, B ⊂ {1, . . . ,m}, |B| = n,

assuming that m > n and rank(A) = n. Using this fact, finally we will show
the equivalence between (1.2) and (1.4).
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Theorem 17. The vertices of the polytope described by the constraints of the
problem (1.4) consist only of 0-1 vectors.

Proof. We will show that the polytope defined by

A · x = 1

x ≥ 0

has only integer vertices. We rewrite that constraints in the following way

Ã · x ≤ b, with Ã =

 A
−A
−I

 and b =

 1
−1
0

 (2.3)

Given a vertex x of the polytope described by (2.3), we know that there
exists a base B ⊂ {1, . . . , 2m+ n} such that x = xB = Ã−1

B . Observe that x
is a feasible solution, so Ã · x ≤ b. Moreover, if the row Ãi = Ai, i ≤ n, is
a row of ÃB, the row Ãm+i = −Ai cannot be a row of Ã, because ÃB is a
non-singular matrix. So, if a row like Ãm+i = −Ai is a row of ÃB, we can
replace it by the row Ãi = Ai, i.e. without loss of generality we can replace
B by B′ = B ∪ {i} \ {m+ i}.
We want to show that Ã−1

B is an integer matrix. Observe that

ÃB =

(
A∗

−I∗
)

where A∗ and −I∗ are, respectively, submatrix of A and −I. Let us define
BA and B−I as, respectively, the base indexes that determine the rows of A
and −I (note that B = BA ∪B−I). Now we will solve the systems

ÃB · xi = ei ∀i = 1, . . . , n

where ei ∈ Rn is the vector which has 1 in the i-th element, and 0 in the other
elements; then

Ã−1
B =

(
x1| . . . |xn

)
Using the Cramer’s rule, to calculate the j-th element of xi we have to replace
the j-th column of Ã−1

B with ei (we call Ã−1
B (j) this matrix) and then

xi(j) =
det(Ã−1

B (j))

det Ã−1
B

Now we calculate the two determinants:
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• det(Ã−1
B ): if we use Laplace expansion along the rows of −I, in the end

we’ll obtain the determinant of a submatrix of A (also a 1× 1 matrix),
and the lemma 16 assures us that this determinant is 0,1 or −1 (in this
case we know that ÃB is a non-singular matrix, so it has determinant 1
or −1)

• Ã−1
B (j): we use Laplace expansion along the j-th column, and then,

using tha same argues of the previous point, we can conclude that this
determinant is 0, 1 or −1

So Ã−1
B is an integer matrix, added to the fact the b is an integer vector, we

can conclude that x = xB = Ã−1
B · bB is an integer vector.

2.2 The relaxation method

The method we’ll describe in this section will let us to prove the convergence
of the algorithm proposed to solve the problems (1.5) and (1.8). (see [2])
Suppose we have a linear topological space X, and let {Ai | i ∈ I} be a family
of closed convex sets. We’ll assume that R =

⋂
i∈I Ai is not empty. We want

to find some point of the intersection of the sets Ai. Let S ⊂ X be a convex
set such that S ∩ R 6= ∅. Suppose we have a function D : S × S → R that
satisfies these six properties:

1. D(x, y) ≥ 0, D(x, y) = 0 iff x=y

2. ∀y ∈ S and ∀i ∈ I, a point x = Pi(y) ∈ Ai ∩ S exists s.t. D(x, y) =
minz∈Ai∩S D(z, y) This point will be called the D-projection of the point
y onto the set Ai

3. ∀i ∈ I and ∀y ∈ S the function G(z) = D(z, y)−D(z, Pi(y)) is convex
over Ai ∩ S

4. a derivative of the function D(x,x) exists, i.e.

lim
t→0

[D(y + tz, y)]

t
= 0

∀z ∈ X such that y + tz ∈ S definitely for t→ 0
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5. ∀z ∈ R ∩ S and ∀L ≥ 0 the set

Γ = {x ∈ S | D(z, x) ≤ L}

is a subset of a compact set

6. if D(xn, yn)→ 0 and yn → y∞ ∈ S and the set {xn | n ∈ N} is contained
in a compact set, we have xn → y∞

Now, we present three algorithms to find a common point of the sets Ai under
other hypothesis :

1. suppose I = {1, . . . ,m}, we select randomly an x0 ∈ S and then we
define i0(x0) = 1, i1(x1) = 2, . . . , im−1(xm−1) = m, im(xm) = 1 and so
on, and then we choose xn+1 as the D-projection of xn on the set Ain(xn)

2. suppose I = {1, . . . ,m}, we select randomly an x0 ∈ S and then we
follow this strategy: choose randomly, for each block of m steps, the
order in which project. So there are m! ways to choose the order

3. suppose ∀y ∈ S there exists

max
i∈I

min
x∈Ai

D(x, y) (2.4)

Now, we choose randomly an x0 ∈ S, then for in(xn) we’ll choose the
index which realizes (2.4) and we select the sequence xn as in the others
algorithms

To prove the convergence of these algorithms, we need some intermediate
results.

Definition 18. The sequence (xn) we define in the algorithms is called
relaxation sequence, and the sequence in(xn) is called the control of the
relaxation.

Lemma 19. Let z ∈ Ai ∩ S, then for any y ∈ S the inequality D(Pi(y), y) ≤
D(z, y)−D(z, Pi(y)) is valid.

Proof. According to the condition 3, for all λ ∈ [0, 1] we have

G(λz+(1− λ)Pi(y))

=D(λz + (1− λ)Pi(y), y)−D(λz + (1− λ)Pi(y), Pi(y))

≤λ(D(z, y)−D(z, Pi(y))) + (1− λ)(D(Pi(y), y)−D(Pi(y), Pi(y)))
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=λ(D(z, y)−D(z, Pi(y))) + (1− λ)D(Pi(y), y)

When λ > 0 we obtain

D(z, y)−D(z, Pi(y))−D(Pi(y), y) ≥
D(λz + (1− λ)Pi(y), y)

λ
− D(λz + (1− λ)Pi(y), Pi(y))

λ

(2.5)

Since λz+(1−λ)Pi(y) ∈ Ai∩S, the first term on the right hand side of (2.5) is
non-negative, thanks to condition 2, nnd the second term tends to zero when
λ→ 0, thanks to condition 4. Hence D(Pi(y), y) ≤ D(z, y)−D(z, Pi(y)).

