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Introduction

This thesis is concerned with some aspects of logarithmic geometry, with a focus on the
infinite root stack of a log scheme and the moduli problem for parabolic sheaves.

State of the art

Logarithmic geometry was firstly inspired by questions of arithmetic geometry and de-
veloped by Kazuya Kato ([Kat89]), and later it spread to touch various other areas of al-
gebraic geometry, including moduli theory (for an introduction, see [Ogu] or [ACG+13]).
The basic insight was that there are some morphisms of schemes that are not smooth,
but for some (for example cohomological) aspects are as good as a smooth morphism;
the theory originated as a mean to exploit this “hidden smoothness”.

The main objects of the theory are logarithmic schemes: in Kato’s formulation, a log
scheme is a scheme X together with a sheaf of monoids M on the small étale site Xét and
a map of sheaves of monoids α : M → OX, where OX has its multiplicative structure,
such that the restriction α|α−1(O×X ) : α−1(O×X ) → O

×
X is an isomorphism. The idea behind

this is that the preimage α−1(s) of a section of OX is the set of “logarithms” of such a
section (it could be empty), and α is some kind of exponential.

The prototypical example is the following: assume that X is a scheme and D ⊆ X is
an effective Cartier divisor. Then we can take M to be the sheaf of functions on X that
are invertible outside of D, and the map α : M → OX to be the inclusion, and we obtain
a log scheme. An important instance of this situation is when we have a morphism with
semi-stable reduction X → Spec(R) with R a discrete valuation ring (i.e. étale locally on
X there is a smooth morphism X → Spec(R[x1, . . . , xr]/(x1 · · · xr − π)) where π ∈ R is a
uniformizer), and we take D to be the special fiber X0 ⊆ X, which is a reduced normal
crossing divisor.

One can define morphisms of log schemes, and define various properties of log
schemes and morphisms that extend the corresponding non-logarithmic notion. In par-
ticular there is a concept of log smoothness of a morphism of log schemes; as it happens
with ordinary smoothness, one can formulate it via an infinitesimal lifting criterion, or

5



6 CONTENTS

via local freeness of a sheaf of logarithmic differentials. For example, all normal toric vari-
eties over a field have a canonical log structure, and are log smooth.

In the case of a variety over a field equipped with the log structure coming from
a normal crossing divisor, this sheaf of logarithmic differentials (with respect to the
structure morphism to the spectrum of the base field) is exactly the sheaf of 1-forms that
have at most poles of order 1 along the divisor. These forms are called logarithmic forms
because formally one has d(log(x)) = dx/x, and this has a pole of order 1 at zero.

Parabolic sheaves were first introduced by Mehta and Seshadri ([MS80]) in order to
generalize to the non-proper case the correspondence between unitary representations of
the fundamental group of a smooth complex projective curve C and semi-stable vector
bundles of degree 0 on C. If C is not proper, one can take a compactification C ⊆ C
by adding finitely many points C \ C = {p1, . . . , pk}. A parabolic bundle as defined by
Mehta and Seshadri is a vector bundle E on C, together with additional data: for every
one of the points pi we have a filtration

0 = Fi,ki+1 ⊂ Fi,ki ⊂ · · · ⊂ Fi,1 = Epi

of the fiber Epi , and a set of real numbers 0 ≤ ai,1 < · · · < ai,ki < 1 called weights. We
remark here that in our work we will use assume that the weights are rational numbers.

Mehta and Seshadri give this definition after showing that a unitary representation
of the fundamental group of an open curve leads naturally to such a structure (for ex-
ample, the weights come from the eigenvalues of the unitary matrix associated by the
representation to a small loop around the corresponding point), and after introducing
a suitable notion of parabolic degree and (semi-)stability, they prove that there is an
equivalence between unitary representations of the fundamental group and semi-stable
parabolic bundles of parabolic degree 0.

The definition has been generalized in several steps, by replacing C with a projective
variety X and the points pi with an effective Cartier (simple normal crossing) divisor
D ⊆ X ([MY92, Bis97, Moc06, IS07, Bor09]). In particular Maruyama and Yokogawa
([MY92]) define a parabolic sheaf on a smooth projective variety X equipped with an
effective Cartier divisor as a coherent torsion-free sheaf E on X together with a filtration

E(−D) = Fk+1 ⊂ Fk ⊂ · · · ⊂ F1 = E

and some weights 0 ≤ a1 < · · · < ak < 1. This is clearly a reformulation of Mehta and
Seshadri’s definition in the case of curves. This definition corresponds to considering a
log structure induced by D that is not the one we described before if D is not smooth,
and in some sense is the “wrong” one. Borne ([Bor09]) gives a definition in the case
of a simple normal crossing divisor that corresponds to considering the “correct” log
structure, by “separating” the components of the divisor D. Subsequently, in [BV12],
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Borne and Vistoli give a definition of a parabolic sheaf on a general coherent log scheme,
that gives back the previous definitions in the corresponding particular cases.

This last definition, which is the one we will use throughout this document, requires
a slightly different point of view on the concept of a log scheme. For a scheme X, call
DivX the fibered category over the small étale site of X, whose objects over T → X are
pairs (L, s) consisting of a line bundle L on T together with a global section s ∈ Γ(T, L),
and the arrows are the obvious ones. This fibered category has a tensor product that
makes it into a symmetric monoidal fibered category.

A logarithmic scheme can also be defined as a scheme X together with a sheaf of
monoids A on the small étale site Xét and a symmetric monoidal functor L : A → DivX,
where we see A as a discrete monoidal fibered category. One can go from the definition
with the map α : M→ OX to this different one by taking a quotient (in the stacky sense)
by O×X , so in this new notation the sheaf A is what usually is denoted M, i.e. the quotient
sheaf M/O×X . This assumes that the action of O×X on M is faithful, i.e. the log scheme is
quasi-integral. We will only be concerned with integral log schemes.

We also need a system of denominators for the sheaf A, that plays the role of the
weights in Seshadri’s definition. This is a second sheaf of monoids B together with an
injective morphism of sheaves of monoids A → B that is moreover of Kummer type.
This means that if we take any element b ∈ Bx, where x is a geometric point of X, then
there exists a positive integer n such that nb is in the image of Ax → Bx. This makes B
into a sheaf consisting of “roots” of sections of A, in some sense. An important example
is given by the maps A → 1

n A, where 1
n A is just A, and the map is multiplication by n

(this assumes that A is torsion-free, to ensure injectivity).

Starting from B, one defines a fibered category Bwt having as objects sections of Bgp

(the associated sheaf of groups), and morphisms b → b′ the sections b′′ of B such that
b + b′′ = b′. A parabolic sheaf with denominators in B as defined in [BV12] is a cartesian
functor E : Bwt → QCohX, where QCohX is the fibered category of coherent sheaves
restricted to Xét, together with isomorphisms Eb+a

∼= Eb ⊗ La for any sections b of Bgp

and a of A, satisfying some compatibility condition. For example, one of these conditions
is that the map Eb → Eb+a coming from the arrow a : b→ b + a of Bwt should correspond
to multiplication by the distinguished section of La (recall that L is a functor A→ DivX,
and in DivX each object consists of an invertible sheaf with a specified global section) as
a morphism Eb → Eb ⊗ La.

Note that this gives back the definition of Maruyama and Yokogawa: consider the
log structure on X induced by the symmetric monoidal functor N → Div(X) sending 1
to (OX(D), s), where s is the canonical section. A parabolic sheaf (say with weights in
1
2 N) on the resulting log scheme may be visualized as a sequence of coherent sheaves Eq
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on X parametrized by q ∈ 1
2 Z, and with maps

· · · → E− 3
2
→ E−1 → E− 1

2
→ E0 → E 1

2
→ E1 → E 3

2
→ · · ·

where we have Eq+n ∼= Eq ⊗OX(nD) for q ∈ 1
2 Z and n ∈ Z. In particular the piece

E−1 → E− 1
2
→ E0

determines the rest of the sheaf, there is an isomorphism E−1
∼= E0 ⊗OX(−D), and the

composition E−1 → E− 1
2
→ E0 coincides with the canonical map E0 ⊗OX(−D) → E0,

so, assuming that all the maps of the parabolic sheaf are injective, from this we get a
filtration as in Maruyama and Yokogawa’s definition. Injectivity of the maps in this case
follows for example from torsion-freenes of the parabolic sheaf, as we define it later in
this document.

Parabolic sheaves can be naturally interpreted as quasi-coherent sheaves on a certain
algebraic stack over X. We denote by XB/A the stack over X that has as objects over T a
morphism T → X together with a symmetric monoidal functor BT → DivT that lifts the
pullback AT → DivT to T of the log structure of X. Objects of this stack are in a sense
“roots” of the log structure of X with respect to the system of denominators, and XB/A is
called the root stack of X with respect to A→ B. Although the general definition was first
given in [BV12], the idea of the construction is essentially due to Olsson ([Ols07, MO05]).

The main result of [BV12] is that there is an equivalence of tensor categories between
quasi-coherent sheaves on XB/A and parabolic sheaves on X with respect to A→ B.

The moduli problem for parabolic sheaves has been considered firstly by Mehta and
Seshadri for curves ([MS80]), and then by Maruyama and Yokogawa for varieties with an
effective divisor ([MY92]). They introduce a notion of parabolic degree (resp. parabolic
Hilbert polynomial) and a stability condition, and they construct, using GIT, moduli
spaces that parametrize (S-equivalence classes of) (semi-)stable parabolic sheaves.

The original motivation for this work was to generalize these results about moduli of
parabolic sheaves to the case of a general log scheme.

The present work

This thesis is divided into two parts. The first one consists of a treatment of the infinite
root stack of a log scheme and the second one is about moduli of parabolic sheaves.

In this document we will always work over a fixed field k. The part about the infinite
root stack and some parts of the discussion of the moduli theory of parabolic sheaves
are also valid without this assumption, but for homogeneity’s sake we prefer to make it
from the start.
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The infinite root stack

The part about the infinite root stack is joint work with my thesis supervisor Angelo
Vistoli.

The infinite root stack of a fine saturated log scheme X, denoted by X∞, can be defined
as the inverse limit over all systems of denominators A → B of the root stacks XB/A;
in other words, it parametrizes liftings of the symmetric monoidal functor A → DivX

along all systems of denominators. Alternatively, it can be described as a root stack
relative to the maximal Kummer extension A → AQ = lim−→n∈N

1
n A containing all the

others. This kind of Kummer extension was not considered in [BV12], since AQ is never
finitely generated. Consequently the corresponding root stack is more complicated. In
fact it is not algebraic (only pro-algebraic) and not of finite type, but despite being quite
intimidating at first sight, it is a very natural, functorial object to associate to a log scheme
X.

We investigate some aspects of its geometry, and the relations with the log geometry
of the log scheme X. It turns out that there is a very strong relation: we are able to give a
criterion for a map X∞ → Y∞ to come from a morphism of log schemes X → Y (this does
not always happen, as simple examples show) and by explicitly describing a method to
get back the log structure of X from its infinite root stack X∞, we show that the root stack
determines the log structure uniquely.

Theorem (2.3.23). Let X and Y be fine and saturated log schemes, and assume that we have an
isomorphism f : X∞ ∼= Y∞ between the infinite root stacks. Then there exists an isomorphism of
log schemes X ∼= Y inducing f .

We analyze the local structure of X∞, showing that locally for the étale topology of
X it can be described as a quotient stack by a (non-finite type) diagonalizable group
scheme. This shows that X∞ has an fpqc presentation, that, despite not being as good
as a smooth one, allows us to give a natural notion of quasi-coherent sheaf on it. The
concept of a coherent sheaf is trickier, since X∞ is not coherent in general. In fact, we
will mostly use finitely presented sheaves instead of coherent ones.

The infinite root stack is the natural environment for parabolic sheaves with arbitrary
rational weights. We define those, in the spirit of [BV12], and extend Borne and Vistoli’s
result on the equivalence with quasi-coherent sheaves on the root stack.

Theorem (2.2.48). Let X be a fine saturated log scheme. Then there is a tensor equivalence
between the category of parabolic sheaves with rational weights on X and quasi-coherent sheaves
on the infinite root stack X∞.

We also investigate an interesting relation with the Kummer-flat topos of Kato ([Kat,
Niz08]). The corresponding site is obtained by considering Kummer-flat morphisms
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Y → X, i.e. morphisms which are (locally) flat morphisms to a base change of X by
a Kummer morphism of monoids. By associating with a Kummer-flat map Y → X
the induced morphism between the root stacks Y∞ → X∞, which is representable and
fppf, we obtain a functor kfl(X) → fppf(X∞) from the Kummer-flat site of X and an
opportunely defined fppf site of X∞. We prove that this functor induces an equivalence
between the corresponding topoi.

Theorem (2.4.8). Let X be a fine saturated log scheme. Then there is an equivalence of ringed
topoi (X∞)fppf

∼= Xkfl between the fppf topos of the infinite root stack X∞ and the Kummer-flat
topos of X.

We also compare quasi-coherent sheaves on the fppf and fpqc topoi of X∞. Al-
though they are probably not the same thing in general, finitely presented sheaves are in
fact the same, and so we obtain an identification between finitely presented sheaves on
the Kummer-flat topos and finitely presented sheaves (i.e. finitely presented parabolic
sheaves with rational weights) on the infinite root stack. This has some potential appli-
cation to K-theory of log schemes ([Niz08]) and to a parabolic version of the Riemann-
Hilbert correspondence.

Moduli of parabolic sheaves

The second part of this document is about moduli of parabolic sheaves. We need some
additional assumptions for this part: the log scheme X will be a fine and saturated
projective log scheme over a field k, with a fixed polarization and with a global simplicial
chart P → Div(X) for the log structure. Simpliciality means that the positive rational
cone spanned by P in Pgp⊗Q is simplicial, i.e. its extremal rays are linearly independent.
Furthermore we assume that the log structure is generically trivial, meaning that there
is a schematically dense open subscheme U ⊆ X such that the log structure restricted to
U is trivial (part of the results actually hold without this last assumption).

We define a notion of (semi-)stability for finitely presented parabolic sheaves with
arbitrary rational weights (i.e. finitely presented sheaves on the infinite root stack X∞),
and construct a moduli space. The final result is the following theorem.

Theorem (4.3.5). Let X be a projective fine saturated log scheme over a field k of characteristic
0 with generically trivial log structure and with a global chart P → Div(X) with P simplicial,
and h ∈ Q[x] a polynomial of degree dim(X). There is an Artin stackMss

h parametrizing semi-
stable torsion-free parabolic sheaves with rational weights and reduced Hilbert polynomial h and
an open substack Ms

h ⊆ Mss
h parametrizing stable torsion-free parabolic sheaves with reduced

Hilbert polynomial h.



CONTENTS 11

The stack Mss
h is locally of finite type and has a good moduli space Mss

h which is a disjoint
union of projective schemes, and there is an open subscheme Ms

h ⊆ Mss
h which is a coarse moduli

space forMs
h. Moreover the mapMs

h → Ms
h is a Gm-gerbe.

We will explain later why we need the assumption on the characteristic of k. We re-
mark that this result is new also in the case of a projective variety with an effective Cartier
divisor: both Mehta and Seshadri ([MS80]) and Maruyama and Yokogawa ([MY92]) fix
the weights of the parabolic sheaves when they construct the moduli spaces.

Although it would be nice to have a moduli theory of sheaves directly on X∞, the fact
that it is not of finite type makes this difficult, and we resort to taking a sort of “limit” of
moduli theories on the finite root stacks instead. The first step is to give a moduli theory
for parabolic sheaves with fixed denominators.

The basic idea is the following: since parabolic sheaves on X with respect to a fixed
system of denominators A→ B are equivalent to quasi-coherent sheaves on the root stack
XB/A, one can do moduli theory of coherent sheaves on XB/A. Nironi ([Nir]) developed
a moduli theory for coherent sheaves on tame DM stacks over a field by introducing a
notion of (modified) Hilbert polynomial and (semi-)stability, by means of a generating
sheaf, which is a locally free sheaf that contains all representations of the stabilizer group
at any point of the stack. We remark that the root stack is DM only if a certain condition
on the characteristic of the base field is satisfied. Nironi’s machinery should work also for
tame Artin stacks, so the results we obtain are probably valid in general. For simplicity
in this introduction we assume that the characteristic of our base field is 0.

By comparison with the notion of parabolic Hilbert polynomial defined by Maruyama
and Yokogawa in [MY92] we are able to identify a suitable generating sheaf on the root
stack and to apply Nironi’s machinery, in some cases. More precisely, although root
stacks of a projective log scheme are probably always global quotient stacks (and so
they will have generating sheaves), to isolate a “canonical” generating sheaf we need
additional data, that we identify in what we call a locally constant sheaf of charts for the
system of denominators A→ B. The case in which there is a global chart (i.e. a Kummer
morphism of fine saturated monoids P → Q that induces A → B via sheafification) is
contained in this broader notion. The resulting concept of (semi-)stability of parabolic
sheaves does depend on the choice of this additional datum, as we show with an exam-
ple: a parabolic sheaf can be semi-stable if we use a chart and become unstable if we
use another one. This is analogous to what happens when changing the polarization in
moduli theory of coherent sheaves.

Here is the result we get by applying Nironi’s machinery.

Theorem (3.3.37). Let X be a projective polarized fine saturated log scheme over a field k with
a system of denominators A → B and a locally constant sheaf of charts, and H ∈ N[x] a
polynomial. Then there is an Artin stackMss

H that parametrizes families of semi-stable parabolic
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sheaves with respect to A → B, with modified Hilbert polynomial H. MoreoverMss
H is of finite

type and has a good moduli space Mss
H which is a projective scheme, obtained as a GIT quotient.

There is an open substack Ms
H ⊆ Mss

H parametrizing stable parabolic sheaves with Hilbert
polynomial H, and a corresponding open subscheme Ms

H ⊆ Mss
H, which is moreover a coarse

moduli space. More precisely, the mapMs
H → Ms

H is a Gm-gerbe.

Note that the simpliciality and generic triviality assumptions on the log scheme are
absent here. They will be important for the limit process.

We also remark that this is just the final result of [Nir] applied to the situation of
parabolic sheaves on a log scheme, and the original contribution here is the determina-
tion of the correct generating sheaf. This construction of course gives back Seshadri’s and
Maruyama and Yokogawa’s moduli spaces when applied to a curve with some points or
a projective variety with an effective Cartier divisor respectively. This was already briefly
noted by Nironi.

The next step is to take a limit of the stacks that we obtain at finite level. Note
that it is not clear that we get well-defined maps on the moduli stacks by extending the
denominators, and in fact the main question here regards the behavior of (semi-)stability
under pullback along maps of finite root stacks.

Now we have to assume that the log structure of X is simplicial, and we consider
the minimal Kummer extension of the form P ⊆ Nr (simpliciality of P ensures that
we can find such an extension), and the root stacks Xn = X 1

n Nr/P, on which we have
“canonical” generating sheaves and the corresponding moduli stacks Mss

n and Ms
n of

(semi-)stable parabolic sheaves. The Xn are a cofinal system among the root stacks, so
X∞ = lim←−n∈N

Xn, and moreover the transition maps Xm → Xn when n | m are all flat.
The flatness, which is one of the reasons for the simpliciality assumption, ensures in
particular that pullbacks of pure sheaves remain pure (recall that semi-stable sheaves are
always pure).

Let us preliminarily remark that the Hilbert polynomial is not preserved by pullback
along Xm → Xn, so it is not convenient to fix it in this setting. What is preserved is the
reduced Hilbert polynomial, i.e. the polynomial h that we obtain by dividing the Hilbert
polynomial H by d! times its leading coefficient (where d is the degree of H), so that h
has leading term xd/d!. We denote byMss

h,n andMs
h,n the stacks that we obtain by fixing

the reduced Hilbert polynomial. They are disjoint unions of (possibly infinitely many of)
the previous stacksMss

H,n andMs
H,n respectively.

We show that in this setting semi-stability is always preserved, so that whenever n | m
we have maps of moduli stacks Mss

h,n → Mss
h,m induced by pullback along Xm → Xn,

and moreover these are always open immersions. The same is not true for stability,
which is not necessarily preserved. When it is preserved, we have corresponding open
immersionsMs

h,n →Ms
h,m, and moreover in this case these maps, together withMss

h,n →
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Mss
h,m and the induced morphisms Mss

h,n → Mss
h,m and Ms

h,n → Ms
h,m between the moduli

spaces, are all an open and closed immersions. We also show with examples that if
stability is not preserved, the open immersionMss

h,n →Mss
h,m need not be closed.

If stability is not preserved, it is not clear to us if the maps Mss
h,n → Mss

h,m between
the good moduli spaces are open and closed immersions. We show that they are always
geometrically injective, open and closed. We also do not have any examples where they
are not immersions, and it is plausible that this could always be the case.

We give some conditions that ensure that stability is preserved. A notable situation
where this holds is when the log structure of X is generically trivial and we are consid-
ering torsion free (i.e. pure of maximal dimension) sheaves.

Theorem (4.2.33). Let X be a projective polarized fine saturated log scheme with a simplicial
global chart P → Div(X) over a field k. Assume furthermore that the log structure of X is
generically trivial. Then the pullback along Xm → Xn preserves stability of parabolic torsion-free
sheaves.

From now on we restrict to this situation, i.e. we consider only torsion-free sheaves.
We gather the results of this discussion in the following theorem.

Theorem (4.2.10, 4.2.30). Let X be a projective polarized fine saturated log scheme over a field
k of characteristic 0 with generically trivial log structure and with a global chart P → Div(X)

with P simplicial, n, m two positive integers with n | m and h ∈ Q[x] a polynomial of degree
dim(X).

Then (semi-)stability of torsion-free sheaves is preserved by pullback along the projection
Xm → Xn, and the resulting morphisms Mss

h,n → Mss
h,m and Ms

h,n → Ms
h,m between the

moduli stacks, together with the induced maps Mss
h,n → Mss

h,m and Ms
h,n → Ms

h,m of their good
moduli spaces, are open and closed immersions.

Finally thanks to these results we can define (semi-)stability for finitely presented
sheaves on the infinite root stack, declaring a sheaf to be (semi-)stable if any finitely
presented sheaf on a finite root stack that pulls back to it is (semi-)stable. We obtain
a stack Mss (resp. Ms) parametrizing families of (semi-)stable parabolic sheaves with
rational weights, and we show that it is the direct limit (which is really an increasing
union) of the corresponding stacks at finite level. We also construct the good moduli
spaces Mss and Ms by taking a direct limit.

We remark that the stacks and spaces that we obtain are not of finite type: the space
Mss is a union of projective schemes, but it can be an infinite union. We do not know if
one can fix more refined invariants than the reduced Hilbert polynomial in order to cut
out finite type loci in these stacks and spaces.

We stress once again that, provided that Nironi’s machinery also works for tame
Artin stacks, the characteristic 0 hypothesis can be omitted, and all the results still hold,
up to replacing “good moduli space” with “adequate moduli space” in every instance.
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Future perspectives

Here we discuss some questions left open by the present work, which might be worth
pursuing in the future.

One possibly fruitful direction of research is a further study of the infinite root stack
of a logarithmic scheme. As we mentioned, the close relation between the geometry of
X∞ and the logarithmic geometry of X itself (for example the relation with the Kummer-
flat topos) has potential interesting applications to matters of logarithmic geometry. For
instance, the K-theory of logarithmic schemes ([Niz08]), for which the Kummer-flat topos
is a fundamental ingredient, can be reinterpreted on the the stack X∞, and here one can
use results on the K-theory of algebraic stacks (with some care, since X∞ is not alge-
braic, but only pro-algebraic). Another possible application is to a parabolic version of
the Riemann-Hilbert correspondence: in [IKN05], the authors give a version (in char-
acteristic 0) of this correspondence that involves the Kummer-étale site. There should
be an analogous result in arbitrary characteristic involving the Kummer-flat site instead,
and perhaps by using the equivalence with the fppf topos of X∞, one can write down a
parabolic version.

A natural question left open by Nironi ([Nir]) and by my own work is the follow-
ing: how do the moduli spaces of sheaves depend on the chosen generating sheaf, and
consequently on the chart of the logarithmic structure? What happens to the moduli
spaces when one changes them? The corresponding problem for the change of polariza-
tion in the moduli theory of coherent sheaves has been studied in some cases, mainly
in dimension 2 ([MW97, EG95, Qin93]): there is a chamber decomposition of the ample
cone of the variety, and the moduli spaces are constant inside the chambers. Moreover
when the polarization crosses a wall, there are interesting flip-like maps connecting the
corresponding moduli spaces. It is plausible that something similar happens by varying
the generating sheaf: the ample cone should be replaced by a “generating” cone inside
the numerical K-theory of the root stack, and one could expect a chamber decomposition
and interesting maps when the sheaf crosses a wall. The variation of the moduli spaces
of parabolic bundles when one varies the weights was studied in this spirit, on a curve,
in [BH95].

Another unresolved question is the formulation of a moduli theory without a global
chart (or a locally constant sheaf of charts) for the logarithmic structure. Logarithmic
schemes without global charts are common, one example is the projective plane with an
irreducible nodal curve, and it would be nice to have a theory that works also in these
cases. The main difficulty here is to find a generating sheaf that is “canonically defined”
in some sense.

The introduction of a Higgs field to the structure of a parabolic bundle produces
what is called a parabolic Higgs bundle. Moduli spaces of these were studied in the case
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of curves ([Yok93, BY96]), and it is probably worth it to try to apply the same methods
we used here for bare parabolic shaves to construct moduli spaces of parabolic Higgs
sheaves on more general logarithmic schemes.

Lastly, it would be interesting to have a theory for moduli of parabolic sheaves with
real weights. Such a theory seems to be lacking even in the case of a variety equipped
with an effective divisor, since in [MY92] at a certain point the authors assume that the
weights are rational. Notably, in the case of curves it is proven in [MS80] that a fixed
sequence of real weights can be substituted with close enough rational weights without
modifying the corresponding notion of semi-stability, so in fact the case with rational
weights is sufficient. One can wonder if something like this also happens in general.

Description of contents

Here we describe the contents of each chapter in some detail.
Chapter 1 contains preliminary notions and results. Most of the results here are

well-known or in the literature, and we give references instead of writing down proofs
whenever possible. In Section 1.1 we recall basic nomenclature and facts about commu-
tative monoids. Section 1.2 is about logarithmic geometry: for the convenience of the
reader we briefly recall the definitions and facts that we will need to use in the rest of
the thesis. We also recall the construction of root stacks and their basic properties. Sec-
tion 1.3 is about parabolic sheaves. We recall the definitions from [BV12], and sketch the
proof of the equivalence with quasi-coherent sheaves on the root stack (1.3.8), since the
constructions used in it will show up a couple of times in the following chapters.

The remaining chapters can be roughly divided in two parts: the first one introduces
the infinite root stack of a log scheme X and studies some aspects of its geometry and its
relations to the log geometry of X (Chapter 2), while the second part is focused on the
moduli problem for parabolic sheaves on a log scheme (Chapters 3 and 4).

Chapter 2 is about the infinite root stack. After a preliminary section (2.1) about
inverse limits of stacks, in Section 2.2 we define the infinite root stack X∞ and discuss
its local geometry. As a consequence we are able to define quasi-coherent sheaves, and
we discuss two different sites on X∞: one is defined by using representable fpqc mor-
phisms (2.2.31) and the other one, that will show up later when we explore the relation
with the Kummer-flat topos, by using representable fppf morphisms (2.2.38). We show
that finitely presented sheaves are the same on these two sites (2.2.40). In section 2.3 we
extend the definitions and results of [BV12] to the infinite root stack and to parabolic
sheaves with rational weights. The last two sections of this chapter are about recov-
ering information about the log scheme X from the infinite root stack. We describe a
reconstruction method that allows us to recover the log structure from the infinite root
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stack (2.3.1), showing in particular that log schemes with isomorphic infinite root stacks
must be isomorphic themselves, and we show that the fppf topos of X∞ that we intro-
duced in Section 2.2 is equivalent to the Kummer-flat topos of Kato (2.4). We conclude
that finitely presented sheaves on the Kummer-flat topos are exactly finitely presented
parabolic sheaves with rational weights (2.4.11).

In Chapter 3 we investigate the moduli theory for parabolic sheaves with respect to
a fixed system of denominators. Sections 3.1 and 3.2 contain preliminary discussions of
pullbacks of parabolic sheaves along morphisms of log schemes and of various proper-
ties, such as coherence, flatness over a base scheme and pureness, that are very important
in moduli theory. In section 3.3 we discuss the choice of the generating sheaf on the root
stack, that we will use to apply Nironi’s machinery. We operate this choice by inspecting
Maruyama and Yokogawa’s treatment and by finding a generating sheaf that generalizes
their definition of parabolic Hilbert polynomial in the case of a variety with an effective
Cartier divisor (3.3.1). We also explain how to relax a little the requirement about hav-
ing a global chart, introducing what we call “locally constant sheaves of charts” (3.3.3).
Finally, we apply Nironi’s theory and state the results that we get out of it about stacks
of parabolic sheaves (3.3.4). In the last section we show with an example that the notion
of stability that we get depends on the chart of the log structure that we choose (3.4).

Chapter 4 is about moduli theory for parabolic sheaves with arbitrary rational weights.
Our strategy is to take a “limit” of the moduli theories at finite level that we described
in the preceding chapter. Section 4.1 is about a simpliciality condition that we have to
impose on the log structure of the log scheme X for our methods to work. In particular
this ensures that we have a cofinal system of root stacks whose transition maps are all flat
(4.1.4). In Section 4.2 we study the behavior of (semi-)stability with respect to pullback
along maps between root stacks. We show that semi-stability is always preserved, and
stability is preserved in some cases, for example when the log structure of X is generi-
cally trivial. We also study the induced maps between the moduli stacks of (semi-)stable
sheaves and the corresponding moduli spaces (4.2.4). Finally, the last section is about the
resulting moduli theory for finitely presented parabolic sheaves with rational weights
(4.3).
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Notations and conventions

We will always work over a fixed field k. Most of Chapter 2 and some parts of Chapter 3
make perfect sense for log schemes over Z, but we felt it was more convenient to make
this assumption from the start. In Chapter 4 we will also assume that the characteristic
of k is zero (see Remark 3.3.24).

Schemes and stacks will always be over k. We will denote by (Sch) and (St) the cate-
gories of schemes and stacks (for the étale topology) over k respectively. If S is a scheme
over k, we will denote by (Sch /S) the category of schemes over S, and analogously with
other “slice” categories. Furthermore we will denote by (Aff) and (Algsp) the categories
of affine schemes and algebraic spaces over k respectively.

The symbol ×k will denote fibered product over Spec(k). We will usually omit the
subscript in tensor products, unless it is not clear over what the tensor product is taken.

If C is a category, the symbols c ∈ C will mean that c is an object of C. As (almost)
everybody does, we will ignore set-theoretic subtleties regarding categories and sites.
As usual Cop

will denote the opposite category. For symmetric monoidal categories, we
use the same conventions described in [BV12, 2.4], and for fibered categories we refer to
[FGI+07, Chapter 1].

The symbol X will most of the times denote a log scheme over k, with Deligne–
Faltings structure given by L : A → DivX. In Chapter 3, the symbol X will denote the
root stack of X with respect to the fixed system of denominators A→ B.

A morphism of stacks over k will be representable if the base change of an algebraic
space is an algebraic space. An algebraic stack or Artin stack for us will be a stack (in
groupoids) with a smooth presentation (i.e. a representable smooth epimorphism from
an algebraic space) and representable diagonal. An algebraic stack will be Deligne–Mum-
ford (sometimes abbreviated DM) if it has a presentation which is moreover étale. An
algebraic stack is tame if it has finite inertia and linearly reductive stabilizer groups (see
[AOV08]).

We will consider (small) sites and the corresponding topoi of a scheme or stack X ;
they will be introduced along the way. As for notation, if for example we are considering
the étale topology, we will denote by ét(X ) the small étale site and by Xét the correspond-
ing topos. If T is a topos, QCoh(T ) will denote the category of quasi-coherent sheaves
on T , and FP(T ) will be the subcategory consisting of finitely presented sheaves.

Whenever we have a groupoid R ⇒ U, a superscript eq will denote equivariant
objects with respect to the groupoid. For example FPeq(U) will denote the category of
finitely presented equivariant sheaves on U.

A geometric point of a scheme X will be a morphism Spec(K)→ X from the spectrum
of an algebraically closed field to X. It will often be denoted just by p → X. If x is a
point of X, with x we will denote the geometric point lying over x obtained by taking
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the algebraic closure of the residue field k(x). In particular if A is a sheaf on the small
étale site of X and x is a point of X, Ax will denote the stalk of A at the geometric point
x.

A subscript will often be a shorthand for pullback along a morphism of schemes.
The word “morphism” will be interchangeable with both “homomorphism” and

“map”. The difference between the last two is that “homomorphism” will usually re-
fer to a morphism of algebraic structures (for example groups), whereas “map” will be
used mostly for morphisms of geometric objects (for example schemes).
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Chapter 1

Preliminaries

In this chapter we collect some basic notions and results that will be used throughout
this document. We will mostly give references instead of proofs here.

The first section is about monoids, the second one about logarithmic geometry, and
third one treats parabolic sheaves.

1.1 Monoids

This section is about the basics of monoids and homomorphisms between them. As
general references for monoids we point out the books [Réd65, RS99] and the notes
[Ogu].

Definition 1.1.1. A monoid is a set P together with a binary operation + : P× P→ P that
is associative and has a neutral element 0 ∈ P.

A homomorphism of monoids f : P → Q is a function such that f (p + p′) = f (p) +
f (p′) for all p, p′ ∈ P and f (0) = 0.

We will usually write the monoid operation as addition, but sometimes it will be
convenient to use a multiplicative notation. For example if X is a scheme, the structure
sheaf OX is a sheaf of monoids with respect to multiplication.

All our monoids will be commutative, i.e. for any p, p′ ∈ P we have p + p′ = p′ + p.
We will denote by (CommMon) the category of commutative monoids.

We will denote by P+ the subset P \ {0} ⊆ P.

Remark 1.1.2. If G is a group, then it is also a monoid with respect to its group operation.
Whenever we will consider G as a monoid, it will be in this sense.

This gives an inclusion functor (Ab) → (CommMon) from the category of abelian
groups to the category of commutative monoids.

19
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We will denote by k[P] the monoid algebra of P. It is defined as the k-algebra gen-
erated by indeterminates xp for p ∈ P, and with relations xp+p′ − xpxp′ for every pair
p, p′ ∈ P.

The algebra k[P] is naturally P-graded, with the degree defined in the obvious way
by deg(xp) = p.

Definition 1.1.3. An ideal I ⊆ P of a monoid P is a subset such that for every p ∈ I and
q ∈ P we have p + q ∈ I.

There is a bijection between homogeneous ideals of k[P] with respect to the P-grading
and ideals of the monoid P, by taking for an ideal I ⊆ P the ideal of k[P] generated by
the elements xp with p ∈ I.

Given a monoid P we can form the associated group Pgp. We start from P× P and
take a quotient by the equivalence relation that identifies pairs (p1, p′1) and (p2, p′2) if
there exists q ∈ P such that

p1 + p′2 + q = p2 + p′1 + q.

The idea here is that the pair (p, p′) stands for the “difference” p− p′.
One checks that Pgp, with the induced operation given by

[p1, p′1] + [p2, p′2] = [p1 + p2, p′1 + p′2]

is an abelian group, and there is a homomorphism P → Pgp sending p ∈ P to [p, 0].
Moreover this homomorphism is universal with respect to homomorphisms f : P → G
with G a group, i.e. every such f factors through f ′ : Pgp → G. The resulting func-
tor (−)gp : (CommMon) → (Ab) from commutative monoids to abelian groups is left
adjoint to the inclusion functor (Ab)→ (CommMon).

Definition 1.1.4. A monoid P is integral if the canonical homomorphism P → Pgp is
injective, or equivalently if p + q = p + r in P implies q = r.

We will denote by (IntCommMon) the category of integral commutative monoids.

Definition 1.1.5. A submonoid Q ⊆ P of a monoid P is a subset that contains the neutral
element 0 and such that q + q′ ∈ Q for every q, q′ ∈ Q.

If {pi}i∈I is a collection of elements of a monoid P, the smallest submonoid of P
containing all of the pi’s will be denoted by 〈pi〉i∈I , or by 〈p1, . . . , pr〉 in case the collection
is finite. This submonoid coincides with the subset of P of elements that can be written
as a1 pi1 + · · ·+ ak pik for some k, a1, . . . , ak ∈N and i1, . . . , ik ∈ I.
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Definition 1.1.6. A monoid P is finitely generated if there exist a finite number of elements
p1, . . . , pr ∈ P such that 〈p1, . . . , pr〉 = P. A monoid is fine if it is both integral and finitely
generated.