Proposition 20. For any relaxation control we have the following:

1. the set of elements of the relaxation sequence {xn | n ∈ N} is contained
in a compact set

2. for any z ∈ R, there exists

lim
n→+∞

D(z, xn)

3. D(xn+1, xn)→ 0 for n→ +∞

Proof. We take z ∈ R ∩ S. According to lemma 2.5, we have

D(xn+1, xn) ≤ D(z, xn)−D(z, xn+1) (2.6)

SinceD(xn+1, xn) ≥ 0, we haveD(z, xn) ≥ D(z, xn+1). So the limit limD(z, xn)
exists, and consequently we have D(xn+1, xn)→ 0 thanks to (2.6).
Since D(z, x1) ≥ 0, thanks to (2.6) we also have {xn} ⊂ {x ∈ S | D(z, x) ≤
D(z, x0)}, which is a compact set according to condition (5).

Now we are ready to prove some convergence results about the three algorithms
proposed in this section. And successively we’ll show that the operations
showed in the algorithms in section 1 are a D-projection of a particular
function D.

Theorem 21. Suppose we have a relaxation sequence {xn} given by the
algorithm 1. Then any limiting point x∗ of the relaxation sequence is a
common point of the sets Ai.

Random optimal transport problems 23



Proof. Let x∗ be a limiting point of the sequence xn and xnk
→ x∗. We

separate out form the sequence {xnk
} a subsequence (wlog we don’t rename

this subsequence) which is contained in one of the sets Ai, wlog in the set
A1. We have that the sequence {xnk+i−1} ⊂ Ai ∀i = 2, . . . , n. We can
assume that those sequences are convergent, because {xnk+i−1 is contained
in a compact set for each i = 1, . . . , n, so we can separate a convergnece
subsequence. Let

xnk
→ x∗ = x∗1

xnk+1 → x∗2
. . .

xnk+m−1 → x∗m

Since the sets Ai are closed, we have x∗i ∈ Ai ∀i = 1, . . . , n. According to
proposition (20), D(xnk+1, xnk

)→ 0, thanks to the condition 6 we can say

x∗2 = lim
k→+∞

xnk+1 = lim
k→+∞

xnk
= x∗1 = x∗

so x∗ ∈ A2. Similarly we can say that x∗ ∈ A3, x
∗ ∈ A4, and so on. We

obtain
x∗ ∈

⋂
i∈I

Ai

Theorem 22. Suppose we have a relaxation sequence {xn} given by the
algorithm 2. Then any limiting point x∗ of the relaxation sequence is a
common point of the sets Ai almost surely.

Proof. This proof is similarly to the proof of the theorem 21. Wlog, we have
a subsequence {xnk

} ⊂ A1 such that xnk
→ x∗. Thanks to Borel paradox,

we can say that almost surely there are infinite indexes k ∈ N such that
xnkj

+1 ∈ A2. Using the same argumentation, we can find a subsequence xnkj

such that

xnkj
→ x∗ = x∗1

xnkj
+1 → x∗2

. . .

xnkj
+m−1 → x∗m

Now we can conclude as we did in the previous theorem.
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Theorem 23. Suppose we have a relaxation sequence {xn} given by the
algorithm 3. Then any limiting point x∗ of the relaxation sequence is a
common point of the sets Ai.

Proof. Let xnk
→ x∗. For each i ∈ I, we have

D(πi(xnk
), xnk

) ≤ max
j∈I

D(πj(xnk
), xnk

) = D(xnk+1, xnk
)→ 0

according to proposition 20. Therefore D(πj(xnk
), xnk

)→ 0. The lemma 2.5
assures us that for each z ∈ Ai ∩ S we have

D(z, π(xnk
)) ≤ D(z, xnk

) ≤ D(z, x0)

So, according to condition 5 the set {πi(xnk
) | k ∈ N} is contained in a

compact set, which, together the condition 6, gives πi(xnk
)→ x∗ ∀i ∈ I. So

x∗ ∈
⋂
i∈I

Ai

The next fact gives us a result of uniqueness of the limiting point for a
relaxation sequence.

Proposition 24. If the function D(x, y) is defined also when x ∈ S = clos(S),
and if yn → y∗ ∈ S then D(y∗, yn)→ 0, then the sequence {xn} has an unique
limiting point.

Proof. Suppose xnk
→ x∗ ∈ R and xnl

→ x∗∗ ∈ R, then, thanks to proposition
20, we know that there exists limD(x∗, xn). Hence we have

0 = lim
k→+∞

D(x∗, xnk
) = lim

n→+∞
D(x∗, xn) = lim

l→+∞
D(x∗, xnl

)

and thanks to condition 6, it follows that x∗ = x∗∗.

Now, we start to apply these results to prove the convergence of the algorithm
proposed in the first chapter to solve the problems (1.5) and (1.8).

Definition 25. Let f : S×S → R be a strictly convex differentiable function.
We define the Bregman divergence as the function

D(x, y) = f(x)− f(y)− < ∇f(y), x− y >
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Remark 26. We want to use this definition using as f(x) the cost function
of the problems (1.5) and (1.8). Respectively we obtain that the Bregman
divergences are:

D2(p, q) =
∑
i,j

qi,j − pi,j + pi,j(log(pi,j)− log(qi,j)) (2.7)

D3(p, q) =
∑
i,j,k

qi,j,k − pi,j,k + pi,j,k(log(pi,j,k)− log(qi,j,k)) (2.8)

We observe that, if p and q are probabilty distributions, those Bregman
divergences coincide with the Kullback-Leibler divergence.

Definition 27. For the problem (1.5) we define

A1 = {p ∈ Rn×n |
∑
j

pi,j =
1

n
∀i = 1, . . . , n, p ≥ 0} (2.9)

A2 = {p ∈ Rn×n |
∑
i

pi,j =
1

n
∀j = 1, . . . , n, p ≥ 0} (2.10)

S2 = {p ∈ Rn×n | p > 0} (2.11)

The function D2 is defined over S2, and it is also defined if p ∈ S2 (the
condition of the proposition 24).