By a theorem of Rédei [RS99, Theorem 5.12], every finitely generated commutative
monoid is also finitely presented. This means that the relations between the generators pi
can be described by using finitely many of them. If we want to specify the relation in
addition to the generators we will use the following notation: given a finite number of
generating elements p1, . . . , pr ∈ P, assume that r1 = s1, . . . , rj = sj is a generating set
(as a congruence, i.e. an equivalence relation stable under translations ([Ogu, Section
1.1])) for the relations among the pi’s, where every ri and si is an expression of the form
∑r

i=1 ai pi for ai ∈N. Then we will write

P = 〈p1, . . . , pr | r1 = s1, . . . , rj = sj〉.

This expresses P as a quotient of the free monoid on the generators p1, . . . , pr.
A monoid is free if it is isomorphic to Nr for some r. Equivalently, it has a presentation

with finitely many generators and no relations.

Example 1.1.7. The submonoid P ⊆ N2 generated by (2, 0), (0, 2), (1, 1) can also be de-
scribed as 〈p, q, r | p + q = 2r〉.

Quotients in the category of monoids are subtler than the ones in more familiar
setting (like groups), so we will not go into details (see [Ogu, Section 1.1]). We need
only to remark that the category of commutative monoids (CommMon) has all colimits:
direct sums are constructed as for abelian groups, and coequalizers by taking quotients.
In particular we have amalgamated sums: for a diagram

P
f //

g
��

Q

R

of commutative monoids there is commutative monoid Q ⊕P R, unique up to isomor-
phism, that completes the diagram to a (commutative) square, and such that for any
other monoid P′ with maps h : Q → P′ and k : R → P′ such that h ◦ f = k ◦ g : P → P′,
there exists a unique Q⊕P R→ P′ that makes all diagrams commute.

As the notation suggests, Q ⊕P R is a quotient of the direct sum Q ⊕ R, but the
equivalence relation does not have a nice description, except in particular cases (for
example if one of the monoids is a group).

Definition 1.1.8. A unit in a monoid P is an element p ∈ P such that there exists q ∈ P
such that p + q = 0. A sharp monoid is a monoid in which the only unit is 0.
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The subset of units P× ⊆ P is a subgroup, the group of units of P. The quotient P/P×

is usually denoted by P, and is clearly a sharp monoid.

Example 1.1.9. All free monoids are sharp, and so is every submonoid of a free monoid.
A group is sharp as a monoid if and only if it is trivial.

Definition 1.1.10. An integral monoid P is torsion-free if Pgp is torsion-free as an abelian
group, or equivalently if np = nq with n ∈N implies p = q.

An integral monoid P is saturated if p ∈ Pgp and np ∈ P for some n ∈N imply p ∈ P.

We denote by (SatCommMon) the category of saturated commutative monoids. If a
monoid is both fine and saturated we will usually abbreviate it by saying that it is an fs
monoid, and we will denote by (FSCommMon) the category of fs monoids.

Proposition 1.1.11. Every fine saturated sharp monoid is torsion-free.

Proof. Assume that n(p− q) = 0 in Pgp for p, q ∈ P. Then since P is saturated, we have
that p − q ∈ P, and moreover this is a unit, since p − q + (n − 1)(p − q) = 0, so by
sharpness p− q = 0, and p = q.

There are operations that make a monoid integral and saturated. If P is any monoid,
we set Pint to be the image of P inside Pgp with respect to the natural map P→ Pgp. Then
Pint is an integral monoid, and for any homomorphism P→ Q with Q integral there is a
factorization Pint → Q. In particular a morphism of monoids P→ Q induces a morphism
Pint → Qint, and the resulting functor (−)int : (CommMon) → (IntCommMon) is left
adjoint to the inclusion functor (IntCommMon)→ (CommMon).

If P is an integral monoid, we define Psat to be the submonoid

Psat = {p ∈ Pgp | np ∈ P for some n ∈N}

of Pgp. The monoid Psat is saturated, and for any homomorphism P → Q with Q
saturated there is a factorization Psat → Q. This means that this operation gives a functor
(−)sat : (IntCommMon) → (SatCommMon) that is left adjoint to the inclusion functor
(SatCommMon)→ (IntCommMon).

If P is finitely generated then Psat is finitely generated as well, and in this case we
will denote it by Pfs, to stress the fact that it is going to be fine and saturated.

Fine sharp monoids can be presented in a canonical way using indecomposable ele-
ments.

Definition 1.1.12. An element p of a monoid P is indecomposable if p = q + r in P implies
q = 0 or r = 0.
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Proposition 1.1.13. Let P be a fine sharp monoid. Then P has a finite number of indecomposable
elements, and they are generators for P.

Proof. Let us fix a finite number of generators p1, . . . , pk for P. Now every q ∈ P can be
written as q = ∑ ai pi, and if q is an indecomposable, then we must have that ai = 0 for all
but one i0, and ai0 = 1, so q = pi0 . In other words every indecomposable must coincide
with one of the p′is, and so they are finitely many.

Now let us assume that some pk is not indecomposable, and let us show that we can
omit it from the list. Assume pk = p + q with p, q 6= 0, and let us write p = ∑ ai pi and
q = ∑ bi pi, so pk = ∑(ai + bi)pi. Now if ak + bk 6= 0, using integrality we could cancel
pk and obtain 0 = ∑i 6=k(ai + bi)pi + (ak + bk − 1)pk. By sharpness this would imply
ai = bi = 0 for i 6= k, and ak + bk = 1. In other words p = pk and q = 0, or the other way
around, contradicting the assumption.

So ak = bk = 0. This says that pk = ∑i 6=k(ai + bi)pi lies in the submonoid generated
by the remaining pi’s, so we can omit it from the generators.

After finitely many steps, we are left with a finite generating set made up exactly by
the indecomposable elements of P.

The following gives embedded models for particularly nice monoids.

Proposition 1.1.14 ([Ogu, Corollary 2.2.6]). Every fine sharp torsion-free monoid is a sub-
monoid of Nr for some r.

Let P be a fine saturated torsion-free monoid. Then Pgp is a free abelian group Zr

for some r, that we will call rank of P. We will denote by PQ the positive rational cone
spanned by P inside Pgp ⊗Q, i.e.

PQ = {a ∈ Pgp ⊗Q | na ∈ P for some n ∈N}

where we see P ⊆ Pgp ⊗Q in the natural way.
If we denote by 1

n P the submonoid of Pgp⊗Q consisting of the elements p
n for p ∈ P,

we have inclusions 1
n P ⊆ 1

m P whenever n | m, and PQ =
⋃

n
1
n P. The inclusion 1

n P ⊆ 1
m P

can be seen as multiplication by k = m/n from P to itself.
If φ : P → Q is a morphism of fs sharp monoids we have an induced morphism

φQ : PQ → QQ.
This construction makes sense for arbitrary monoids: for every n we take a copy Pn

of P and define Pn → Pm for n | m to be multiplication by m/n. We can form the direct
limit

PQ = lim−→
n

Pn.

If P is not fs and torsion-free the maps of this system might not be injective: for example
if P is the monoid with two elements 0, 1 and 1 + 1 = 1, then every morphism Pn → Pm

is the identity, and P ∼= PQ.
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Remark 1.1.15. The resulting functor (−)Q commutes with pushouts of monoids. This
follows from the fact that, as we just remarked, PQ can be written as a direct limit, and
direct limits commute with colimits.

Definition 1.1.16. Let P and Q be fs monoids. A Kummer homomorphism φ : P → Q is
an injective homomorphism such that for any q ∈ Q there exists a positive n ∈ N such
that nq ∈ φ(P).

Equivalently, if P and Q are torsion-free φ is Kummer if and only if φQ : PQ → QQ is
an isomorphism.

Example 1.1.17. A fundamental example of Kummer homomorphism is the one we al-
ready described: for P be an fs torsion-free monoid and let φ : P → P be multiplication
by a fixed n ∈N.

Here is another (less trivial) example: let P be the submonoid of N2 generated by
(2, 0), (0, 2) and (1, 1), and let φ : P→N2 be the inclusion.

Let us now describe a particular kind of quotient maps that are important in loga-
rithmic geometry.

Definition 1.1.18. The kernel ker(φ) of a homomorphism of monoids φ : P → Q is the
submonoid of P consisting of elements p ∈ P such that φ(p) = 0.

A morphism of monoids φ : P → Q is a cokernel if the induced map P/ ker(φ) → Q
is an isomorphism. Equivalently, if φ(p1) = φ(p2) implies that there exist q1, q2 ∈ ker(φ)
such that q1 + p1 = q2 + p2 in P.

Note that, contrarily to what happens with groups, not every surjective map of
monoids is a cokernel.

Example 1.1.19. The first projection N2 →N is a cokernel: its kernel is the subset of N2

of elements of the form (0, n), and if (a, b) and (c, d) have the same image, i.e. a = c, we
have (a, b) + (0, d) = (c, d) + (0, b).

The morphism N2 → N that sends (a, b) to a + b is surjective, but is not a cokernel,
because its kernel is trivial.

1.2 Logarithmic geometry

We will almost always adopt the point of view of [BV12] regarding logarithmic geometry,
which differs from the original one of Kato. Other references for the classical point of
view on logarithmic geometry are [Kat89, Ogu]. We briefly recall the main definitions
and results.
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If X is a scheme, we will denote by Div(X) the symmetric monoidal category of pairs
(L, s) with L a line bundle on X and s a global section of L. The monoidal structure
is given by tensor product in the evident way. Furthermore we will denote by DivX

the symmetric monoidal fibered category over the small étale site Xét (i.e. the site that
has as objects étale maps U → X and equipped with the étale topology), whose objects
over U → X are pairs (L, s) consisting of a line bundle on U with a global section, with
monoidal operation given again by tensor product. Note that Div(X) is the category of
“global sections” of DivX.

These should be thought of as a categories of “generalized Cartier divisors”. The
advantage over ordinary Cartier divisors is that invertible sheaves and sections can be
always pulled back, and thus have better functoriality properties. As a fibered category,
DivX is the restriction of the stacky quotient

[
A1/Gm

]
to Xét.

Remark 1.2.1. We will be dealing with sheaves of monoids on the small étale site Xét.
Whenever we will attach some property to a sheaf of monoids A on Xét, for example
integral, saturated, and so on, we always mean that all the geometric stalks (i.e. pullbacks
to geometric points x → X of X) of the sheaf A have that property.

Definition 1.2.2. A Deligne–Faltings (abbreviated DF) structure on a scheme X is a sym-
metric monoidal functor L : A → DivX from a sheaf of monoids on Xét, with trivial
kernel. A logarithmic scheme is a scheme X equipped with a DF structure.

We will usually refer to a DF structure as the functor L : A → DivX, occasionally as
the pair (A, L). Also, we will often abbreviate the word “logarithmic” with just “log”.

Remark 1.2.3. This definition (as well as everything that follows) makes sense also for
X an Artin stack. The only difference is that we have to use the lisse-étale site of X in
place of the small étale site. In the case of schemes or DM stacks, using the lisse-étale
site or the small étale site produces the same theory if we restrict to fine log structures
(Definition 1.2.20 below, and for a proof see [Ols03, Proposition 5.3]).

In the rest of this section and for most of the document we will mainly be concerned
with log schemes, but from time to time the wording “log stack” will come up. For
precise definitions, see [Ols03].

A morphism (φ, Φ) : (A, L) → (B, N) of DF structures on a scheme X is a morphism
φ : A → B of sheaves of monoids, together with a natural isomorphism Φ : L ∼= M ◦ φ.
Morphisms can be composed in the obvious way.

The link with the usual definition of a (quasi-integral) log structure as a morphism
α : M→ OX of sheaves of monoids such that α−1(O×X ) ∼= O

×
X is the following: recall that

quasi-integral means that the natural action of O×X on M is faithful. This is implied for
example by integrality, as the name suggests.
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Starting from α we get L by dividing (in the stacky sense) by O×X , so in particular
A = M = M/O×X , and L is A = M/O×X → OX/O×X ∼= DivX. In other words a section
of A is sent by L to the dual La of the invertible sheaf associated to the Gm-torsor given
by the fiber Ma of M → M = A over a, and the restriction of α to Ma → OX gives the
section of La.

In the other direction, given L, we get back α by taking the fibered product M =

A×DivX OX, and the induced morphism M→ OX.
This constructions give an equivalence of between quasi-integral log schemes in the

sense of [Kat89] and log schemes in the sense of [BV12]. We will freely pass from one
point of view to the other one in the following.

Remark 1.2.4. Note that the sheaf A of a log scheme is a sheaf of sharp monoids. This
follows from the fact that L has trivial kernel and the units of DivX are isomorphic to
(OX, 1), or alternatively from this description of A as M.

Example 1.2.5. Every scheme X has a trivial log structure, by taking as A the constant
sheaf of trivial monoids, or equivalently by taking M = O×X with the inclusion into OX.

Example 1.2.6. If k is algebraically closed, a log structure on Spec(k) simply amounts
to a monoid P, and the morphism P → k inducing the log structure sends 0 to 1 and
everything else to 0. The corresponding “sheaf” of monoids on Spec(k)ét is P⊕ k×.

If P = N, then the resulting log scheme is called the standard log point.

Example 1.2.7. Let X be a scheme, and D ⊆ X an effective Cartier divisor, seen as a
closed subscheme. Then the subsheaf M ⊆ OX defined as

M(U) = { f ∈ OX(U) | f |U\D is invertible }

gives a log structure on X. We will call this the log structure induced by the divisor D.

Example 1.2.8. Let P be a monoid. Then the spectrum of the monoid algebra X =

Spec(k[P]) has a natural log structure, which is induced by the monoid homomorphism
P→ k[P] = OX(X).

From now on Spec(k[P]) will always be tacitly equipped with this log structure.

Notation 1.2.9. As for notation, if (X, A, L) is a log scheme as above, we will often
denote with just X both the log scheme and the underlying scheme. Occasionally it will
be important to distinguish between schemes and log schemes: in those occasions, an
underlined letter like Y will denote a bare scheme, and Y will denote a log scheme.

Regarding the sheaf A and the functor L, when we will have several log schemes
around we will denote by AX and LX the data associated with a log scheme X. This
subscript notation will also often be a shorthand for pullback, but we are confident that
the meaning will always be clear from the context.
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If f : X → Y is a morphism of schemes and L : A→ DivY is a DF structure on Y, then
we have a pullback DF structure f ∗L : f ∗A→ DivX on X.

Definition 1.2.10. A morphism of log schemes X → Y is a morphism f : X → Y of
the underlying schemes, together with a morphism from the pullback DF structure
f ∗LY : f ∗AY → DivX to LX : AX → DivX, i.e. a morphism of sheaves of monoids
f ∗AY → AX together with a natural isomorphism of the composite f ∗AY → AX → DivX

with f ∗LY.

Log schemes form a category with this notion of morphism, that we will denote by
(LogSch).

Definition 1.2.11. A morphism of log schemes X → Y is strict if the morphism from
f ∗LX to LY is an isomorphism.

Strict morphisms are morally morphisms of log schemes where nothing is happening
from the “log” point of view.

Now assume that P is a finitely generated monoid, X is a scheme and P → Div(X)

is a symmetric monoidal functor. Then there is an induced DF structure A → DivX,
where A is obtained as the quotient of the constant sheaf PX by the kernel of the induced
functor PX → DivX. In particular note that ker(PX → A) = ker(PX → DivX).

Definition 1.2.12. Let X be a log scheme, and A a sheaf of monoids on X. A global chart
for A is a finitely generated monoid P together with a morphism of monoids P→ A(X)

such that the induced morphism of sheaves PX → A is a cokernel in the category of
sheaves of monoids.

The last sentence means more precisely that if K is the kernel of PX → A, then there
is an induced isomorphism PX/K ∼= A, where the left-hand side is the quotient sheaf.

Equivalently we can say that we have a symmetric monoidal functor P → Div(X)

such that the induced DF structure on X is isomorphic to L : A → DivX. Moreover
one can show ([BV12, Proposition 3.14]) that being a cokernel is something that can be
checked on the stalks. In particular if P→ Div(X) is a chart for A→ DivX, then for any
x ∈ X the stalk Ax is a cokernel of P.

Notation 1.2.13. If L : A → DivX is a DF structure and a ∈ A(U) is a section, we will
set L(a) = (La, sa), and we will sometimes call sa the distinguished section of La. The
same notations will be used for a symmetric monoidal functor P→ Div(X) where P is a
monoid.

Definition 1.2.14. A sheaf of monoids on a scheme X is coherent if étale locally on X it
has a chart. A log scheme X is coherent if the sheaf A is coherent.
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From now on all log schemes will be coherent, unless specified otherwise.
One shows that charts for a coherent log scheme can be obtained from stalks of the

sheaf A: for every point x ∈ X there is an étale neighborhood of x where X has a global
chart with monoid Ax.

Consequently, a coherent log scheme X has a maximal open subscheme U ⊆ X such
that the restriction of the log structure to U is trivial. This open subset coincides with
the set of points of X where the stalk of the sheaf A is trivial.

Definition 1.2.15. A noetherian log scheme X has generically trivial log structure if the
open subscheme U where the log structure is trivial is schematically dense (i.e. it contains
all associated points of X).

Example 1.2.16. If X is a noetherian scheme with an effective Cartier divisor D ⊆ X,
then the log structure induced by D is clearly trivial on U = X \ D, and since U is
schematically dense, the log structure is generically trivial.

If X is any scheme and P is any fine monoid, the log structure induced by the mor-
phism P→ Div(X) sending 0 to (OX, 1) and everything else to (OX, 0) is not generically
trivial, unless P itself is trivial.

This notion of chart, introduced and studied in [BV12] is slightly different from Kato’s
one.

Definition 1.2.17. A Kato chart for a log scheme (X, M) is a finitely generated monoid P
together with a homomorphism P→ M(X), such that the induced morphism P→ M(X)

is a chart for M.

Clearly a Kato chart induces a chart for A = M. Moreover it turns out that having
Kato charts étale locally is equivalent to having charts étale locally.

Remark 1.2.18. The datum of a Kato chart is equivalent to a strict morphism of log
schemes X → Spec(k[P]) (obtained by composing P → M(X) with M(X) → OX(X)),
and analogously a chart for A = M amounts to a strict morphism X →

[
Spec(k[P])/P̂

]
,

where P̂ is the diagonalizable group scheme D[Pgp], Cartier dual to the group Pgp, and
the quotient stack has the log structure induced by descent from the one of Spec(k[P]).

The morphism that sends a Kato chart to the associated chart is given by composition
with the strict morphism Spec(k[P])→

[
Spec(k[P])/P̂

]
.