Definition 28. For the problem (1.8) we define

A1 = {p ∈ Rn×n×n |
∑
j,j

pi,j,k =
1

n
∀i = 1, . . . , n, p ≥ 0} (2.12)

A2 = {p ∈ Rn×n×n |
∑
i,k

pi,j,k =
1

n
∀j = 1, . . . , n, p ≥ 0} (2.13)

A3 = {p ∈ Rn×n×n |
∑
i,j

pi,j,k =
1

n
∀k = 1, . . . , n, p ≥ 0} (2.14)

S3 = {p ∈ Rn×n×n | p > 0} (2.15)

The function D3 is defined over S3, and it is also defined if p ∈ S3 (the
condition of the proposition 24).

Theorem 29. The functions D2 and D3 satisfy the conditions (1),. . . , (6).

Proof. We will show the proof only for the function D2, for the function D3

the proof is the same. Let’s verify the six conditions:
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1. the cost function f(p) of the problem (1.5) is strictly convex, the
condition D(p, q) = f(p)− f(q)− < ∇f(q), p− q >≥ 0 is equivalent to
the strictly convexity of the function f(p), in fact it is equivalent to
say that the hyperplane tangent to the graphic of the function f in the
point q lies below the graphic of the function and it touches the graphic
in the point q, i.e. if and only if p = q

2. Ai is a closed set, so Ai ∩ S is a closed set in the topology of S

3. the function

G(z) =− f(y) + f(Pi(y))− < ∇f(y), y > + < ∇f(Pi(y)), Pi(y) > −
− < ∇f(y)−∇f(Pi(y)), z >

is linear in the variable z, so the condition 3 is satisfied.

4. the following equalities prove that condition 4 is verified

lim
t→0

D(y + tz, y)

t
= lim

t→0

f(y + tz)− f(y)− < ∇f(y), tz >

t
=

= lim
t→0

f(y + tz)− f(y)

t
− < ∇f(y), z >= 0

where the last equality follows from the definition of directional deriva-
tive

5. the condition 5 doesn’t depend on the function f , it is true in Rn, so
it’s satisfied in our case

6. Let’s verify the condition 6 in our case (we’ll show it for the function
D2 described by (2.7), and the same proof can be used for the function
D3).
Let D2(pn, qn) → 0 and qn → q∞ = (q1,1

∞ , . . . , qn,n∞ ) ∈ S. If qi,j∞ = 0 for
some i, j, then pi,jn → 0, since otherwise D2(pn, qn) to+∞. If qi,j∞ > 0
then pi,jn → qi,j∞ due to the continuity of the function pi,j(log(pi,j) −
log(qi,j)) when qi,j > 0

We have seen a method to find a common point of some convex closed sets.
Now we’ll show that if we choose a particular initial point x0 with this method
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we can also minimize a function.
Our problems, i.e. the problems (1.5) and (1.8) have this kind of form

min f(x)

A · x = b

x ∈ S
(2.16)

where S is a convex set, f(x) is a convex and continous function on S,
A ∈ Rm×n and b ∈ Rn. The function D is obtained according to the definition
25 using the function to minimize f(x).

Definition 30. We define Z = {x ∈ S | ∃u ∈ Rm s.t. ∇f(x) = u · A}. With
Z we denote the closure of the set Z.

Lemma 31. Suppose the function D(x, y) is defined also when x ∈ S =
clos(S), and suppose that if yn → y∗ ∈ S then D(y∗, yn) → 0, then if
y∗ ∈ R ∩ Z, y∗ is a solution of the problem (2.16).

Proof. Since y∗ ∈ R ∩ Z, we have

f(y∗) ≥ inf
x∈R∩S

f(x)

There exists x∗ ∈ R ∩ S such that

f(y∗)− f(x∗) = a ≥ 0

We will prove that a = 0. We can find a sequence {yn} ⊂ Z such that yn → y∗.
For every n we can find un ∈ Rm such that ∇f(yn) = un · A. It follows that
< ∇f(yn), v >= 0 for every v such that A · v = 0. So we have

< ∇f(yn), y∗ − x∗ >= 0

Now we have the following equalities

a =f(y∗)− f(x∗) =

=< ∇f(yn), y∗ − yn > +D(y∗, yn)− < ∇f(yn), x∗ − yn > −D(x∗, yn) =

= D(y∗, yn)−D(x∗, yn)

so we obtain a ≤ D(y∗, yn)→ 0 because we supposed that the hypothesis in
proposition 24 are valid.
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We define ∀i = 1, . . . ,m

Ai =

{
x ∈ Rn |

n∑
j=1

ai,jxj = bi

}

So the function Pi is the D-projection on the set Ai. The following theorem
gives us a condition such that the relaxation sequence converges to a solution
of the problem (2.16).

Theorem 32. Suppose we select a relaxation sequence such that xn → x∗ ∈ R.
Suppose the inital point x0 ∈ Z ∩ S, then x∗ is a solution of the problem
(2.16).

Proof. Let xn+1 be the D-projection onto the set Ai. Then we have

∇f(xn+1) = ∇f(xn) + λAi

< Ai, xn+1 >= bi

So, by induction, we can say that xn ⊂ Z, so x∗ ∈ Z, and thanks to lemma
31 we obtain that x∗ is a solution to the problem (2.16).

In the algorithms proposed in chapter 1, we use the global minimum of
the cost function as initial vector x0: this assures us that x0 ∈ Z, because
∇f(x0) = (0, . . . , 0) = 0, so we can take u = 0 and observe that ∇f(x0) =
u · A.
To see that the relaxation methods is equivalent to those algorithms, we have
to show that, respectively for the problems (1.5) and (1.8), the D2-projection
and the D3-projection are the operations we use in the algorithms.
For simplicity, we’ll see this result only for the problem with two marginals,
but the proof for the other problem is the same.