This explains the fact that charts give us local models for (the log structure of) log
schemes and, as we will see, also for natural objects over them, like root stacks.
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Remark 1.2.19. In [BV12], the authors make a make a point to use charts for M instead
of Kato charts, and develop the theory by using the quotient stack

[
Spec(k[P])/P̂

]
as a

local model, instead of the monoid algebra Spec(k[P]).
It turns out that having charts étale locally is the same as having Kato charts étale

locally ([BV12, Proposition 3.28]). Because of this there is no loss of generality in using
Kato charts when dealing with local problems. Since we feel that some aspects of the
treatment are simplified by using Kato charts, in the study of the infinite root stack of a
log scheme (Chapter 2) we will usually work with charts coming from Kato charts.

In the chapters about moduli of parabolic sheaves, on the contrary, we will typically
use charts that may not come from Kato charts, since we will need to have a global chart
on a projective log scheme, and global charts exist more often than global Kato charts
(think of the case of a variety with a simple normal crossings divisor, 1.2.21).

The presence of charts will be extremely important for what follows. As is customary,
we incorporate it in the notion of fs log scheme.

Definition 1.2.20. A log scheme X is fine if the sheaf A is coherent and integral.
A log scheme X is fine and saturated, abbreviated fs, if the sheaf A is coherent, integral

and saturated.

We will mostly be dealing with fine and saturated log schemes. Note that since A is
sharp, by proposition 1.1.11 it will also be torsion-free. We will denote the category of fs
log schemes by (FSLogSch).

Example 1.2.21. Consider again the example of 1.2.7. Let X be a noetherian scheme
and D ⊆ X be an effective Cartier divisor. We have a symmetric monoidal functor
N → Div(X) sending 1 to (OX(D), s), where s is the image of 1 along the natural
morphism OX → OX(D), and this makes X into a log scheme.

However, the induced DF structure is isomorphic to the one of 1.2.7 only if D is
smooth. This is because if D is for example given by xy = 0 in A2, around the origin we
should be able to distinguish the two branches of the divisor, and the DF structure of the
previous paragraph does not do that.

Instead, assume that D is simple normal crossings and let D1, . . . , Dk be its irreducible
components. Then we have a symmetric monoidal functor Nk → Div(X) sending the
i-th generator ei to (OX(Di), si), where si is again the canonical section, and the induced
DF structure on X is isomorphic to the one of example 1.2.7.

Note that if we want Kato charts for this log scheme, we need to have equations for
the irreducible components Di (because the morphism lands in OX rather than in DivX),
so in general charts will exist only locally, whereas we have a global chart for M.

Charts can be used to describe morphisms A → B between coherent sheaves of
monoids.
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Definition 1.2.22. Let A and B be sheaves of monoids on Xét, and j : A→ B a morphism.
A chart for j consists of two finitely generated monoids with homomorphisms P→ A(X)

and Q → B(X) giving charts for A and B, and a morphism P → Q that makes the
diagram

P //

��

Q

��
A(X) // B(X)

commutative.

One can show ([BV12, Proposition 3.17]) that for any morphism j : A → B between
coherent sheaves of monoids on X, we can find a chart étale locally on X, and moreover
we can choose P and Q to be stalks of the sheaves A and B over some point of X.

Using a similar definition of chart for morphisms between log schemes, we can de-
scribe such morphisms locally as strict morphisms followed by a pullback of a mor-
phisms of monoid algebras.

Definition 1.2.23. Let f : X → Y be a morphism of log schemes. A chart for f consists
of monoids P, Q and morphisms Q → AX(X), P → AY(Y) and P → Q such that the
first two morphisms are charts for X and Y, and P → Q induces the given morphism
f ∗AY → AX.

One can show that morphisms of fs (coherent would be enough) log schemes always
admit charts étale locally, and moreover if X → Y is a morphism of fs log schemes and
we have a chart for Y around a point y ∈ Y, we can find a chart for the morphisms that
extends the given chart for Y. This holds both for charts and Kato charts.

Note that this essentially says that for any morphism X → Y of fs log schemes, étale
locally on X and Y we can find a commutative diagram of log schemes

X

((

--

Y×Spec(k[P]) Spec(k[Q]) //

��

Spec(k[Q])

��
Y // Spec(k[P])

where the two horizontal maps are strict and so is the diagonal one. This presents the
morphism X → Y (étale locally) as a strict morphism followed by a base change of
morphisms of monoid algebras.
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As we already remarked, charts for coherent log schemes can be produced from stalks
of the sheaf AX. This assures that if the stalks of the sheaf AX have some property (for
example are saturated), then we can find charts where the monoid has such property.
The converse (if a chart has some property, then all the stalks of AX have that property)
is sometimes subtler, for example for saturation.

Let us now spend some words on fibered products of log schemes. The category
(LogSch) has fibered products: given log schemes X, Y, Z and a diagram

Y

��
Z // X

we can define the fibered product Y×X Z as follows: we take the fibered product of the
underlying schemes, call it W, and pull back to it the three DF structures, obtaining a
diagram

(AX)W //

��

(AZ)W

(AY)W

of sheaves of monoids (here (−)W stands for pullback to W). We then take the pushout
of this last diagram, which has a natural symmetric monoidal functor to DivW , and the
induced DF structure. This defines a log scheme with underlying scheme W, that is
the desired fibered product. Moreover one shows that if X, Y, Z are coherent (i.e. they
have charts locally), then also Y ×X W is, and charts for the three induce a chart for the
product.

If one works with fs log schemes, than this construction has to be modified, since if
X, Y, Z are fs then the fibered product in (LogSch) is not necessarily fs. The problem is
that the amalgamated sum of fs monoids need not be fs itself.

To fix this, one shows that there are left adjoints (−)int and (−)sat to the inclusion
functors of the category of coherent (resp. fine) log schemes in the category of fine
(resp. fs) log schemes. These are constructed locally from the analogous constructions on
monoids, and then glued together. Once one has these functors, it is immediate to check
that ((Y×X Z)int)sat is a fibered product in the category (FSLogSch). Étale locally, the un-
derlying scheme of this fibered product is given by a base change of the ordinary fibered
product of the schemes along a morphism of the form Spec(k[(Pint)sat]) → Spec(k[P]),
which is a finite map.

From now on if X, Y, Z are fs log schemes we will denote their fibered product in
(FSLogSch) by Y×X Z, unless specified otherwise.
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1.2.1 Root stacks

For proofs and more details about this section we refer to [BV12].
Let X be a log scheme, with DF structure L : A → DivX. Given a sheaf of monoids B

on Xét containing A, we are interested in parametrizing extensions of L to L′ : B→ DivX.

Example 1.2.24. The basic example of this situation is the following: let X = A1
k ,

equipped with the log structure induced by the origin 0 ∈ X, seen as an effective
Cartier divisor. This has a chart given by L : N → Div(X), sending 1 to (OX, x) where
A1

k = Spec(k[x]).
Consider the inclusion N ⊆ 1

n N, and look at extensions 1
n N → Div(X) of L. These

clearly correspond functorially to n-th roots of the indeterminate x. A more careful
analysis shows that the stack parametrizing such extensions is the quotient stack

[Spec(k[x, t]/(tn − x))/µn]

where µn acts by multiplication on t.
This is the first example of a root stack, for the log scheme X with respect to the

system of denominators (induced by) N ⊆ 1
n N.

Definition 1.2.25. Let X be a log scheme. A system of denominators on X is a sheaf of
monoids B on Xét with a morphism j : A→ B, such that B is coherent, and j is Kummer,
meaning that for any point x ∈ X the induced morphism jx : Ax → Bx is Kummer.

If j : A → B is a system of denominators, by the discussion in the preceding section
étale locally we have charts P → A(X) and Q → B(X) such that the morphism P → Q
is Kummer. Vice versa, if P → A(X) gives a chart for A and P → Q is a Kummer
morphism with P and Q fs monoids, then we get a system of denominators A→ B, with
Q giving a chart for B.

Remark 1.2.26. Note that the definition does not require B to be saturated. Nevertheless,
most of the times we will deal with systems of denominators A → B on fs log schemes
where B is fs as well.

Definition 1.2.27. The root stack XB/A of X with respect to the system of denominators
j : A → B is the following fibered category over X: objects over a scheme φ : T → X
are symmetric monoidal functors φ∗B → DivT together with an isomorphism of the
restriction along φ∗A → φ∗B with the pullback DF structure φ∗L : φ∗A → DivT, and
arrows are isomorphisms of DF structures, with a compatibility with respect to restriction
to φ∗A.

Usually we will refer to an object of XB/A(T) only as the functor φ∗B → DivT, omit-
ting the isomorphism between φ∗A→ φ∗B→ DivT and φ∗A→ DivT. This should cause
no confusion.
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The root stack has a natural morphism XB/A → X that we will usually call the
projection of XB/A to X. Over the root stack XB/A we have a tautological DF structure with
sheaf of monoids π∗B, where π : XB/A → X is the projection, extending π∗L : π∗A →
DivXB/A . We will usually denote it by Λ : π∗B → DivXB/A when there is only one root
stack in play.

If the system of denominators j : A → B has a global chart P → Q, its root stack can
be described by considering lifts Q → Div(T) of the pullback of P → Div(X). In this
case the root stack will also be denoted by XQ/P. Moreover, since étale locally we always
have a chart for j, locally every root stack XB/A is isomorphic to a root stack of the form
XQ/P.

Example 1.2.28. Let X = Spec(k) be the standard log point, and take the Kummer exten-
sion N ⊆ 1

n N. Then if Xn denotes the corresponding root stack, we have an isomorphism

Xn ∼= [Spec(k[t]/(tn))/µn] ,

where µn acts by multiplication on t. This is a particular case of a general description of
the root stack as a quotient stack in presence of a global chart (Proposition 1.2.29 below).

This example generalizes to give a quotient description of root stacks of the form
XQ/P, and thus local models for root stacks in general. Assume that P → Div(X)

is a global chart for X, and fix a Kummer extension P → Q. The chart given by
P corresponds to a morphism X →

[
Spec(k[P])/P̂

]
, where as usual P̂ = D[Pgp] is

the diagonalizable group scheme associated to Pgp. The morphism P → Q induces a
morphism of the spectra of the monoid algebras Spec(k[Q]) → Spec(k[P]), which (be-
ing equivariant with respect to the natural morphism Q̂ → P̂) in turn gives a map[
Spec(k[Q])/Q̂

]
→
[
Spec(k[P])/P̂

]
.

Proposition 1.2.29 ([BV12, Proposition 4.13]). We have an isomorphism

XQ/P
∼= X×[Spec(k[P])/P̂]

[
Spec(k[Q])/Q̂

]
.

In other words every root stack with respect to P → Q is a pullback of the quotient
stack

[
Spec(k[Q])/Q̂

]
, which is then some kind of “universal” model.

This gives a quotient stack description of XQ/P itself: call η : E → X the P̂-torsor

corresponding to the map X →
[
Spec(k[P])/P̂

]
, and note that we have a P̂-equivariant

map E→ Spec(k[P]). Then we have an isomorphism

XQ/P
∼=
[
(E×Spec(k[P]) Spec(k[Q]))/Q̂

]
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for the natural action.
Moreover E is affine over X, and if we set R = η∗OE, then E×Spec(k[P]) Spec(k[Q]) ∼=

Spec
X
(R⊗k[P] k[Q]). This gives a description of quasi-coherent sheaves on XQ/P, that is

the key to the relation with parabolic sheaves, and will be important in what follows:
quasi-coherent sheaves on XQ/P are Qgp-graded quasi-coherent sheaf on X, of modules
over the sheaf of rings R⊗k[P] k[Q]. The grading corresponds to Q̂-equivariance.

We have a second description as a quotient stack in presence of a Kato chart: if
P→ Div(X) comes from a Kato chart P→ OX(X), then the cartesian diagram expressing
XQ/P as a pullback can be broken up

XQ/P //

��

[
Spec(k[Q])/µQ/P

]
//

��

[
Spec(k[Q])/Q̂

]
��

X // Spec(k[P]) //
[
Spec(k[P])/P̂

]
in two cartesian squares, where µQ/P is the Cartier dual D[C] of the cokernel C of the
morphism Pgp → Qgp, a finite abelian group. Consequently, we also have an isomor-
phism

XQ/P
∼=
[
(X×Spec(k[P]) Spec(k[Q]))/µQ/P

]
for the natural action.

Example 1.2.30. A particular case that will be important in the following is the one of
n-th roots.

Given an fs torsion-free monoid P, we consider the Kummer extension P ⊆ 1
n P. In

this case we will denote by Pn the monoid 1
n P (this is just to remember the denominators,

since of course Pn ∼= P), and the group µPn/P will be denoted just by µn(P). In conclusion
the root stack of the monoid algebra X = Spec(k[P]) in this case is

Xn = XPn/P
∼= [Spec(k[Pn])/µn(P)] .

The following is an immediate consequence of the previous discussion.

Theorem 1.2.31 ([BV12, Proposition 4.19]). Let X be a log scheme and j : A → B a system of
denominators. The root stack XB/A is a tame Artin stack. It is finite over X (meaning proper and
quasi-finite), finitely presented, and if for every geometric point x → X the order of the group
Bgp

x /Agp
x is prime to the characteristic of k (for example if char(k) = 0), then XB/A is Deligne–

Mumford.

Being a tame Artin stack, the root stack XB/A has a coarse moduli space.
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Proposition 1.2.32. Assume that A and B are sheaves of fine and saturated monoids. Then the
coarse moduli space of XB/A is the morphism XB/A → X.

Proof. This is a local question on X, so we can assume to have a chart P→ Div(X) for X
coming from a Kato chart, and a chart P→ Q for the system of denominators. Moreover,
since in this case

XQ/P
∼= X×Spec(k[P])

[
Spec(k[Q])/µQ/P

]
with the notation used above, by tameness we can reduce to showing that the morphism[
Spec(k[Q])/µQ/P

]
→ Spec(k[P]) is a coarse moduli space.

This follows from the fact that the invariants of the action of µQ/P on Spec(k[Q]) are
exactly Spec(k[P]). Recall how the action is constructed: µQ/P is the Cartier dual D[C] of
the cokernel C of Pgp → Qgp, the algebra k[Q] has a natural Qgp-grading that induces a
C-grading, and this gives the action of µQ/P.

The invariants are the piece of degree zero with respect to this C-grading, and are
generated by the xq’s such that q ∈ Q goes to zero in C, i.e. with q ∈ Pgp ∩Q = P, since
P and Q are fine and saturated. This concludes the proof.

Note that in the proof we only used the fact that Pgp ∩Q = P, i.e. that the morphism
P→ Q is exact.

The last proposition implies in particular that π∗ : QCoh(XB/A)→ QCoh(X) is exact,
since XB/A is tame and X is the coarse moduli space.

This root stack construction has some functoriality properties: if Y → X is a mor-
phism of log schemes and we have compatible system of denominators on X and Y, we
get a morphism between the root stack. The following proposition covers the simplified
case in which the morphism is strict.

Proposition 1.2.33. Let X be a log scheme with DF structure L : A → DivX and j : A → B
a system of denominators. If f : Y → X is a strict morphism of log schemes, then we have an
isomorphism Yf ∗B/ f ∗A

∼= XB/A ×X Y, i.e. the diagram

Yf ∗B/ f ∗A //

��

XB/A

��
Y // X

is cartesian.

Proof. This is immediate from the functorial description of the root stack: objects of
XB/A ×X Y over a scheme T are given by pairs (φ, g, N) where φ : T → Y and g : T → X
are morphisms such that f ◦ φ = g, and N : g∗B → DivT is a lifting of the pullback DF
structure g∗L : g∗A → DivT. Now since g∗ = φ∗ f ∗, these are precisely the objects of the
root stack Yf ∗B/ f ∗A over the scheme T.
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We also have a functoriality with respect to successive Kummer extensions: if A→ B
and A→ B′ are systems of denominators with a factorization

A //

��

B′

B

>>

then we have a morphism XB′/A → XB/A defined by restricting the extension of the DF
structure B′T → DivT along BT → B′T for every scheme T → X. We will sometimes call
this operation an “extension of denominators”.

In fact this morphism is very similar to the projection XB/A → X from a root stack to
the log scheme X.

Proposition 1.2.34. Let j : A→ B and j′ : B→ B′ be two systems of denominators over the log
scheme X. Then the root stack XB′/A can be identified with the root stack of the log stack XB/A
with respect to the system of denominators j′.

Proof. Take a morphism T → XB/A from a scheme, and equip T with the pullback of the
universal DF structure of XB/A. Then the following diagram is cartesian

TB′/B //

��

XB′/A

��
T // XB/A

and this clearly implies the conclusion.
The fact that the square is cartesian is an easy verification.

Because of this, the map XB′/A → XB/A behaves in some sense as a coarse moduli
space. For example, we have a projection formula for quasi-coherent sheaves.

Proposition 1.2.35 (Projection formula for the root stacks). With the notation of the preced-
ing proposition, denote by π : XB′/A → XB/A the natural map, and assume that A, B and B′ are
fine and saturated. Then:

• OXB/A
∼= π∗OXB′/A

,

• if F ∈ QCoh(XB′/A) and G ∈ QCoh(XB/A) we have a functorial isomorphism π∗F ⊗
G ∼= π∗(F⊗ π∗G),

• consequently for F ∈ QCoh(XB/A) we have an isomorphism F ∼= π∗π∗F on XB/A.
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Proof. The last bullet is consequence of the first two.
After noting that we have maps OXB/A → π∗OXB′/A

and π∗F⊗ G → π∗(F⊗ π∗G), by
flat base change along T → XB/A, we reduce to proving the statements for πT : TB′/B →
T, where the log structure on T is the pullback of the universal DF structure of XB/A.
Now since B and B′ are fine and saturated, the morphism πT is a coarse moduli space
of a tame Artin stack, and the claims follow: the first one is a general property of coarse
moduli spaces, and the second follows for example from Proposition 4.5 of [Alp12].

To conclude, we note that where the log structure is trivial, the root stack is trivial as
well.

Proposition 1.2.36. Let X be a log scheme with a DF structure L : A → DivX, j : A → B be
a system of denominators, and let U ⊆ X be the maximal open subset where the log structure is
trivial. The the restriction of π : XB/A → X to U is an isomorphism XB/A ×X U ∼= U.

Proof. This follows from the fact that the inclusion U ⊆ X is strict and the root stack
construction is compatible with strict base-change (1.2.33), and from the easy fact that
for a trivial log scheme X, the projection from the root stack to X is an isomorphism.

1.3 Parabolic sheaves

In this section we will introduce parabolic sheaves on a log scheme, and link them to
quasi-coherent sheaves on root stacks. Once again our main reference is [BV12].