Definition 33. Continuing the definition 27, we define

A1,i = {p ∈ Rn×n |
∑
j

pi,j =
1

n
} ∀ i = 1, . . . , n (2.17)

A2,j = {p ∈ Rn×n |
∑
i

pi,j =
1

n
} ∀ j = 1, . . . , n (2.18)

Then we define, respectively, P1,i and P2,j the D2-projection on the spaces
A1,i and A2,j.
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Definition 34. ∀ p ∈ S2, ∀ h = 1, . . . , n we define

p̂(1)i,j =

{
pi,j if i 6= h
pi,j
npi∗

if i = h
where pi∗ =

∑
j

pi,j

p̂(2)i,j =

{
pi,j if j 6= h
pi,j
np∗j

if j = h
where p∗j =

∑
i

pi,j

Our purpose is to prove that ∀ p ∈ S2, ∀ i = 1, . . . , n we have p̂(1) = P1,h(p)
and p̂(2) = P2,h(p).

Theorem 35. ∀p ∈ S2, ∀i = 1, . . . , n, we have p̂(1) = P1,h(p) and p̂(2) =
P2,h(p).

Proof. We’ll prove that p̂(1) = P1,h(p), the proof for the second assertion is
the same. We’ll use the Lagrange multiplier method: we fix p ∈ Rn×n and
i ∈ {1, . . . , n}, we want to minimize the function

D2(q, p) =
∑
i,j

pi,j − qi,j + qi,j(log(qi,j)− log(pi,j))

in the variable q ∈ Rn×n, under the constraint

g(q) =
∑
j

qi,j =
1

n
(2.19)

The Lagrange multiplier method says that ∃λ ∈ R such that

∇D2( , p) = λ∇g

So, we have ∀j = 1, . . . , n

∇D2( , p)i,j = log(qi,j)− log(pi,j) = λ =⇒ qi,j = eλpi,j

while, for each h 6= i we have

log(qh,j)− log(ph,j) = 0 =⇒ qh,j = ph,j

Using the constraint (2.19), we obtain∑
j

qi,j = eλ
∑
j

pi,j = eλpi∗ =
1

n
=⇒ eλ =

1

npi∗

Finally we have q = P1,i(p) = p̂(1).

With this theorem we have completed the proof of the convergence of the
algorithms proposed in chapter 1.
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Chapter 3

Numerical experiments

Using Matlab, we implemented the algorithms exposed in the previous chapter,
the aim of this chapter is to show the results we obtained by numerical
experiments (other experiments can be seen in [1]).

We won’t study only how to solve the problems we proposed, but we’ll study
the behavior of the solutions of the problems with a cost function generated
randomly in [0, 1].
For each algorithm we’ll follow this strategy: after we fix the necessary
parameters (for example the ε > 0 in the Sinkhorn algorithm), we’ll execute
50 iterations of the algorithm with different cost vector generated randomly
in [0, 1], and then we’ll make the average of the results obtained (thanks to
the law of large numbers this will be an approximation of the results expected
value); for example in the Sinkhorn algorithm for the problem with three
marginals, we’ll make the average of: the cost without the entropic factor,
the time necessary to execute the program, the value of the entropic factor,
the error in norm two between an iteration and the previous one, the error
in norm one between the marginal distributions we have and the marginal
distributions we want (the uniform distribution on S).

3.1 Problem with three marginals

3.1.1 The simplex algorithm

We used the simplex algorithm to solve the problem (1.6). We used the
Matlab’s function linprog to implements the simplex algorithm. The re-
sults we obtain are showed in the next pages. We used 7 values for n:

31



10,20,30,40,50,60,70; then we studied the expected value of the minimum.
Looking those graphics, our claim is that the expected value of the minimum
tends to 0 as 1/n2: this fact will be proved in the fourth chapter.

3.1.2 Sinkhorn’s algorithm

We see the behavior of the Sinkhorn’s algorithm. We executed the program in
Matlab with all combinations of these parameters: n = 50, 90, 130, 170, 210, 250;
50 is the number of iterations did by the algorithm; ε = 10−4, 10−5, 1

n2 log2(n)
.

As we said at the beginning of the chapter, we executed the program 50 times,
to do an average of the results. In the next pages there are some graphics,
with the appropriate descriptions, which show the results we obtained.

We can observe that if we fix ε > 0, the expected value of the costs don’t
seem to be asymptotic to 1

n2 , while if we choose ε = 1
n2 log2(n)

we have the

same results obtained with the simplex algorithm, and the expected value of
the entropic factor tends to 0 too like o(1/n2). In the fourth chapter we’ll see
that this choice of ε is supported by theoretical results.

To see that E[f(p)] can’t tend to 0 if we fix ε > 0 (where f is the cost function
of the problem (1.8) and p is the minimum point of that function), we need
Pinsker’s inequality. These results can be seen in the fourth chapter.

3.1.3 Randomized Sinkhorn’s algorithm

We follow the same strategy of the previous algorithm to study the randomized
Sinkhorn’s algorithm: in particular we used the same parameters, to compare
the two algorithms. In the next pages we can see the results produced by the
numerical experiments.

The costs and the value of the entropic factor has the same behavior we
observed for the results we obtained using the Sinkhorn algorithm without
randomization. The errors (between the marginals at each step and the
marginals we want and between an iteration and the privious one) has the
same behavior too, but they decrease slowly. So we can conclude that the
Sinkhorn algorithm, experimentally, is better than the randomized Sinkhorn
algorithm.
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(a) Costs average.

(b) Costs average multiplied by n2.

(c) The time necessary to execute the algorithm.

Figure 3.1: (Three marginal problem) The results we obtained using the
simplex algorithm for the problem (1.6).
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(a) Costs average with ε = 10−4 (b) Costs average multiplied by n2

with ε = 10−4

(c) Costs average with ε = 10−5 (d) Costs average multiplied by n2

with ε = 10−5

(e) Costs average with ε = 1
n2 log2(n)

(f) Costs average multiplied by n2

with ε = 1
n2 log2(n)

Figure 3.2: (Three marginal problem) The costs averages (without the entropic
factor) obtained using the Sinkhorn algorithm.
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(a) Entropy average with ε = 10−4 (b) Entropy average divided by log(n)
with ε = 10−4

(c) Entropy average with ε = 10−5 (d) Entropy average divided by log(n)
with ε = 10−5

(e) Entropy average with ε =
1

n2 log2(n)

(f) Entropy average multiplied by
n2 log(n) with ε = 1

n2 log2(n)

Figure 3.3: (Three marginal problem) The entropy averages obtained using
the Sinkhorn algorithm.
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(a) Error between the marginals at
each iteration with ε = 10−4