Let X be a log scheme with DF structure L : A→ DivX, and j : A→ B be a system of
denominators. Let us assume first that we have a chart j0 : P→ Q for A→ B.

Let us introduce a category of weights Qwt associated to Q: objects are elements of
Qgp, and an arrow a→ b is an element q ∈ Q such that b = a + q. We will write a ≤ b to
mean that there is an arrow from a to b. Note that if Q is integral (and this will often be
the case in our treatment), the element q that gives the arrow is uniquely determined.

The symmetric monoidal functor L : P → Div(X) giving the DF structure extends to
a symmetric monoidal functor Lwt : Pwt → Pic(X) in the obvious way. If p ∈ Pgp, we
denote Lwt(p) simply by Lp.

Definition 1.3.1. A parabolic sheaf on X with denominators in Q is a functor E : Qwt →
QCoh(X) that we denote by a 7→ Ea, for a an object or an arrow of Qwt, with an additional
datum for any p ∈ Pgp and a ∈ Qgp of an isomorphism of OX-modules

ρE
p,a : Ep+a ∼= Lp ⊗ Ea

called the pseudo-periods isomorphism.
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These isomorphism are required to satisfy some compatibility conditions. Let p, p′ ∈
Pgp, r ∈ P, q ∈ Q and a ∈ Qgp. Then the following diagrams are commutative

Ea
Er //

��

Er+a

ρE
r,a
��

OX ⊗ Ea
σr⊗id // Lr ⊗ Ea

Ep+a
ρE

p,a //

Eq

��

Lp ⊗ Ea

id⊗Eq

��
Ep+q+a

ρE
p,q+a // Lp ⊗ Eq+a

Ep+p′+a

ρE
p+p′ ,a //

ρE
p,p′+a

��

Lp+p′ ⊗ Ea

µp,p′⊗id
��

Lp ⊗ Ep′+a

id⊗ρE
p′ ,a // Lp ⊗ Lp′ ⊗ Ea,

where µp,p′ : Lp+p′
∼= Lp ⊗ Lp′ is the natural isomorphism given by L, and the composite

Ea = E0+a
ρE

0,a // L0 ⊗ Ea ∼= OX ⊗ Ea

coincides with the natural isomorphism Ea ∼= OX ⊗ Ea.

The sheaves Ea will be sometimes called the pieces of the parabolic sheaf E.

Remark 1.3.2. This has an abstract interpretation in terms of module categories. There
are natural morphisms + : Pwt × Qwt → Qwt and ⊗ : Pic(X)×QCoh(X) → QCoh(X).
Then the pseudo-periods isomorphism ρE is an isomorphism between the composites E ◦
+ and ⊗◦ (Lwt× E) from Pwt×Qwt to QCoh(X), and E is in some sense Pwt-equivariant.

There is a notion of morphisms of parabolic sheaves, which is a natural transforma-
tion E → E′ between the two functors Qwt → QCoh(X) which is compatible with the
pseudo-periods isomorphism in the obvious sense, so we get a category Par(X, j0) of
parabolic sheaves on X with respect to j0 : P → Q. This is in fact an abelian category in
the natural way, with a tensor product and internal Homs.

Example 1.3.3. Let us examine the case of the standard log point, i.e. X = Spec(k)
with log structure induced by L : N → k sending 0 to 1 and 1 to 0, and with system of
denominators N ⊆ 1

2 N.
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In this case Qwt ∼= 1
2 Z as a partially ordered set in the natural way, and a parabolic

sheaf E : 1
2 Z→ QCoh(Spec(k)) is determined by its values at 0 and 1

2 , since the pseudo-
periods isomorphism gives for any 1

2 k and n ∈N an isomorphism

E 1
2 k+n

∼= E 1
2 k.

In other words we can visualize E as a pair of vector spaces V0 and V1 with maps

0 1
2 1

V0
a // V1

b // V0

such that a ◦ b = 0 and b ◦ a = 0 (since these compositions have to coincide with multi-
plication by the image of 1 in k, i.e. zero.

Note that this set of data is exactly the same thing as a quasi-coherent sheaf on the
root stack X 1

2 N/N. In fact we have an isomorphism

X 1
2 N/N

∼= [Spec(k[ε])/µ2]

where ε2 = 0 and µ2 acts by changing the sign of ε. A quasi-coherent sheaf on the root
stack is thus a µ2-equivariant k[ε]-module, i.e. a Z/2Z-graded k[ε]-module. The two
pieces of the grading correspond to the vector spaces V0 and V1 above, and the two maps
correspond to multiplication by ε.

This is the simplest example of the correspondence between parabolic sheaves and
quasi-coherent sheaves on root stacks of Theorem 1.3.8 below.

Example 1.3.4. Let X be a scheme and D ⊆ X an effective Cartier divisor. Consider the
log structure on X induced by the symmetric monoidal functor N→ DivX sending 1 to
(OX(D), s), and the Kummer extension j : N ⊆ 1

2 N.
Then a parabolic sheaf on X with respect to j consists of quasi-coherent sheaves E 1

2 k
for any k ∈ Z, and of morphisms E 1

2 k → E 1
2 k+ 1

2 n for any n ∈N, with the properties as in
the definition. In particular if m ∈ Z we have an isomorphism E 1

2 k+m
∼= E 1

2 k ⊗OX(mD),
and the map E 1

2 k → E 1
2 k+m for positive m corresponds to multiplication by s⊗m. Note

that if the sheaves E 1
2 k are torsion-free (say X is integral for simplicity) and s is not a

zero-divisor, then all these maps will be injective.
Because of the pseudo-periods isomorphism, we can identify a parabolic sheaf with
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the data consisting of the sheaves E0, E 1
2

together with the two maps

0 1
2 1

E0 // E 1
2

// E1.

The rest of the data is completely determined by this diagram.
Clearly we could have as well chosen the sheaves corresponding to −1,− 1

2 , 0. We will
see that for us it will be more convenient to identify a parabolic sheaf with the sheaves
and maps in this second range.

Remark 1.3.5. The two preceding example suggest a way to visualize parabolic sheaves
(at least if Qgp is free): one should think of the lattice Qgp inside the vector space Qgp⊗Q,
and imagine a quasi-coherent sheaf on each point of the lattice. Moreover there is a map
(possibly more than one, if the monoids are not integral) from a sheaf in the point q to
the one in q′ if and only if q ≤ q′, and if p ∈ P, then the corresponding map from q
to p + q coincides with Eq → Eq ⊗ Lp given by multiplication by the section of Lp. For
example if Qgp has rank 1, then a parabolic sheaf can be seen as a “sequence” of sheaves
arranged on the real line on the integral points, with maps going to the right.

The same definition with minor variations defines a parabolic sheaf in absence of a
global chart. Starting from the sheaf B one defines a weight category Bwt in analogy with
the preceding case.

Definition 1.3.6. A parabolic sheaf on X with denominators in the sheaf B is a cartesian
functor E : Bwt → QCohX, together with the datum for every U → X étale, any p ∈
Agp(U) and a ∈ Bgp(U) of an isomorphism of OU-modules

ρE
p,a : Ep+a ∼= Lp ⊗ Ea

called the pseudo-periods isomorphism.
These morphism satisfy the conditions analogous to those of the preceding definition,

and the following one in addition: if f : U → V is a morphism over X and we have
p ∈ Agp(V) and a ∈ Bgp(V), then the isomorphism

ρE
f ∗p, f ∗a : E f ∗(p+a)

∼= L f ∗p ⊗ E f ∗a

is the pullback to U of ρE
p,a : Ep+a ∼= Lp ⊗ Ea.

As for the preceding case there is a notion of morphism (a natural transformation
compatible with the pseudo-periods isomorphisms) that gives a category Par(X, j) of
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parabolic sheaves on X with denominators in B, and this is an abelian category with a
tensor product and internal Homs. This construction has some functoriality property
with respect to morphisms of log schemes X → Y. We will discuss this in some detail in
Chapter 3.

Furthermore, Par(X, j) can be extended to a fibered category Par(X, j) over the small
étale site Xét by taking over an étale morphism U → X the category Par(U, j|U) where U
has the pullback log structure. This fibered category is a stack for the étale topology, by
standard arguments of descent theory.

In the case in which we have a global chart, we can use either one of the definitions.

Proposition 1.3.7 ([BV12, Proposition 5.10]). Let X be a log scheme with a system of de-
nominators j : A → B, admitting a global chart j0 : P → Q. Then we have an equivalence
Par(X, j) ∼= Par(X, j0).

This says that when dealing with local statements about parabolic sheaves, we can
assume that they are relative to a chart.

The following is the main result of [BV12], and relates parabolic sheaves on X with
respect to j : A→ B to quasi-coherent sheaves on the root stack XB/A.

Theorem 1.3.8 ([BV12, Theorem 6.1]). Let X be a log scheme with DF structure L : A→ DivX,
and j : A → B a system of denominators. Then there is a tensor equivalence of abelian categories
Φ : QCoh(XB/A)→ Par(X, j).

We sketch the proof here, since the definition of the two functors will come up at
some point of our treatment.

Sketch of proof. Let us denote by π : XB/A → X the projection, and by Λ : π∗B→ DivXB/A

the universal DF structure on the root stack XB/A.
Let us describe the functor Φ. Given a quasi-coherent sheaf F on XB/A, we want to

get a parabolic sheaf Φ(F). We set, for U → X étale and b ∈ Bgp(U)

Φ(F)b = π∗(F⊗Λb).

This gives a cartesian functor Bwt → QCohX by means of the maps Λb → Λb+b′ for
b ∈ Bgp and b′ ∈ B, and there is a pseudo-periods isomorphism, basically coming from
the fact that if a ∈ A(U), then Λa ∼= π∗La, and using the projection formula for π.

Now since parabolic sheaves on X and quasi-coherent sheaves on XB/A form a stack
in the étale topology of X, we can construct the quasi-inverse étale locally, and so we
can assume that we have a chart j0 : P → Q for the system of denominators. In this case
recall that we have an isomorphism

XQ/P
∼=
[
Spec

X
(R⊗k[P] k[Q])/Q̂

]
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and consequently quasi-coherent sheaves on XQ/P are Qgp-graded quasi-coherent sheaves
on X, which are modules over the sheaf of rings R⊗k[P] k[Q].

Starting from a parabolic sheaf E ∈ Par(X, j0), we define Ψ(E) as the direct sum⊕
q∈Qgp Eq. This is a Qgp-graded quasi-coherent sheaf on X, that has a structure of

R-module (this uses the pseudo-periods isomorphism). Moreover it is also a sheaf of
k[Q]-modules in the natural way, and the two actions are compatible over k[P] by the
properties of parabolic sheaves. This gives Ψ(E) the structure of a Qgp-graded quasi-
coherent sheaf of R⊗k[P] k[Q]-modules, i.e. of a quasi-coherent sheaf on XQ/P.

One checks that these two constructions are inverses, and thus give equivalences.

From the proof of this theorem we see that if the log structure of a noetherian log
scheme X is generically trivial, then the maps Eb → Eb′ between the pieces of any
parabolic sheaf are generically isomorphisms. Moreover in this case if we also assume
that the maps Eb → Eb′ are injective (this will be automatic for torsion-free parabolic
sheaves, see Proposition 3.2.13) the pieces Eb cannot be zero, unless the whole parabolic
sheaf is.

This is not true in general, as the following example shows.

Example 1.3.9. Let us take a scheme X and the log structure induced by N → Div(X)

that sends every non-zero element to (OX, 0). Then the following

−1 − 1
2 0

E0 // 0 // E0

is a perfectly good parabolic sheaf E with weights in 1
2 N, for E0 a non-zero quasi-coherent

sheaf on X. In this case the pushforward π∗(E⊗Λ− 1
2
) along π : X 1

2 N/N → X is the zero
sheaf on X.

Notation 1.3.10. In the following chapters we will always denote by Φ the mentioned
equivalence and by Ψ its quasi-inverse just described, regardless of the log scheme X
they refer to. This should cause no confusion.

Moreover we will refer to both these functors as “the BV equivalence”, for Borne-
Vistoli.

Remark 1.3.11. A variant of this theorem also holds for log stacks: if X is a log stack with
a system of denominators j : A → B, there is an equivalence between parabolic sheaves
on X with respect to j and quasi-coherent sheaves on the root stack XB/A. The proof
is just a matter of taking an atlas and keeping track of descent data. We will use this
without further comment, especially in Chapter 4.
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To conclude, let us describe in parabolic terms pushforwards and pullbacks between
root stacks: let j : A → B and j′ : A → B′ be systems of denominators on X, with a
factorization

A //

��

B′

B

>>

and consider the canonical map π : XB′/A → XB/A.
We have a functor F : Par(X, j′) → Par(X, j) given by “restriction”: we have an in-

clusion Bgp → B′ gp, that identifies Bwt with a subcategory of B′wt. Consequently given
a parabolic sheaf E ∈ Par(X, j′) we can restrict the functor E : B′wt → QCohX to Bwt,
and one checks that, together with the induced pseudo-periods isomorphism, this gives
a parabolic sheaf in Par(X, j).

Proposition 1.3.12. The functor F described above corresponds to the pushforward functor
π∗ : QCoh(XB′/A)→ QCoh(XB/A).

Proof. First of all we can assume that we have charts for both A → B and B → B′, say
P→ Q and Q→ Q′.

We will use the construction of the equivalence Φ of 1.3.8. We want to show that for
a quasi-coherent sheaf E on XQ′/P, we have a natural isomorphism ΦQ(π∗E)q ∼= ΦQ′(E)q

compatible with the pseudo-periods isomorphism, where we see q ∈ Q ⊆ Q′ on the
right-hand side.

Let us further denote by p′ : XQ′/P → X and p : XQ/P → X the two projections, so
that p′ = p ◦ π, and by Λ′ : Q′ → Div(XQ′/P) and Λ : Q → Div(XQ/P) the universal DF
structures. Note that if q ∈ Q we have Λ′q ∼= π∗Λq.

By definition we have

ΦQ′(E)q = p′∗(E⊗Λ′q) ∼= p∗(π∗(E⊗ π∗Λq)) ∼= p∗(π∗(E)⊗Λq) ∼= ΦQ(π∗(E))q,

where we used the projection formula for π (1.2.35).
Compatibility with the pseudo-periods isomorphism is proved with a similar calcu-

lation.

Let us now turn to pullback, whose description is more complicated. We will describe
it in the case where we have global charts j0 : P → Q and j′0 : Q → Q′ for A → B and
B→ B′.

Let us define a functor G : Par(X, j0) → Par(X, j′0). Start with a parabolic sheaf
E : Qwt → QCoh(X), and take an element q′ ∈ Q′ gp. Denote by Qq′ the set

Qq′ = {q ∈ Qgp | q ≤ q′}
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where q ≤ q′ means that there exists a ∈ Q′ such that q + a = q′. This is naturally a
pre-ordered set, and we have a functor Qq′ → QCoh(X) by restricting E.

We define
G(E)q′ = lim−→

q∈Qq′

Eq

which is a quasi-coherent sheaf on X, being a colimit of quasi-coherent sheaves.
Note that in particular if Qq′ has a maximum m (i.e. if there is an element m ∈ Qgp

such that q ≤ m for any q ∈ Qq′), then G(E)q′ = Em. Further, if q ∈ Qgp, we clearly have
G(E)q = Eq, where of course we see q ∈ Qgp ⊆ Q′ gp.

If we have an arrow q′ → q′′ in Q′wt, i.e. an element a ∈ Q′ such that q′ + a = q′′,
then we have a homomorphism Qq′ → Qq′′ given by inclusion, and this induces a map
G(E)q′ → G(E)q′′ . This defines a functor G(E) : Q′wt → QCoh(X). Similar reasonings
give a pseudo-periods isomorphism, so that G(E) becomes a parabolic sheaf, and one
checks that G gives a functor Par(X, j0)→ Par(X, j′0) as claimed.

It is also immediate to check that G is left adjoint to the F constructed above (in the
case where we have global charts), and that the unit of the adjunction id → F ◦ G is an
isomorphism.

Proposition 1.3.13. Assume that we have global charts for A → B and B → B′ as in the
preceding discussion. Then the functor G described in the preceding discussion corresponds to the
pullback functor π∗ : QCoh(XB/A)→ QCoh(XB′/A).

Proof. This follows from uniqueness of adjoint functors and the preceding proposition.

Example 1.3.14. Consider again the situation of Example 1.3.4, and the Kummer exten-
sions N ⊆ 1

2 N ⊆ 1
4 N. Call π : X4 → X2 the projection, and assume that we have a

parabolic sheaf E with respect to N ⊆ 1
2 N, given by

0 1
2 1

E0 // E 1
2

// E1

as above. Then the pullback π∗E on X4 can be described as a parabolic sheaf as

0 1
4

1
2

3
4 1

E0 E0 // E 1
2

E 1
2

// E1.
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In fact in this case the set Qq′ of the description above has always a maximum, and the
direct limit reduces to evaluating the parabolic sheaf E at the maximum. For example if
we take q′ = 1

4 , then Qq′ has 0 as maximum, and consequently (π∗E) 1
4

will be just E0.

Corollary 1.3.15. Let X be a log scheme with DF structure L : A→ DivX, and A→ B, B→ B′

two systems of denominators. Then pullback along π : XB′/A → XB/A is fully faithful.

Proof. Being a local question in the étale topology of X, this follows from the previous
propositions and from the fact that the unit of the adjunction G a F is an isomorphism.
In fact in general if G is left adjoint to F and the unit id→ F ◦G is an isomorphism, then

Hom(A, B) ∼= Hom(A, F(G(B))) ∼= Hom(G(A), G(B))

and the composition coincides with the function induced by G.
Alternatively, the conclusion follows directly from the third bullet of Proposition

1.2.35, which says that the unit of the adjunction π∗ a π∗ is an isomorphism.
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Chapter 2

The infinite root stack of a
logarithmic scheme

Let X be an fs log scheme, with log structure L : A → DivX. For every n ∈ N we have a
Kummer extension of the sheaf A given by {jn : A→ 1

n A}n∈N.
The root stacks πn : Xn → X corresponding to these extensions admit natural maps

between them. Precisely, whenever n | m we have a morphism πn,m : Xm → Xn, given
functorially by taking a lifting 1

m AT → DivT of L over some T → X to the restriction
1
n AT → DivX to the subsheaf 1

n AT ⊆ 1
m AT. These morphisms are compatible in a suit-

able sense, and make the sequence of root stacks into an inverse system of algebraic
stacks, with ordered set the set of non-zero natural numbers and the ordering given by
divisibility. As we will see, this is a (locally) cofinal subsystem of a bigger projective
system where one considers any Kummer extension of sheaves of monoids.