(b) Error between the marginals at
each iteration with ε = 10−5

(c) Error between the marginals at
each iteration with ε = 1

n2 log2(n)

(d) Error between each iteration and
the previous one with ε = 10−4

(e) Error between each iteration and
the previous one with ε = 10−5

(f) Error between each iteration and
the previous one with ε = 1

n2 log2(n)

Figure 3.4: (Three marginal problem) The errors in the Sinkhorn algorithm. In
each figures, there are 6 graphics, one for each n used: blue→n=50, red→n=90,
yellow→n=130, violet→n=170, green→n=210, light blue→n=250.
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(a) Costs average with ε = 10−4 (b) Costs average multiplied by n2

with ε = 10−4

(c) Costs average with ε = 10−5 (d) Costs average multiplied by n2

with ε = 10−5

(e) Costs average with ε = 1
n2 log2(n)

(f) Costs average multiplied by n2

with ε = 1
n2 log2(n)

Figure 3.5: (Three marginal problem) The costs averages (without the entropic
factor) obtained using the randomized Sinkhorn algorithm.
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(a) Entropy average with ε = 10−4 (b) Entropy average divided by
log(n) with ε = 10−4

(c) Entropy average with ε = 10−5 (d) Entropy average divided by
log(n) with ε = 10−5

(e) Entropy average with ε =
1

n2 log(n)

(f) Entropy average multiplied by
n2 log(n) with ε = 1

n2 log2(n)

Figure 3.6: (Three marginal problem) The entropy averages obtained using
the randomized Sinkhorn algorithm.
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(a) Error between the marginals
at each iteration with ε = 10−4

(b) Error between the marginals
at each iteration with ε = 10−5

(c) Error between the marginals at
each iteration with ε = 1

n2 log(n)

(d) Error between each iteration
and the previous one with ε =
10−4

(e) Error between each iteration
and the previous one with ε =
10−5

(f) Error between each iteration
and the previous one with ε =

1
n2 log(n)

Figure 3.7: (Three marginal problem) The errors in the randomized Sinkhorn
algorithm. In each figures, there are 6 graphics, one for each n used:
blue→n=50, red→n=90, yellow→n=130, violet→n=170, green→n=210, light
blue→n=250.
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3.1.4 Bregman’s algorithm

We called Bregman’s algorithm the third algorithm we proposed for the
problem (1.8). We used the same parameters and the same strategy used for
the others two algorithms, to compare the algorithms. The results produced
by the experimentation are showed in the next pages. The costs and the
Kullback-Leibler divergence have the same behavior we observed for the
other algorithms. But, the errors decrease slowly than the other algorithms.
Remember that in one step of this algorithm we execute only one of the three
operations we do in the other algorithms, but to choose this operation we
need to calculate all the projections and, moreover, the Bregman divergence
between the projections and the initial probability distribution. So we need
more time to execute this algorithm than the others.
Our conclusion is that, experimentally, the Sinkhorn algorithm (without
randomization) is better than the others two algorithms proposed to solve
the problem (1.8).

3.2 Problem with two marginals

3.2.1 Linear programming problem

The problem (1.4) is a linear programming problem, so it can be solved using
the simplex algorithm. Our program uses the Matlab’s function linprog : it
solves a linear programming problem taking in input the cost vector and the
constraints matrix. The results we obtained are showed in the figure 3.11.

3.2.2 Sinkhorn’s algorithm

As we said in the first chapter, we know that this algorithm converges
exponentially to the minimum point, so we didn’t analyze the errors, but
only the cost and the entropy factor. We used the following parameters to
study the algorithm: n = 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100; the
constant of the Kullback-Leibler divergence ε = 10−3, 10−4, 1/

(
n log2(n)

)
; the

tolerance for the stop criterion τ = 10−7. In the next pages we can see the
results obtained.
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(a) Costs average with ε = 10−4 (b) Costs average multiplied by n2

with ε = 10−4

(c) Costs average with ε = 10−5 (d) Costs average multiplied by n2

with ε = 10−5

(e) Costs average with ε = 1
n2 log2(n)

(f) Costs average multiplied by n2

with ε = 1
n2 log2(n)

Figure 3.8: (Three marginal problem) The costs averages (without the entropic
factor) obtained using the Bregman algorithm.
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(a) Entropy average with ε = 10−4 (b) Entropy average divided by
log(n) with ε = 10−4

(c) Entropy average with ε = 10−5 (d) Entropy average divided by
log(n) with ε = 10−5

(e) Entropy average with ε =
1

n2 log2(n)

(f) Entropy average multiplied by
n2 log(n) with ε = 1

n2 log2(n)

Figure 3.9: (Three marginal problem) The entropy averages obtained using
the Bregman algorithm.
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(a) Error between the marginals
at each iteration with ε = 10−4

(b) Error between the marginals
at each iteration with ε = 10−5

(c) Error between the marginals
at each iteration with ε =

1
n2 log2(n)

(d) Error between each iteration
and the previous one with ε =
10−4

(e) Error between each iteration
and the previous one with ε =
10−5

(f) Error between each iteration
and the previous one with ε =

1
n2 log2(n)

Figure 3.10: (Three marginal problem) The errors in the Bregman al-
gorithm. In each figures, there are 6 graphics, one for each n used:
blue→n=50, red→n=90, yellow→n=130, violet→n=170, green→n=210, light
blue→n=250.
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(a) Costs average.

(b) Costs average multiplied by n.

(c) The time necessary to execute the algorithm.

Figure 3.11: (Two marginal problem) The results we obtained using the
simplex algorithm to solve the problem (1.4).
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(a) Costs average with ε = 10−3 (b) Costs average multiplied by n with
ε = 10−3

(c) Costs average with ε = 10−4 (d) Costs average multiplied by n with
ε = 10−4

(e) Costs average with ε = 1
n log2(n)

(f) Costs average multiplied by n with
ε = 1

n log2(n)

Figure 3.12: (Two marginal problem) The costs averages (without the entropic
factor) obtained using the Sinkhorn algorithm with τ = 10−7.