We want to take the inverse limit of this projective system in order to get a stack X∞,
which we will call the “infinite root stack” of X, that parametrizes extensions of the log
structure of X with arbitrary denominators. This stack will be non-algebraic and have
other nasty properties, but on the bright side it will “embody” parabolic sheaves on X
with arbitrary rational weights, and it will have nice local models that resemble the ones
of the finite root stacks.

Moreover we will see that the geometry of the infinite root stack is closely related to
the logarithmic geometry of the log scheme. Specifically, we will show that there is a
reconstruction procedure that gives back the log structure starting from the infinite root
stack, and that one can recover the Kummer-flat topos of Kato ([Kat, Niz08]) from an
opportunely defined fppf topos of the infinite root stack. We will also see that quasi-
coherent sheaves on X∞ correspond to parabolic sheaves with arbitrary rational weights,
so that finitely presented Kummer-flat sheaves on X are the same thing as finitely pre-
sented parabolic sheaves with rational weights.

47
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In this chapter (and from here on) we assume that X is fine and saturated. Some
parts of the theory make sense without this assumption, but for simplicity we prefer to
keep this hypothesis always in the background instead of bringing it out only when it is
really needed.

First of all we need some preliminaries on inverse limits of stacks.

2.1 Inverse limits of algebraic stacks

There are probably several instances of a definition of an inverse limit of stacks in the
literature. We lay them down yet one more time, to establish the notation and for the
convenience of the reader.

Assume in this section that I is a partially ordered set, which is moreover filtered,
i.e. for every pair i, j ∈ I there exists k ∈ I such that k ≥ i and k ≥ j. Also, let us fix a
category D. Every fibered category in this section will be over D, and will be a category
fibered in groupoids. This assumption is not crucial and without it one only needs to add
the word “cartesian” in the appropriate places, but we will not need this generality.

Definition 2.1.1. An inverse system of fibered categories indexed by I is the datum of a set
{Ci}i∈I of fibered categories indexed by I, together with a transition functor Fi,j : Cj → Ci
every time that j ≥ i. There is one last piece of data: for every triple i, j, k ∈ I such that
k ≥ j ≥ i, we have a natural isomorphism αi,j,k : Fi,j ◦ Fj,k

∼= Fi,k of functors Ck → Ci, that
satisfies the following compatibility condition: whenever we have i, j, k, l ∈ I such that
l ≥ k ≥ j ≥ i the following diagram of functors Cl → Ci commutes

Fi,j ◦ Fj,k ◦ Fk,l
αi,j,k Fk,l //

Fi,jαj,k,l

��

Fi,k ◦ Fk,l

αi,k,l

��
Fi,j ◦ Fj,l

αi,j,l // Fi,l .

Remark 2.1.2. In some situations all the natural isomorphisms αi,j,k are identities. If this
happens we will say that the inverse system is strict. The inverse system of root stacks of
a log scheme will have this property.

We can take the inverse limit of an inverse system of fibered categories. One can give
a (2-categorical) universal property that uniquely identifies this limit, we will instead
define and use a specific model.

Definition 2.1.3. The canonical inverse limit C = lim←−i∈I
Ci of an inverse system of fibered

categories {Ci, Fi,j} is the fibered category defined as follows:
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• for an object d ∈ D, the category C(d) has as objects collections {ξi}i∈I of objects
ξi ∈ Ci(d), together with, for every i, j ∈ I with j ≥ i, an isomorphism φi,j : Fi,j(ξ j) ∼=
ξi. These isomorphisms satisfy the following compatibility condition: every time
that we have i, j, k ∈ I such that k ≥ j ≥ i, the following diagram in Ci commutes

Fi,j(Fj,k(ξk))
Fi,j(φj,k) //

αi,j,k(ξk)

��

Fi,j(ξ j)

φi,j

��
Fi,k(ξk)

φi,k // ξi.

• Morphisms in C(d) from {ξi, φi,j} to {ηi, ψi,j} are collections of arrows fi : ξi → ηi in
Ci(d) that are compatible with the isomorphisms φi,j and ψi,j, in the obvious sense.

• The pullback of {ξi, φi,j} ∈ C(d) along f : e → d is defined as { f ∗ξi, f ∗φi,j}, i.e. by
pulling back both the objects and the morphisms, in the corresponding category Ci.

Note that for any i there is an obvious projection functor πi : C → Ci, and for any
i, j ∈ I with j ≥ i there is a canonical isomorphism Fi,j ◦ πj

∼= πi.
The fibered category C thus defined has the following universal property.

Proposition 2.1.4. For any fibered category E with functors Gi : E → Ci and for any pair
i, j ∈ I with j ≥ i, a natural isomorphism βi,j : Fi,j ◦ Gj

∼= Gi, such that for i, j, k ∈ I with
k ≥ j ≥ i the two morphism of functors Fi,k ◦ Gk → Gi given by βi,k and by the composition

Fi,k ◦ Gk
α−1

i,j,k−→ Fi,j ◦ Fj,k ◦ Gk → Fi,j ◦ Gj → Gi coincide, there exists a unique functor G : E → C
such that πi ◦ G = Gi.

Proof. Since we must have πi ◦ G = Gi, the action of G on objects is determined by
G(d) = {Gi(d)}i∈I , and the isomorphisms φi,j are given by the natural isomorphisms βi,j.
The action on arrows is also given by the Gi’s.

Definition 2.1.5. A fibered category E with the data as in the previous paragraph is an
inverse limit of an inverse system {Ci, Fi,j} if the induced functor G : E → C = lim←−i∈I

Ci to
the canonical inverse limit is an equivalence of fibered categories.

Definition 2.1.6. A cofinal subset of a filtered partially ordered set I is a subset J ⊆ I such
that for any i ∈ I there exists j ∈ J with j ≥ i.

By equipping J with the induced order relation, we can see it as a filtered partially
ordered set, and consider CJ = lim←−j∈J

Cj. By cofinality, for any i ∈ I we can choose j(i) ∈ J
such that j(i) ≥ i, and by composing the projection CJ → Cj(i) with Fi,j(i) : Cj(i) → Ci, we



50 CHAPTER 2. THE INFINITE ROOT STACK OF A LOGARITHMIC SCHEME

get a functor CJ → Ci for each i. Note that if i = j ∈ J, we can take the functor CJ → Cj
to be just the projection of the inverse limit.

One readily checks that there are natural isomorphisms after composing with the
transition maps of the system {Ci}i∈I , and thus we get a compatible system of functors
to the inverse system, and by Proposition 2.1.4, a functor FJ : CJ → lim←−i∈I

Ci.

Remark 2.1.7. Note that the functor FJ is compatible with restriction to comma categories
on the base category D.

Proposition 2.1.8. For any cofinal subset J ⊆ I in a filtered partially ordered subset, the functor
FJ is an equivalence.

Sketch of proof. We can fix an object d ∈ D and show that FJ(d) : CJ(d)→ (lim←−i∈I
Ci)(d) is

an equivalence.
The functor FJ(d) is fully faithful, by looking at the components in lim←−i∈I

Ci corre-
sponding to indices in J.

It is essentially surjective, since for any family {ξi}i∈I with isomorphisms φi,j, corre-
sponding to an object ξ ∈ (lim←−i∈I

Ci)(d), we can just take its “restriction” to the indices
in J, and this will give an object of CJ(d), with image isomorphic to the original ξ.

Proposition 2.1.9. Assume that D is equipped with a Grothendieck topology and all the fibered
categories Ci are stacks over D. Then lim←−i∈I

Ci is a stack as well.

Proof. The proof is by standard descent theory arguments. Basically, descent data for
lim←−i∈I

Ci amount to descent data (for objects and morphisms) for the single Ci’s, so we
can glue them at each stage and put everything together.

More succinctly, one could say that limits commute with stackification, so a limit of
stacks is a stack.

2.2 The infinite root stack

The root stacks of a log scheme X naturally form an inverse system of stacks over
(Sch /X). Let us consider the set I = {Kummer extensions j : A → B with B coherent},
ordered by (j′, B′) ≥ (j, B) if there is morphism B→ B′ with a commutative diagram

A
j′

  

j

��
B // B′.

Recall that “coherent” requires B to have charts locally in the étale topology, and this
implies in particular that it is finitely generated. For example, A→ AQ is not an element
of I.
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Remark 2.2.1. Note that if j : A → B is Kummer, then jQ : AQ → BQ is an isomorphism,
and so B is canonically isomorphic to a subsheaf of AQ. This says that we do not lose
anything by restricting to subsheaves of AQ, and from now on in a Kummer extension
A→ B, the sheaf B will always be a subsheaf of AQ.

Now, for any j : A → B ∈ I, we have the root stack XB/A, and when (j′, B′) ≥ (j, B),
restriction to B gives a functor XB′/A → XB/A. Moreover these data give an inverse
system of stacks over (Sch /X) indexed by I.

The partially ordered set I is filtered: given j : A → B and j′ : A → B′ in I, we take
B′′ = B + B′ ⊆ AQ, and j′′ : A → B′′ the induced morphism. Then (j′′, B′′) is an element
of I that dominates both (j, B) and (j′, B′).

Definition 2.2.2. The infinite root stack of the logarithmic scheme X is the inverse limit
X∞ = lim←−(A→B∈I)

XB/A.

By Proposition 2.1.9, X∞ is a stack over (Sch /X) (with the fpqc topology or any
coarser one). By definition of the inverse limit, the objects of X∞(T) for a scheme T → X
are collections {LA→B : BT → DivT}A→B of liftings of the DF structure of X, together with
compatibility isomorphisms for any morphism of Kummer extensions, and the arrows
are compatible collections of arrows.

We have the following alternative description.

Proposition 2.2.3. There is a natural isomorphism X∞ ∼= XAQ/A with the root stack with respect
to the “maximal” Kummer extension A→ AQ.

Remark 2.2.4. We stress once again that in a system of denominators A→ B, the sheaf B
is finitely generated, so A → AQ is not a system of denominators. Despite this, one can
define a root stack XAQ/A exactly as in the finitely generated case (see Definition 1.2.27).

This means that objects of XAQ/A over a scheme T → X are liftings (AQ)T → DivT of
the pullback DF structure AT → DivT, and arrows are morphisms of DF structures.

We also remark here that taking (−)Q commutes with pullback, i.e. in the situation
above we have (AQ)T ∼= (AT)Q as sheaves on T. This holds basically because colimits
commute with left adjoints.

Lemma 2.2.5. Let T → X be a morphism. Then there is an isomorphism

lim−→
A→B

BT → (AQ)T

as fibered categories on (Sch /T).
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Proof. First of all note that on (Sch /X), the maps B → B′ of the direct system are
injective, and since they are compatible with the inclusions B ⊆ AQ and B′ ⊆ AQ, we can
identify the direct limit as the ascending union

⋃
A→B B ⊆ AQ, as a sheaf. By exactness

of the pullback, all this remains true if we are on the scheme T, so we can assume T = X.
Let us prove that the inclusion ⋃

A→B

B ⊆ AQ

is an equality. This means that any section s ∈ AQ(U) with U → X étale, comes étale
locally on U from (

⋃
A→B B)(U), so in particular we can assume that there is a chart

P→ A on X, where P is a finitely generated monoid.
Since (PQ)X → AQ is surjective, s will locally come from an element p ∈ PQ, that will

lie in some 1
n P ⊆ PQ, as P is finitely generated. The image of p in 1

n A, an element of⋃
A→B B, will be s.

Proof of Proposition 2.2.3. For any system of denominators A ⊆ B ⊆ AQ we have a re-
striction morphism XAQ/A → XB/A, and by varying B we get a map XAQ/A → X∞.
Functorially, for a scheme T → X, the morphism above sends a lifting (AQ)T → DivT

of the DF structure on X to the collection of its restrictions to systems of denominators
A ⊆ B ⊆ AQ.

Because of the previous lemma, we have lim−→A→B
BT ∼= (AQ)T, and consequently

Hom((AQ)T, DivT) = Hom( lim−→
A→B

BT, DivT) = lim←−
A→B

Hom(BT, DivT).

In other words, morphisms of stacks (AQ)T → DivT correspond to compatible systems
of morphisms BT → DivT, and it is clear that symmetric monoidal functors correspond
to collections of symmetric monoidal functors. Moreover this equivalence respects the
compatibility with the DF structure AT → DivT coming from X. This says that the
morphism XAQ/A → X∞ is an isomorphism.

It is possible to reduce considerably the set of indices over which we take the limit,
and still obtain the infinite root stack as a result.

Fix a system of denominators k : A→ A′ and consider the subset

Ik = I(k : A→A′) =

{
A→ 1

n
A′
}

n∈N

⊂ I,

where the ordering induced by I corresponds to the divisibility ordering on N. The case
k = idA gives the natural tower of extensions where we just take all sections of A with
some fixed denominator n.

Note that this subset is not necessarily cofinal, although that this is true if X is quasi-
compact.
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Example 2.2.6. Consider a countable disjoint union of points X =
⊔

n∈N Spec(k) with k
algebraically closed, with the standard rank 1 log structure on each point.

In this case we have A = NX, AQ = QX, and, although as sheaves we have
⋃ 1

n A =

AQ, it is not true that every system of denominators A ⊆ B ⊆ AQ is contained in some
1
n A. Indeed, it suffices to take the section s of AQ that takes the value 1

n on the n-th copy
of Spec(k), and the submonoid it generates inside AQ.

Proposition 2.2.7. The subset Ik ⊆ I is cofinal if X is quasi-compact.

Proof. Let us fix a system of denominators A → B. Since X is quasi-compact, it has a
finite covering by affines where there is a global chart for A→ B. On each of these open
affines, if P → Q is the given chart, we can find n such that Q ⊆ 1

n P, since Q is finitely
generated. If we let N be the least common multiple of these finitely many indices, we
have B ⊆ 1

N A on X.

Despite the fact that the subset Ik ⊆ I is not necessarily cofinal, the induced morphism
between the inverse limits is always an isomorphism.

Proposition 2.2.8. The natural functor AIk : lim←−n∈N
X 1

n A′/A → X∞ induced by the inclusion
Ik ⊆ I is an isomorphism.

Proof. This follows from the previous lemma and from proposition 2.1.8, using the fact
that the two are stacks on (Sch /X).

From now on we will often see X∞ as the inverse limit of such a “small” subsystem,
typically as lim←−n∈N

Xn, where Xn = X 1
n A/A.

The construction of the infinite root stack is functorial, as it is apparent from the
interpretation as a root stack for the extension A ⊆ AQ: if f : X → Y is a morphism of
log schemes, then there is an induced map f∞ : X∞ → Y∞ that sends a lifting ((AX)Q)T →
DivT (for a scheme T → X) of the DF structure of X to the composition (( f ∗AY)Q)T →
((AX)Q)T → DivT, a lifting of the DF structure of Y. This can also be seen as the
morphism induced by the morphisms Xn → Yn between the intermediate root stacks by
taking the inverse limit.

Remark 2.2.9. Moreover, as it happens with the finite root stacks, if the morphism f is
strict, then the square

X∞ //

��

Y∞

��
X // Y

is cartesian. In fact since f ∗AY
∼= AX, we have ( f ∗AY)Q

∼= (AX)Q and this implies that
an object of X∞(T) is an object of Y∞(T), plus a map T → X over Y.
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The infinite root stack has a natural projection X∞ → X, which is defined functorially
on X∞(T) by forgetting everything but the morphism T → X. Clearly this is the same as
the composite of the two projections X∞ → XB/A → X for any system of denominator
A→ B.

Proposition 2.2.10. Assume that X is noetherian and the log structure of X is generically trivial,
i.e. the open subscheme U ⊆ X where the log structure is trivial is schematically dense. Then the
projection π : X∞ → X is an isomorphism over U.

Proof. This follows from the fact that the formation of X∞ commutes with strict base
change, and over U the projection from any root stack is an isomorphism.

2.2.1 Local models

Let us now consider the local version of this construction, where there is a chart. This
will lead us to local models for the infinite root stack.

When X has a global chart P→ Div(X), following our previous construction, we can
consider the set I = {Q ⊆ PQ | Q is finitely generated }, partially ordered by inclusion.
As before, I is filtered (by taking Q + Q′ ⊆ PQ).

We can consider the inverse limit (X∞)P = lim←−I
XQ/P, and, as in the discussion of the

preceding section, one can show that the objects of (X∞)P(T) for φ : T → X correspond
to liftings PQ → Div(T) of the DF structure of X. In other words (X∞)P is isomorphic
to the root stack XPQ/P corresponding to the Kummer extension P ⊆ PQ (we omit the
details).

Lemma 2.2.11. Let X be a log scheme with DF structure L : A → DivX and a global chart
P → Div(X). Then there is an isomorphism (X∞)P ∼= X∞. Moreover, this isomorphism is
compatible with the isomorphisms XQ/P

∼= XB/A, where A → B is a system of denominators
with chart P→ Q.

Proof. The proof follows closely the one of Proposition 4.18 of [BV12], with minor modi-
fications. We sketch it briefly for the convenience of the reader.

Let us define a functor X∞ → (X∞)P as follows: for a scheme T → X, we send an
object (AQ)T → DivT of X∞(T) to the composition PQ → (AQ)T(T) → Div(T), which
is an object of (X∞)P when equipped with the obvious induced natural isomorphism of
the composition P → PQ → Div(T) with the morphism P → Div(T) coming from the
chart on X. The action on arrows is clear.

The quasi-inverse (X∞)P → X∞ associates to an object PQ → Div(T) the induced DF
structure (AQ)T → DivT. Here (AQ)T is the sheaf quotient ((PQ)T/K)sh, where K is the
kernel of the given functor PQ → Div(T), which coincides with the kernel of PQ → AQ,
since ker(PT → AT) = ker(PT → DivT).
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Compatibility with the isomorphisms XQ/P
∼= XB/A is clear from the construction.

To describe local models for X∞, let us start from the “universal” case of the spectrum
of a monoid algebra.