Random optimal transport problems 45



(a) Entropy average with ε = 10−3 (b) Entropy average divided by ε log(n)
with ε = 10−3

(c) Entropy average with ε = 10−4 (d) Entropy average divided by ε log(n)
with ε = 10−4

(e) Entropy average with ε = 1
n log2(n)

(f) Entropy average multiplied by
n log(n) with ε = 1

n log2(n)

Figure 3.13: (The two marginal problem) The entropy averages obtained
using the Sinkhorn algorithm with τ = 10−7.
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Chapter 4

Probabilistic results

4.1 The Dyer-Frieze-McDiarmid inequality

In this section we’ll see an inequality that let us to say that the expected
values of the optimal value z∗ of the problems (1.5) and (1.8) are, respectively,
less than or equal to 1

n
and 1

n2 .

We introduce a kind of problem (it is like a dual problem introduced in first
chapter)

min z =
n∑
j=1

cjxj

n∑
j=1

ai,jxj = bi ∀i = 1, . . . ,m

xj ≥ 0 ∀j = 1, . . . , n

(4.1)

where ai,j ∈ R and bi ∈ R are fixed constants, and the cj ∈ R are non-negative
random variables. In our problems, we consider the components of the cost
function as independent uniformly distributed random variable on [0, 1], so
we have the following

E[ci|c ≥ h] = E[c] +
1

2
h ∀0 < h < 1

where E[X|A] is the expected value of the random variable X conditioned by
the event A. Guided by this observation, we are ready for the Dyer-Frieze-
McDiarmid inequality (see [3]).

Theorem 36. (Dyer-Frieze-McDiarmid inequality)
Suppose cj, 1 ≤ j ≤ n are independent non-negative random variables defined
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by a density function, β ∈ (0, 1] is a constant and (x̂j) ∈ Rn is a feasible
solution for the problem (4.1). If ∀h > 0 such that P (cj ≥ h) > 0 we have

E[cj|cj ≥ h] ≥ E[cj] + βh

then, if we indicate z∗ the optimal value of the problem (4.1), we have

βE[z∗] ≤ max
S:|S|=m

∑
j∈S

x̂jE[cj]

Proof. Let us make some considerations using soe facts we illustrated in the
simplex algorithm’s section: we can assume A is of full rank m, we have N
feasible bases B(r) ⊂ {1, . . . , n} with 1 ≤ r ≤ n, the feasible basis B(r) is
optimal if and only if

cj − cB(r)A
−1
B(r)aj ≥ 0 ∀j ∈ N(r) = B(r)c (4.2)

where aj is the j-th column of the matrix A. This optimal criterion directly
descends from theorem (13). Let Er denotes the event that (4.2) is valid for
the basis B(r): the union of the sets Er has probability one since there exists
an optimal basic solution.

Now we would like that only one of the Er occurs. It’s easy to prove that
almost surely the problem has only one solution: if the problem has more
than one solution, then it has at least two different solutions which are two
vertexes, let x, x̃ be two different vertexes that are solutions of the problem,
then necessarily the cost function c is orthogonal to the difference x− x̃, and
this event, choosing each pair of vertexes, has probability 0. But we can’t
conclude that almost surely only one Er occurs, because the solution could
be determined by more different basis. To avoid this problem, we can observe
that if two basis determine the solution, a base component of the solution
is 0. We can choose a matrix Ã arbitrarily close (in a fixed norm on Rm×n)
that has an unique basic solution (because, fixing a component j, the event
(cA−1

B )j = 0 in the space Rm×n has Lebesgue measure 0, for each B such that
AB is a non-singular matrix, and these events are finite): now we show the
proof of the inequality for the problem (4.1) where we replace A with Ã, and
then we conclude using the dominated convergence theorem. Observe that,
we need to consider another feasible solution x̂′, but we can consider it ‘near’
to the original x̂ (i.e. if Ã→ A then x̂′ → x̂).

Now, applying the optimal criterion and the hypothesis, we obtain

E[cj|Er and cB(r)] =E[cj|cj ≥ cB(r)Ã
−1
B(r)ãj and cB(r)]

≥E[cj] + βcB(r)Ã
−1
B(r)ãj

(4.3)
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If we multiply for x̂′j and we sum over j we obtain

E

[
n∑
j=1

cjx̂
′
j|Er and cB(r)

]
=
∑
j∈B(r)

cjx̂
′
j +

∑
j∈N(r)

E[cj|Er and cB(r)]x̂
′
j

≥
∑
j∈B(r)

cjx̂
′
j +

∑
j∈N(r)

(
E[cj] + βcB(r)Ã

−1
B(r)ãj

)
j
x̂′j

Now, we need to develop an expression that relates z∗ to the feasible solution
(x̂′j). When B(r) is an optimal basis, we have z̃∗ = cB(r)ã

−1
B(r)b is the optimal

value of the problem (4.1), because, as we have seen in the second chapter,
we have that an optimal basic solution has the form [xB, xN ] = [Ã−1

B b, 0].
Remembering that

n∑
j=1

ãjx̂
′
j = b

we have

E

[
n∑
j=1

cjx̂
′
j|Er and cB(r)

]

≥
∑
j∈B(r)

cjx̂
′
j +

∑
j∈N(r)

(
E[cj]x̂

′
j

)
+ βcB(r)Ã

−1
B(r)

b− ∑
j∈B(r)

ãjx̂
′
j


≥
∑
j∈B(r)

(
cj − βcB(r)A

−1
B(r)ãj

)
x̂′j +

∑
j∈N(r)

(
E[cj]x̂

′
j

)
+ βE[z̃∗ | Er and cB(r)]

Let pr = P (Er), thanks to properties of the conditional expectation, we have
the same inequality without conditioning on cB(r), so we obtain

∑
r

prE

[
n∑
j=1

cjx̂
′
j|Er

]
≥
∑
r

pr
∑
j∈N(r)

E[cj]x̂
′
j + β

∑
r

prE [z̃∗|Er]

Using E[X] = E [E [X|A]], we have

n∑
j=1

E[cj]vx̂
′
j ≥

∑
r

pr
∑
j∈N(r)

E[cj]x̂
′
j + βE[z̃∗]

And finally

βE[z̃∗] ≤
n∑
j=1

E[cj]x̂
′
j −

∑
r

pr
∑
j∈N(r)

E[cj]x̂
′
j
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=
∑
r

pr


n∑
j=1

E[cj]x̂
′
j −

∑
j∈N(r)

E[cj]x̂
′
j


=
∑
r

pr
∑
j∈N(r)

E[cj]x̂
′
j ≤ max

S:|S|=m

∑
j∈S

x̂′jE[cj]

Now, if we consider Ã→ A, the feasible solution x̂′ → x̂ and thanks to the
dominated convergence theorem, dominating z̃∗ with the constant function
g ≡ n, we obtain

βE[z̃∗]→ βE[z∗]

and
max
S:|S|=m

∑
j∈S

x̂′jE[cj]→ max
S:|S|=m

∑
j∈S

x̂jE[cj]

so the inequality holds true.