Assume that X = Spec(k[P]) for a finitely generated monoid P, with the natural log
structure. Then we have a description of X∞ as a quotient stack, as it happens with
finite root stacks: recall from 1.2.30 that in this case Xn ∼= [Spec(k[Pn])/µn(P)], where
we set Pn = 1

n P and µn(P) denotes the Cartier dual D[Cn] of the cokernel Cn of the map
Pgp → Pgp

n .
Moreover let us denote by µ∞(P) the Cartier dual D[C∞] of the cokernel C∞ of the

morphism Pgp → Pgp
Q

. There are inclusions Cn ⊆ C∞ and in fact C∞ is the ascend-
ing union of such subgroups (with respect to divisibility). Correspondingly µ∞(P) ∼=
lim←−n

µn(P).
Note that since P is fine and saturated, by choosing appropriate generators we have

Pgp ∼= Zr, consequently Cn ∼= (Z/nZ)r and C∞ ∼= (Q/Z)r, and correspondingly µn(P) ∼=
(µn)r and µ∞(P) ∼= (µ∞)r, where µ∞ = D[Q/Z] ∼= lim←−n

µn.

Proposition 2.2.12. We have an isomorphism X∞ ∼= [Spec(k[PQ])/µ∞(P)].

Proof. The stacks [Spec(k[Pn])/µn(P)], together with the natural maps

[Spec(k[Pm])/µm(P)]→ [Spec(k[Pn])/µn(P)]

for n | m form an inverse system of stacks over (Sch / Spec(k[P])), and for every n ∈ N

we have from Example 1.2.30 an isomorphism Fn : Xn → [Spec(k[Pn])/µn(P)]. Moreover
one checks that these isomorphisms are compatible with the transition maps of the two
inverse systems, and thus give a morphism

F = lim←−
n∈N

Fn : X∞ → lim←−
n∈N

[Spec(k[Pn])/µn(P)] ,

which is an isomorphism.
Now it suffices to note that we have an isomorphism

lim←−
n

[Spec(k[Pn])/µn(P)] ∼= [Spec(k[PQ])/µ∞(P)] .

In fact we have a map

[Spec(k[PQ])/µ∞(P)]→ lim←−
n∈N

[Spec(k[Pn])/µn(P)]

obtained by change of fiber along µ∞(P) → µn(P) for every n, and this has a quasi-
inverse that can be described as follows.
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Assume that we have an object of lim←−n∈N
[Spec(k[Pn])/µn(P)] over a scheme T →

Spec(k[P]), i.e. a sequence of µn(P)-torsors

Qn

��

// Spec(k[Pn])

T

with equivariant maps Qn → Spec(k[Pn]), and every time that n | m, an isomorphism
Qm ×µm(P) µn(P) ∼= Qn, where as usual Qm ×µm(P) µn(P) = (Qm × µn(P))/µm(P), with
the obvious compatibility properties.

Since the maps Qm → Qn are affine, we can take the inverse limit Q = lim←−n
Qn as a

scheme over T. This has an action of µ∞(P) = lim←−n
µn(P), and moreover it is a torsor for

µ∞(P), since the morphism Q× µ∞(P) → Q×T Q is an isomorphism, being the inverse
limit of the isomorphisms Qn × µn(P) ∼= Qn ×T Qn.

Finally the µn(P)-equivariant maps Qn → Spec(k[Pn]) induce a µ∞(P)-equivariant
morphism Q→ lim←−n

Spec(k[Pn]) = Spec(k[PQ]), and this gives an object

Q //

��

Spec(k[PQ])

T

of [Spec(k[PQ])/µ∞(P)] over T. These two maps are mutually quasi-inverses.

Remark 2.2.13. We have the following description of k[PQ]: take a finite set of gener-
ators p1, . . . , pr of P, some indeterminates t1, . . . , tr, and the (finitely many) polynomi-
als fi ∈ k[t1, . . . , tr] coming from the relations among the generators, so that k[P] ∼=
k[t1, . . . , tr]/( fi). Then we have

k[PQ] ∼= k[t
1
n
1 , . . . , t

1
n
r | n ∈N]/( fi(t

1
n
1 , . . . , t

1
n
r ) | n ∈N).

For example, if P = 〈p, q, r | p + q = 2r〉, then we have k[P] ∼= k[x, y, z]/(xy− z2), where
the equation comes from the relation p + q = 2r, and

k[PQ] ∼= k[x
1
n , y

1
n , z

1
n | n ∈N]/(x

1
n y

1
n − z

2
n | n ∈N).

As for the group µ∞(P), we already remarked that µ∞(P) = D[(Q/Z)r] ∼= (µ∞)r where
r is the rank of Pgp.

Now we will see that this description as a quotient stack extends to the case where
there is a global chart.
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Assume that X is a log scheme with a global chart P → Div(X) coming from a Kato
chart P→ OX. Then recall that the root stack Xn fits in a cartesian diagram

Xn //

��

[Spec(k[Pn])/µn(P)]

��
X // Spec(k[P]).

We can obtain a description as a quotient stack stack by pulling the data back to X: the
stack Xn is isomorphic to the quotient [Un/µn(P)] where Un = X ×Spec(k[P]) Spec(k[Pn])

and the action is the natural one on the second factor.
If n | m we have natural affine morphisms fn,m : Um → Un (induced by Spec(k[Pm])→

Spec(k[Pn])) and φn,m : µm(P) → µn(P), and moreover fn,m is equivariant with respect to
φn,m, so they fit together in a morphism of groupoids in schemes

Um × µm(P)

����

// Un × µn(P)

����
Um // Un.

Moreover if n | m and m | k, the morphism Uk → Un coincides with the composition
Uk → Um → Un. In other words {Un}n∈N is an inverse system with index set N with the
divisibility ordering and with affine transition maps, so the inverse limit U∞ = lim←−n

Un

makes sense as a scheme.
We have an action of µ∞(P) on U∞ obtained as limit of the actions at the finite levels,

and we can consider the quotient stack [U∞/µ∞(P)].

Proposition 2.2.14. There is an isomorphism X∞ ∼= [U∞/µ∞(P)]. In particular X∞ has a
representable fpqc morphism from a scheme, U∞ → X∞. Moreover, X∞ fits in the following
cartesian diagram

X∞ //

��

[Spec(k[PQ])/µ∞(P)]

��
X // Spec(k[P])

Proof. For every n we have an isomorphism Xn ∼= [Spec(k[Pn])/µn(P)]×Spec(k[P]) X, and
these isomorphisms are compatible with the transition maps Xm → Xn and

[Spec(k[Pm])/µm(P)]→ [Spec(k[Pn])/µn(P)] .

Consequently we have an isomorphism
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X∞ ∼= lim←−
n

Xn ∼= lim←−
n
([Spec(k[Pn])/µn(P)]×Spec(k[P]) X) ∼=

∼= (lim←−
n

[Spec(k[Pn])/µn(P)])×Spec(k[P]) X ∼= [Spec(k[PQ])/µ∞(P)]×Spec(k[P]) X,

and the diagram in the statement is cartesian.
Because the diagram is cartesian we have

X∞ ∼=
[

X×Spec(k[P]) Spec(k[PQ])/µ∞(P)
]
= [U∞/µ∞(P)]

since U∞ ∼= X×Spec(k[P]) Spec(k[PQ]).

Example 2.2.15. Assume X = Spec(k) is the standard log point. In this case, as is
explained in Example 1.2.28, the root stacks of X are given by Xn ∼= [Spec(k[t]/(tn))/µn],
where µn acts by multiplication. Since

lim←−
n

Spec(k[t]/(tn)) ∼= Spec(k[t
1
n | n ∈N]/(t)) = Spec(k)×Spec(k[N]) Spec(k[Q+])

the preceding proposition implies that the infinite root stack of X is described as

X∞ ∼=
[
Spec(k[t

1
n | n ∈N]/(t))/µ∞

]
,

where µ∞ acts via the natural Q/Z-grading on k[t
1
n | n ∈N]/(t).

The morphism X∞ → Xn to the intermediate n-th root stack Xn ∼= [Spec(k[t]/(tn))/µn]

is induced by the homomorphism k[t]/(tn) → k[t
1
n | n ∈ N]/(t) sending t to t

1
n , which

is equivariant with respect to the natural morphism µ∞ → µn.

Example 2.2.16. More generally if X = Spec(k) with the log structure given by a fine
saturated sharp monoid P, with P→ Div(k) that sends 0 to 1 ∈ k and everything else to
0 ∈ k, then the infinite root stack is

X∞ ∼=
[
Spec(k[PQ]/(P+)/µ∞(P)

]
where recall that P+ = P \ {0}, and (P+) ⊆ k[PQ] is the ideal generated by the variables
xp with p ∈ P+.

More concretely take a system of generators p1, . . . , pr for P, and some indetermi-
nates t1, . . . , tr. Call fi(t1, . . . , tr) the polynomials coming from a finite set of generating
relations for the pj’s, so that k[P] = k[t1, . . . tr]/( fi). Then we have

X∞ ∼=
[

Spec
(

k[t
1
n
1 , . . . , t

1
n
r | n ∈N]/(t1, . . . , tr, fi(t

1
n
1 , . . . , t

1
n
r ) | n ∈N)

)
/µs

∞

]



2.2. THE INFINITE ROOT STACK 59

where s is the rank of Pgp and the action is given, as in the previous example, by the

natural (Q/Z)s-grading on the k-algebra k[t
1
n
1 , . . . , t

1
n
r | n ∈ N]/(t1, . . . , tr, fi(t

1
n
1 , . . . , t

1
n
r ) |

n ∈N).

Example 2.2.17. Let X be a smooth curve and D ⊆ X an effective Cartier divisor, i.e. a
finite number of points {x1, . . . , xk}. Then the projection X∞ → X restricted to U = X \D
is an isomorphism, and over the points xi the stack X∞ has the structure of the infinite
root stack of the standard log point, i.e.

(X∞)xi
∼=
[
Spec(k(xi)[t

1
n | n ∈N]/(t))/µ∞

]
.

Thus in this case we can see X∞ as X with added stacky structure on the points xi, with
a rather large stabilizer group.

We deduce the following results for general log schemes, without assuming that there
is a global chart.

Corollary 2.2.18. The infinite root stack X∞ of any log scheme X has an étale cover by quo-
tient stacks of the form just described, i.e. it is étale locally a quotient of an affine scheme by a
diagonalizable group scheme.

Remark 2.2.19. In this discussion we used the standard root stacks of X, but we could
have equivalently used the root stacks given by A → 1

n A′, where A → A′ is a fixed
system of denominators, or even an arbitrary cofinal subset of the partially ordered set
of systems of denominators.

This implies that the infinite root stack, even though it is not algebraic in the sense of
Artin, still has some kind of (very) weak algebraicity property.

Definition 2.2.20. An fpqc stack is a stack (in groupoids) X on (Sch) that has an fpqc
presentation (i.e. an fpqc representable morphism U → X from a scheme), and such
that the diagonal X → X ×k X is representable.

Corollary 2.2.21. The infinite root stack X∞ of an fs log scheme X is an fpqc stack. Moreover it
has an fpqc presentation which is an inverse limit of flat (smooth in characteristic 0) presentations
for the finite root stacks Xn.

Proof. This follows from the previous preposition, by taking a disjoint union of the pre-
sentations described above in the local case. Representability of the diagonal follows
from the local description as a root stack.
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Apart from this algebraicity property, in what follows we will exploit the fact that X∞

is an inverse limit of Artin stacks (what we could call a “pro-algebraic stack”) and that we
can find presentations that are inverse limits of presentations for the finite stacks. When
we will refer to presentation of the finite root stacks Xn yielding an fpqc presentation
of X∞, we will write them as Un → Xn as before and, in the local case where there is a
global chart, Gn will be the group µn(P). The inverse limits will be U∞ = lim←−n

Un and
G∞ = lim←−n

Gn.
It is quite clear from its description and simple examples that X∞ is not going to be

“of finite type over k”, or “noetherian” even if X is. Note that it is not even clear what
these adjectives should mean, hence the quotation marks.

In fact, since X∞ has only an fpqc atlas, we have to be careful when we talk about
properties like being noetherian, locally of finite type/presentation and such, since they
are not local with respect to the fpqc topology, i.e. if f : X → Y is fpqc and X is say
of finite type over k, it is not necessarily the case that Y also is, and vice versa. One
would like to define such properties on any presentation of the stack, but the fact that
one presentation has it will not imply that all presentations do.

About properties of morphisms, whenever we have a representable morphism X →
Y between fpqc stacks, we will say that it has some property (for example it is flat,
smooth, étale, of finite type, and such) if all base changes by schemes have said property,
as usual.

Example 2.2.22. Take the standard log point X = Spec(k). Then the infinite root stack is

X∞ ∼=
[
Spec(k[t

1
n | n ∈N]/(t))/µ∞

]
and, although the words do not mean anything precise, it is reasonable that it should be
considered as non-noetherian and hence not of finite type over k, since for example the
ideal (t

1
n )n∈N is not finitely generated.

The fact that the infinite root stack is not “noetherian” complicates the discussion of
coherent sheaves, since “finitely presented” and “coherent” become different concepts.
This issue would be absent if X∞ were at least coherent, meaning that OX∞ is a coherent
sheaf, i.e. every finitely generated ideal I ⊆ OX∞ is also finitely presented.

This is true in some cases, but false in general, as the following example shows.

Example 2.2.23. Consider the submonoid P ⊆ Z3 generated by e1 = (1, 0, 0), e2 =

(0, 1, 0), e3 = (0, 0, 1) and e4 = (1, 1,−1). The associated rational cone PQ ⊆ Q3 is
given by the inequalities

PQ = {(a1, a2, a3) ∈ Q3 | a1 ≥ 0, a2 ≥ 0, a1 + a3 ≥ 0, a2 + a3 ≥ 0}.
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Let us consider the spectrum X = Spec(k[P]) of the monoid algebra of P.
From what we discussed, the infinite root stack X∞ has a flat presentation U∞ → X∞

where U∞ = Spec(k[PQ]), and the natural way to prove that X∞ is coherent would be to
prove that U∞ is, but this is not the case.

Let us set R = k[PQ] and let xi = xei ∈ k[PQ] be the element corresponding to ei,
and consider the ideal I ⊆ R generated by x1 and x3. We will show that I is not finitely
presented, by showing that the kernel

K = {( f1, f3) ∈ R2 | x1 f1 + x3 f3 = 0}

of the presentation of I is not finitely generated.
To check this, we will show that its image J ⊆ R along the first projection R2 → R is

not finitely generated. Since J is a homogeneous ideal, it corresponds to an ideal A ⊆ PQ

(Definition 1.1.3), the set of degrees of non-zero elements in J.
Let us check that we can describe A as

A = {(a1, a2, a3) ∈ Q3 | a1 ≥ 0, a2 ≥ 0, a1 + a3 ≥ 0, a2 + a3 ≥ 1}.

In fact, if a ∈ A then there exist f1, f3 ∈ R such that x1 f1 + x3 f3 = 0, with f1 of degree
a. Note that necessarily f3 6= 0, and call b the degree of f3. Then we conclude that
a + e1 = b + e3, and consequently a− e3 + e1 is in PQ.

Conversely if a− e3 + e1 ∈ PQ and a ∈ PQ, we have that x1xa − x3xa−e3+e1 = 0 (where
as usual xp denotes the element of k[PQ] corresponding to p ∈ PQ), so a ∈ A. Finally, one
checks easily that a− e3 + e1 ∈ PQ and a ∈ PQ are equivalent to the inequalities above.

Now consider

A0 = {a = (a1, a2, a3) ∈ A | a1 = 0, a2 + a3 = 1}
= {(0, a2, a3) ∈ Q3 | a2 ≥ 0, a3 ≥ 0, a2 + a3 = 1}.

It is easy to check that a + b ∈ A0 implies a = 0 for a ∈ PQ and b ∈ A, and this says that
any set of generators of A as an ideal of PQ must contain a set of generators of A0, and
thus must be infinite. In conclusion the ideal J is not finitely generated.

The ideal I ⊆ k[PQ] descends to give an ideal sheaf I ⊆ OX∞ on X∞, and since finite
presentation is fpqc local, I is not finitely presented, and X∞ is not coherent.

Remark 2.2.24. Note that the monoid in the last example is not simplicial (meaning that
the rational cone it generates in Pgp ⊗Z Q is not simplicial). This is not a coincidence:
we will see that if the log structure has a simplicial global chart in this sense, then there
is a cofinal system of root stacks with flat transition maps and OX∞ is coherent. We will
return on this once we have discussed quasi-coherent sheaves on X∞ with some detail
(see Proposition 2.2.46).
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Note that the infinite root stack X∞ has some natural DF structures. We need to be
careful when we talk about sheaves of monoids, since X∞ is not algebraic. A sheaf of
monoids on X∞ for us will be a sheaf of monoids on a small étale site of X∞, with objects
isomorphism classes of étale representable morphisms A → X∞ and arrows classes of
morphisms over X∞, with coverings given by families of classes of jointly surjective étale
morphisms.

With this definition, X∞ has a DF structure Λn : π∗ 1
n A → DivX∞ for any n (where

π : X∞ → X is the projection), that consists of the pullback of the universal DF structure
of the finite root stack Xn, and moreover we have a universal DF structure Λ∞ : π∗AQ →
DivX∞ that extends all the Λn simultaneously.

Here, in analogy with the case of schemes and algebraic stacks, DivX∞ is the fibered
category, on the small étale site described above, consisting of invertible sheaves with
sections. We will define precisely quasi-coherent sheaves on X∞ shortly.

To conclude this section, we show that, as it happens with the intermediate root
stacks, the infinite root stack of X can be seen as the infinite root stack of any intermediate
root stack XB/A.

Proposition 2.2.25. Let X be a log scheme, and fix a system of denominators A → B. Then
XB/A is a log stack, with the tautological log structure given by the universal lifting Λ : BXB/A →
DivXB/A , and we can consider its infinite root stack (XB/A)∞. Then the natural map (XB/A)∞ →
X∞ induced by the projection XB/A → X is an isomorphism.

Proof. This follows immediately from the fact that the morphism A → B induces an
isomorphism AQ

∼= BQ (and likewise on any base change along T → X), and the log
structure on XB/A is given by the tautological DF structure Λ : BXB/A → DivXB/A .

With some more detail, we can define a morphism X∞ → (XB/A)∞ by sending an
object N : (AQ)T → DivT of X∞(T) to the induced (BQ)T → Div(T), together with the
morphism T → XB/A determined by the restriction of N to BT ⊆ (AQ)T.

One checks that this is a quasi inverse to the map (XB/A)∞ → X∞.

2.2.2 Sheaves on the infinite root stack

Let us give a definition of quasi-coherent sheaf on an arbitrary fibered category over
(Sch). Let us denote by QCoh the fibered category of quasi-coherent sheaves on (Sch).
In other words for a scheme T, the category QCoh(T) is the category of quasi-coherent
sheaves on T, and for a morphism S→ T we have the usual pullback functor QCoh(T)→
QCoh(S).