Thanks to this inequality, we are ready to prove a conjecture we did in the
previous chapter thanks to the numerical experiments.

Corollary 37. Considering the problem (1.8), if the components of the cost
are chosen randomly in [0, 1], then, indicating as z∗ the optimal value, we
have

E[z∗] = Θ

(
1

n2

)
Proof. We observe that ∀0 < h ≤ 1

E[ci,j,k|ci,j,k ≥ h] =
1

2
+

1

2
h = E[ci,j,k] +

1

2
h

so the hypothesis of the Dyer-Frieze-McDiarmid inequality are verified. Let
p̂ be the uniform probability distribution on S × S × S, i.e. (p̂)i,j,k = 1/n3,
then p̂ is a feasible solution for the problem (1.8), so, thanks to the Dyer-
Frieze-McDiarmid inequality we have

1

2
E[z∗] ≤ max

T :|T |=3n

∑
(i,j,k)∈T

1

2
p̂i,j,k

=⇒ E[z∗] ≤ max
T :|T |=3n

∑
(i,j,k)∈T

p̂i,j,k =
3

n2
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The other inequality follows from these passages

E[z∗] =E

[∑
i,j,k

ci,j,kπ
∗
i,j,k

]
= E

[∑
i

∑
j,k

ci,j,kπ
∗
i,j,k

]

≥E

[∑
i

(∑
j,k

(
min
j,k

ci,j,k

)
π∗i,j,k

)]

=
∑
i

E
[

1

n

(
min
j,k

ci,j,k

)]
=

1

n2 + 1

Similarly, we can prove the following corollary.

Corollary 38. Considering the problem (1.5), if the components of the cost
are chosen randomly in [0, 1], then, indicating as z∗ the optimal value, we
have

E[z∗] = Θ

(
1

n

)

4.2 The right choice for ε > 0

Let’s see why we can’t fix ε > 0 ∀n ∈ N in the problem (1.5) and 1.8).

Definition 39. Let P ,Q be two probability distributions on a finite set Ω,
then we define the total variation distance as

‖P −Q‖1 =
∑
x∈Ω

|p(x)− q(x)|

Theorem 40. (Pinsker’s inequality) With the same setting of the previous
definition, we have the following inequality√

2KL(P ||Q) ≥ ‖P −Q‖1

Proof. If there exists x ∈ Ω such that p(x) > 0 and q(x) = 0, then
KL(P ||Q) = +∞, so the inequality is obvious. So, assume that

sup
x∈Ω

p(x)

q(x)
< +∞ (4.4)
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It’s easy prove the following inequality

(1 + t) log(1 + t)− t ≥ 3

2
· t2

3 + t
(4.5)

Now we define r(x) = p(x)
q(x)
− 1 ∀x ∈ Ω, and with easy algebraic passages we

can observe

EX∼Q[r(X)] =
∑
x∈Ω

q(x)r(x) = 0 (4.6)

EX∼Q[|r(X)|] =
∑
x∈Ω

q(x)|r(x)| = ‖P −Q‖1 (4.7)

KL(P ||Q) =EX∼Q[(1 + r(X)) log((1 + r(X))− r(X)] (4.8)

Combining (4.5) and (4.8) we obtain

KL(P ||Q) ≥ 1

2
EX∼Q

[
r(X)2

1 + r(X)
3

]

Thank to (4.6) we have that

EX∼q
[
1 +

r(X)

3

]
= 1

so we have

KL(P ||Q) ≥ 1

2
EX∼Q

[
r(X)2

1 + r(X)
3

]
EX∼Q

[
1 +

r(X)

3

]
Using f(x) =

√
r(x)2/(1 + r(x)/3) and g(x) =

√
1 + r(x)/3, thanks to the

Cauchy-Schwarz inequality we have

KL(P ||Q) ≥1

2

(
EX∼Q

[
f(X)2

]
EX∼Q

[
g(X)2

])
≥1

2
(EX∼Q [f(X)g(X)])2

≥1

2

(
EX∼Q

[
|r(X)|√

1 + r(X)/3
·
√

1 + r(X)/3

])2

≥1

2
(EX∼Q [|r(X)|])2 =

1

2
‖P −Q‖1
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Now we are ready to prove that the expected value of the the minimums of the
problems (1.5) and (1.8) don’t tend to 0 by n→ +∞, if we fix ε > 0. We’ll
show this result only for the problem (1.8), for the other problem the proof
is analogue. Remember that we’re assuming that c ∈ Rn×n×n is a random
vector, where the components are indipendent uniform random variables in
[0, 1].

Proposition 41. Let ε > 0 be a fixed constant. Let z∗n be the minimum of
the problem (1.8), we have the following result

lim inf
n→+∞

E[z∗n] ≥ 1

2
+

(
1−
√

1 + ε
)

ε

Proof. For some n ∈ N, indicating πn ∈ S×S×S the probability distribution
that realizes the minimum point of the problem (1.8), suppose we have

E [z∗n] ≤ Λ

for some Λ ∈ (0,+∞). Then we have

E
[
KL

(
πn||

(
1

n3

))]
≤ Λ

ε
(4.9)

E

[∑
i,j,k

ci,j,kπ
n
i,j,k

]
≤ Λ (4.10)

Thanks to the Pinsker’s inequality and the Jensen’s inequality, we have

E

[∑
i,j,k

∣∣∣∣πni,j,k − 1

n3

∣∣∣∣
]
≤
√

2Λ

ε
=⇒ E

[∑
i,j,k

ci,j,kπ
n
i,j,k

]
=

= E

[∑
i,j,k

ci,j,k

(
πni,j,k +

1

n3
− 1

n3

)]
=

1

2
+ E

[∑
i,j,k

ci,j,k

(
πni,j,k −

1

n3

)]
≥

≥ 1

2
−
√

2Λ

ε

So, thanks to (4.10), we have necessarily

Λ ≥ 1

2
−
√

2Λ

ε

Solving this inequality, we obtain

Λ ≥ 1

2

(
1 +

2

ε
−

√
4

ε

(
1 +

1

ε

))
=

1

2
+

(
1−
√

1 + ε
)

ε
+ Λε
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So, necessarily, we have that ∀ 0 < η < Λε E[z∗n] > η.

A consequence of this result is that if we fix ε > 0 then, increasing n ∈ N,
E[z∗n] doesn’t have the same behavior of the expected value of the optimal
value of the linear problems.

For the problem (1.8), if we choose ε = o(1/(n2 log(n))), increasing n ∈ N the
behavior of the optimal value is similar to the behavior of the optimal value
of the linear problem, in fact we have

0 ≤ KL

(
p ||
(

1

n3

))
=
∑
i,j,k

(pi,j,k log(pi,j,k)) + 3 log(n) ≤ 3 log(n)

so, in this case, we have that

εKL

(
p ||
(

1

n3

))
= o

(
1

n2

)
and due to the fact that the expected value of the optimal value of the
linear problem is Θ(1/n2) we can conclude. This fact justifies the choice of
ε = 1/(n2 log2(n)) on the numerical experiments.
An analogue argumentation can be used for the problem (1.5), and obtain
that a good choice is ε = o(1/(n log(n))).

Obviously we have this result for the problem (1.5).

Proposition 42. Let ε > 0 be a fixed constant. Let z∗n be the minimum of
the problem (1.5), we have the following result

E[z∗n] ≥ 1

2
+

(
1−
√

1 + ε
)

ε

4.3 The Kullback-Leibler divergence between

the optimal transport plans and the uni-

form distribution

The equivalence between the problem (1.4) and (1.2) let us to prove that
increasing n the optimal transport plan for the problem (1.4) moves away
from the uniform distribution.
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Proposition 43. For each n ∈ N and c ∈ Rn×n, if we indicate pn the optimal
transport plan ofor the problem (1.4), we have

KL

(
pn||

(
1

n2

))
= log(n)

Proof. We know that ∃σ ∈ Sn such that

pni,j =

{
0 if j 6= σ(i)
1
n

if j = σ(i)

i.e. the optimal transport plan is identifiable with the function σ ∈ Sn. It
follows

KL

(
pn||

(
1

n2

))
=
∑
i,j

pni,j log
(
n2pni,j

)
=
∑
i

pi,σ(i) log(n) = log(n)

Let’s see that the optimal transport plan for the problem (1.6) is not always
a ‘function’: generating randomly the cost function c ∈ [0, 1]n×n×n, we have a
unique solution a.s., because to have more than one solution a necessary con-
dition is that the cost function is orthogonal to at least one of the constraints,
and this happens with probability 0. So, generating a cost function on Matlab
and solving the problem with the simplex algorithm, if the optimal transport
plan obtained has more than n components not equal to 0, we can conclude
that an optimal transport plan identifiable with a function doesn’t exists.
However, we can conclude that the Kullback-Leibler divergence between the
optimal transport plan and the uniform distribution increases as 2 log(n), but
the proof is more hardworking.

Proposition 44. For each n ∈ N and c ∈ Rn×n×n we indicate pn the optimal
transport plan for the problem (1.6). We have

KL

(
pn||

(
1

n3

))
∼ 2 log(n)

Proof. We have seen in the simplex algorithm section, that the optimal
solution pn has at most 3n components not equal to 0. We group those
components in n groups (one for each first component) with ki elements (i.e.
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ki is the number of elements 6= 0 in the matrix pn(i, :, :)) for i = 1, . . . , n,
which we will call λ1,i, . . . , λki,i, such that

ki∑
j=1

λj,i =
1

n

We observe that ki ≥ 1. So we have

KL

(
pn||

(
1

n3

))
=

(
n∑
i=1

ki∑
j=1

λj,i log(λj,i)

)
+ 3 log(n)

=
1

n

(
n∑
i=1

ki∑
j=1

nλj,i log

(
nλj,i
n

))
+ 3 log(n)

=
1

n

(
n∑
i=1

ki∑
j=1

nλj,i (log (nλj,i)− log(n))

)
+ 3 log(n)

=
1

n

(
n∑
i=1

ki∑
j=1

nλj,i log (nλj,i)

)
+ 2 log(n)

=
1

n

(
n∑
i=1

ki

ki∑
j=1

nλj,i
ki

log (nλj,i)

)
+ 2 log(n)

Now, using the convexity inequality for the function f(x) = x log(x), we have:

KL

(
pn||

(
1

n3

))
≥ 1

n

n∑
i=1

ki

(
ki∑
j=1

nλj,i
ki

)
log

(
ki∑
j=1

nλj, i

ki

)
+ 2 log(n)

=
1

n

n∑
i=1

(
log

(
ki∑
j=1

nλj,i

)
− log(ki)

)
+ 2 log(n)

=
1

n

(
n∑
i=1

− log(ki)

)
+ 2 log(n)

≥ 1

n

(
n∑
i=1

−ki

)
+ 2 log(n)

≥2 log(n)− 3

To obtain the other inequality, we use the same argument, but then we use
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the concavity of the function g(x) = log(x):

KL

(
pn||

(
1

n3

))
=

(
n∑
i=1

ki∑
j=1

λj,i log(λj,i)

)
+ 3 log(n)

=
1

n

(
n∑
i=1

ki∑
j=1

nλj,i log (nλj,i)

)
+ 2 log(n)

≤ 1

n

(
n∑
i=1

log

(
ki∑
j=1

n2λ2
j,i

))
+ 2 log(n)

≤ 1

n

(
n∑
i=1

(
ki∑
j=1

n2λ2
j,i

))
+ 2 log(n)

≤ 1

n

 n∑
i=1

(
ki∑
j=1

nλj,i

)2
+ 2 log(n)

=2 log(n) + 1
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