In what follows we will repeatedly use the fact that QCoh is a stack for the fpqc
topology of (Sch). For a proof of this see the first chapter of [FGI+07].
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Definition 2.2.26. Let X → (Sch) be a fibered category. A quasi-coherent sheaf on X is a
cartesian functor X → QCoh of fibered categories over (Sch).

Equivalently, a quasi-coherent sheaf on X assigns to every morphism φ : T → X of
fibered categories from a scheme T a quasi-coherent sheaf Eφ ∈ QCoh(T) on T, and for
any factorization

S
f //

ψ ��

T

φ
��
X

we have an isomorphism α f : f ∗Eφ
∼= Eψ of quasi-coherent sheaves on S. These are

required to satisfy some compatibility properties that we leave to the reader to spell out.
This definition applies in particular to the infinite root stack X∞ of a log scheme, and

gives us a notion of quasi-coherent sheaf. Let us introduce two equivalent notions, that
use the fact that X∞ is an fpqc stack.

Assume more generally that X is any fpqc stack over (Sch), and fix an fpqc presen-
tation U → X , with R = U ×X U where U is a scheme. Using the presentation we can
give the following definition for quasi-coherent sheaves on X .

Definition 2.2.27. A quasi-coherent sheaf (E, α) on X is a quasi-coherent sheaf E on U,
together with descent data with respect to the groupoid R ⇒ U → X , i.e. an isomor-
phism α : π∗1 E ∼= π∗2 E, where π1, π2 : R→ U are the two projections, satisfying the cocycle
condition on R ×X R ×X R. A morphism of quasi-coherent sheaves f : (E, α) → (F, β)

is a morphism f : E → F of quasi-coherent sheaves on U which is compatible with the
descent data.

We will write QCoh(X ) for the category of quasi-coherent sheaves on X . It is, as
usual, an abelian category, and it is independent of the chosen fpqc presentation for X .

Proposition 2.2.28. Let X → (Sch) be an fpqc stack and let us fix an fpqc presentation U → X .
Then the two notions we gave above for quasi-coherent sheaves on X agree.

Proof. This follows directly from the fact that quasi-coherent sheaves on schemes satisfy
fpqc descent.

Definition 2.2.29. A quasi-coherent sheaf (E, α) on X is finitely presented if the sheaf E is
finitely presented on U.

We will denote by FP(X ) the full subcategory consisting of finitely presented (E, α).
As the notation suggests, this full subcategory is also independent of the choice of the
fpqc presentation. This relies on the standard fact that if f : X → Y is fpqc and F ∈
QCoh(Y), then F is finitely presented if and only if f ∗F is.



64 CHAPTER 2. THE INFINITE ROOT STACK OF A LOGARITHMIC SCHEME

Remark 2.2.30. As we already mentioned, the fact that X∞ is not coherent makes finitely
presented sheaves, and not coherent ones, the right object for our purposes.

A third way of defining quasi-coherent sheaves is by defining a “small fpqc site” of
X , in analogy with the lisse-étale site of an Artin stack, and take quasi-coherent sheaves
on this site.

Definition 2.2.31. The small fpqc site fpqc(X ) of X has as objects isomorphism classes of
representable morphisms of stacks A → X , morphisms are commutative diagrams and
coverings are families {Ai → A}i∈I of classes of jointly surjective fpqc morphisms. We
will denote by Xfpqc the corresponding topos of sheaves.

Remark 2.2.32. The point of taking isomorphism classes of maps is that we want to get
a 1-category. Representable maps into X form a 2-category, but this is equivalent to the
1-category that we get by taking isomorphism classes. From now on for simplicity and to
avoid making notations more complicated we will pretend that the objects of the site are
actual morphisms to X∞ (and this will also happen with the fppf and étale variations).

Let us show that this last concept of quasi-coherent sheaf is the same as the one that
uses an fpqc presentation.

Proposition 2.2.33. There is an equivalence of categories between the category QCoh(Xfpqc) of
quasi-coherent sheaves on the small fpqc topos of X and the category QCoh(X ) of quasi-coherent
sheaves defined using an fpqc presentation.

Moreover, this equivalence restricts to an equivalence FP(Xfpqc) ∼= FP(X ) between the sub-
categories of finitely presented sheaves.

Proof. Let us introduce a smaller fpqc topos for X : we will denote by fpqcsch(X ) the
subcategory of fpqc(X ) of objects V → X of fpqc(X ) where V is a scheme. It is a
site with the induced topology. The inclusion fpqcsch(X ) → fpqc(X ) is a morphism of
sites, and by descent for quasi-coherent sheaves it induces an equivalence of categories
QCoh(Xfpqcsch)→ QCoh(Xfpqc).

Now let us show that there is an equivalence QCoh(Xfpqcsch) ∼= QCoh(X ): we have
a functor QCoh(Xfpqcsch) → QCoh(X ) that sends a quasi-coherent sheaf on the topos
Xfpqcsch to its restriction to an fpqc presentation U → X , together with the associated
descent data. By descent of quasi-coherent sheaves along fpqc morphisms, this functor
is an equivalence.

Finally, finitely presented sheaves are clearly preserved in each of the two steps.

Note that the small fpqc topos has some functoriality properties. Namely, if f : X →
Y is a representable morphism of fpqc stacks, there are the usual pushforward and
pullback functors f∗ : Xfpqc → Yfpqc and f ∗ : Yfpqc → Xfpqc, together with an adjunction
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f ∗ a f∗. Moreover f ∗ is right exact, so it preserves quasi-coherence, finite generation and
presentation. We will still denote its restriction by f ∗ : QCoh(Yfpqc)→ QCoh(Xfpqc).

Remark 2.2.34. If X is a scheme, then quasi-coherent sheaves in the small fpqc topos
are the same as Zariski quasi-coherent sheaves (and, in fact, the same is true for all
“intermediate” topologies, for example the étale topology). For this we refer to [Sta13,
Tag 03DR].

Now we specialize the situation back to the infinite root stack of a log scheme X. The
fact that X∞ is an inverse limit implies that every finitely presented sheaf on it comes
from some finite level.

Proposition 2.2.35. Let X be a fs log scheme. The pullback morphisms FP(Xn) → FP(Xm) for
n, m with n | m fit into a direct system of categories. Moreover the pullbacks FP(Xn)→ FP(X∞)

along the projection X∞ → Xn are compatible with the structure maps of the system, and if in
addition X is quasi-compact the induced functor lim−→ FP(Xn)→ FP(X∞) is an equivalence.

This follows directly from the following lemma.

Lemma 2.2.36. Consider the presentations Un → Xn and U∞ → X∞ discussed in Section 2.2.1.
Then we have an equivalence

FPeq(U∞) = lim−→
n

FPeq(Un),

where (−)eq denotes the category of equivariant sheaves with respect to the corresponding groupoid.

Proof. We will use the approximation properties of finitely presented sheaves on an in-
verse limit, as discussed in EGA IV-3 [Gro67], Section 8. Namely we will use that if
{Ti}i∈I is an inverse system of schemes with affine transition maps and quasi-compact
and quasi-separated base scheme T0, we have

FP(lim←−
i

Ti) = lim−→
i

FP(Ti),

i.e. finitely presented sheaves on the limit come from a scheme Ti, “uniquely”, meaning
that two such sheaves on Ti and Tj become isomorphic on some Tk, and likewise for
morphisms.

First of all from U∞ = lim←−n
Un we have that FP(U∞) = lim−→n

FP(Un), and secondly,
since

U∞ ×X∞ U∞ ∼= lim←−
n
(Un ×Xn Un)

and
U∞ ×X∞ U∞ ×X∞ U∞ ∼= lim←−

n
(Un ×Xn Un ×Xn Un),
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we also have identifications

FP(U∞ ×X∞ U∞) = lim−→
n

FP(Un ×Xn Un)

and
FP(U∞ ×X∞ U∞ ×X∞ U∞) = lim−→

n
FP(Un ×Xn Un ×Xn Un).

From this it is easy to see that descent data at the infinite level must come, uniquely,
from finite level.

Remark 2.2.37. This also holds if we use the subsystem
{

A→ 1
n A′

}
n∈N

for some fixed
system of denominators A → A′, or any cofinal subset of the set of systems of denomi-
nators on X.

There is another natural site over X∞, obtained by using fppf morphisms instead of
fpqc ones, that will be related to the Kummer-flat site of the log scheme X later in this
chapter (Section 2.4). We will prove here that finitely presented sheaves on this new site
are the same as finitely presented fpqc sheaves.

Again, we give the definition for a general fpqc stack X .

Definition 2.2.38. The small fppf site fppf(X ) of X is the site defined as follows: objects are
isomorphism classes of representable fppf morphisms of stacks A → X , the morphisms
are classes of morphisms of stacks A → B over X , and the covers are collections of
classes of jointly surjective representable fppf morphisms. The associated fppf topos will
be denoted by Xfppf.

Note that this time X may have no fppf morphism from a scheme, so this topos is
subtler than the small fpqc topos.

Since any representable fppf morphism A → X is also fpqc, we have an inclu-
sion functor i : fppf(X ) → fpqc(X ), which is continuous and induces a morphism of
topoi (i∗, i∗) : Xfpqc → Xfppf. Moreover, if f : X → Y is a representable morphism of
fpqc stacks, then we have pushforward and pullback functors f∗ : Xfppf → Yfppf and
f ∗ : Yfppf → Xfppf, together with an adjunction f ∗ a f∗.

Remark 2.2.39. Additionally, pullback on quasi-coherent sheaves is compatible with the
morphism (i∗, i∗), i.e. the following diagram is 2-commutative

QCoh(Yfppf)
i∗ //

f ∗

��

QCoh(Yfpqc)

f ∗

��
QCoh(Xfppf)

i∗ // QCoh(Xfpqc)

where we used the same letter i∗ for X and Y .
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In general there is no reason for (i∗, i∗) this to be an isomorphism, even if we restrict
to quasi-coherent sheaves. Nonetheless, we can say something if we restrict to finitely
presented sheaves on an infinite root stack X∞.

Proposition 2.2.40. The morphism of topoi (i∗, i∗) induces an equivalence

FP((X∞)fppf) ∼= FP(X∞).

Remark 2.2.41. As we will see in the proof, here it is crucial to use the inverse system
defining X∞. Also, we believe that this equivalence can not be extended to quasi-coherent
sheaves without any finiteness hypothesis, and in fact we believe that quasi-coherent
sheaves in the two topoi should be different.

The philosophical reason is that when one proves that Zariski quasi-coherent sheaves
are a stack for the fpqc topology (and from this follows that quasi-coherent sheaves are
the same in all topologies), one defines quasi-coherence on the same topology for which
the objects are locally rings (i.e. the Zariski topology), when in our case we have fppf
sheaves on an object that is only fpqc-locally a ring.

Remark 2.2.42. While the fact that i∗ preserves finitely presented sheaves is standard,
the corresponding fact for i∗ is not obvious, and will follow from the proof.

Proof. We start by giving an alternative description of the two functors i∗ and i∗: let
us define α : FP((X∞)fppf) → FP(X∞), and β : FP(X∞) → FP((X∞)fppf). Let us fix a
presentation φ : U∞ = lim←−n

Un → X∞ coming from flat presentations of the finite root
stacks (as in the discussion preceding Proposition 2.2.14) for X∞, and recall that FP(X∞)

is by definition the category FPeq(U∞) of finitely presented sheaves over U∞, equivariant
with respect to the groupoid R = U∞ ×X∞ U∞ ⇒ U∞. For the rest of the proof we will
denote U∞ just by U, to ease the notation.

Given a finitely presented sheaf F ∈ FP((X∞)fppf), we consider the pullback φ∗F ∈
FP(Ufppf) = FP(U). This sheaf comes naturally equipped with descent data with respect
to the groupoid R ⇒ U, and this gives an object α(F) ∈ FPeq(U).

Conversely, let us assume that G ∈ FPeq(U), and that f : A → X∞ is an object of
(X∞)fppf. We consider the pullback RA ⇒ UA → A of the groupoid R ⇒ U, and the
pullback GA of G to UA, together with the pullback of the descent data. This gives an
object GA of FPeq(UA), and we define

β(G)(A) = Homeq(OUA , GA).

Let us check that β(G) is a sheaf on (X∞)fppf. This follows from descent of quasi-
coherent sheaves on schemes: given a fppf morphism A → B in (X∞)fppf, we have to
check that β(G)(B) is the equalizer of the two pullback maps β(G)(A) ⇒ β(G)(A×B A)
(it is clear that β(G) carries disjoint unions into products).
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By following the construction of β, we pull back the presentation U from X∞, obtain-
ing the following diagram

UA×BA

kU

��////

��

UA //

��

hU

##
UB

��

gU //U

��
A×B A ////A //B //X∞

and what we have to prove is that Homeq(OUB , g∗UG) is the equalizer of the two maps

Homeq(OUA , h∗UG) ⇒ Homeq(OUA×BA
, k∗UG),

This is true by descent properties of quasi-coherent sheaves on schemes, and the fact that
UA → UB is fppf.

Now let us check that β(G) is finitely presented, and that α ◦ β ∼= id. We will use
the fact that FPeq(U) = lim−→n

FPeq(Un) (see Proposition 2.2.36). This gives us a finitely
presented equivariant sheaf on some Un, whose pullback on U is G. We also consider
the fpqc stack Yn defined by the cartesian square in the diagram

U
π

  $$

φ

��

Yn //

h
��

Un

��
X∞ // Xn.

The fpqc stack Yn together with the morphism h is an object of fppf(X∞), and on it we
have a finitely presented (fpqc) sheaf Gn (pulled back from Un) with an isomorphism
π∗Gn ∼= G.

(Moreover, U = lim←−n
Yn. This is easy to see functorially, since (locally on X) Yn

parametrizes extensions of the DF structure together with a Kato chart, and U parametrizes
extensions to PQ together with a Kato chart, and a collection of compatible Kato charts
at finite levels is the same as a Kato chart for PQ.)

To see that α ◦ β ∼= id, note that α(β(G)) = φ∗(β(G)) = π∗h∗(β(G)) for G ∈ FPeq(U),
so it is enough to show that h∗(β(G)) ∼= Gn as a sheaf on the fppf site of Yn (note that
since h is fppf, h∗ is just a restriction). This will also show that β(G) is finitely presented
in (X∞)fppf, since Yn → X∞ is an fppf morphism and Gn is finitely presented on Yn.
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To check this, note that there is a natural map a : Gn → h∗(β(G)), defined as follows:
for j : V → Yn in fppf(Yn), and the usual diagram

UV //

��

UYn

��
V // Yn

we set
a(V) : Gn(V)→ h∗(β(G))(V) = Homeq(OUV , p∗Gn)

where p : UV → Yn is the composition UV → UYn → Yn, as the natural map sending a
section of Gn over V , seen as a morphism OV → Gn|V , to its pullback along UV → V .
The fact that this map is a bijection follows from the fact that Gn is an fpqc sheaf on Yn,
and UV → V is fpqc.

Finally, the fact that β ◦ α ∼= id follows from the following lemma.

Lemma 2.2.43. We have natural isomorphisms α ∼= i∗ : FP((X∞)fppf) → FP(X∞) and β ∼=
i∗ : FP(X∞)→ FP((X∞)fppf).

Proof of lemma. Note that we implicitly use the equivalence FP(X∞) ∼= FP((X∞)fpqc) of
proposition 2.2.33 restricted to finitely presented sheaves. Let us first consider β: if
G ∈ FPeq(U) corresponds to G̃ ∈ FP(X∞) and f : A → X∞ is fppf, then by descent for
fpqc sheaves with respect to the fpqc groupoid RA ⇒ UA → A, we have β(G)(A) =

G̃(A) = i∗
(

G̃
)
(A), and this gives β ∼= i∗.

As for α, let us show first that we have a morphism a : i∗ → α: given F ∈ FP((X∞)fppf),
we have i∗F(A) = lim−→ F(B) where the limit runs through the diagrams

A //

!!

B

~~
X∞

and B → X∞ is fppf. Now for a fixed B, we have a map F(B)→ α(F)(A) given by pull-
back Hom(OB , F|B) → Homeq(OUB , (φ∗F)|UB ) → Homeq(OUA , (φ∗F)|UA) = α(F)(A),
where the last equality follows from fpqc descent. These maps are compatible with
restrictions, and thus induce a map i∗F(A)→ α(F)(A), and this gives the natural trans-
formation a.

Now consider the pullback φ∗(i∗F) → φ∗(α(F)) to U of the morphism a(F) just
defined. By compatibility of the pullback with the morphisms of topoi, φ∗(i∗F) is just
φ∗F, and on the other hand φ∗(α(F)) is by definition φ∗F. After these identifications
the morphism φ∗(a(F)) is the identity, and since i∗F and α(F) are fpqc sheaves and
φ : U → X∞ is fpqc, this implies that a(F) is an isomorphism.
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Now i∗ ◦ i∗ ∼= id is an easy check since i∗ is a restriction, and this concludes the
proof.

The following gives a projection formula (as in Proposition 1.2.35) for the infinite root
stack.

Proposition 2.2.44 (Projection formula for the infinite root stack). Let X be a fine saturated
log scheme, A ⊆ B a system of denominators with B saturated, and denote by π : X∞ → XB/A
be the canonical projection. Then:

• π∗ : QCoh(X∞)→ QCoh(XB/A) is exact,

• OXB/A
∼= π∗OX∞ ,

• if F ∈ QCoh(XB/A) and G ∈ QCoh(X∞) we have a functorial isomorphism F⊗ π∗G ∼=
π∗(π∗F⊗ G),

• consequently for F ∈ QCoh(XB/A) we have an isomorphism F ∼= π∗π∗F on XB/A.

Proof. The last bullet is consequence of the second and third.
Recall (Proposition 2.2.25) that the projection XB/A → X induces an isomorphism

(XB/A)∞ → X∞. Consequently, if T → XB/A is a morphism from a scheme, then the
following diagram is cartesian

T∞

��

// X∞

��
T // XB/A

where T has the pullback log structure, from BXB/A → DivXB/A .
After noting that we have maps OXB/A → π∗OX∞ and F ⊗ π∗G → π∗(π∗F ⊗ G), by

flat base change we can reduce to proving the same statements for πT : T∞ → T. After
further étale shrinking on T we can assume that T is affine and that we have a chart
P→ Div(T) for the log structure induced by a Kato chart.

By Proposition 2.2.14 we have an isomorphism T∞ = [U∞/G∞], where as usual U∞ =

T×Spec(k[P]) Spec(k[PQ]) and G∞ = D[C∞] is the diagonalizable group Cartier dual of the
cokernel C∞ of Pgp → Pgp

Q
.

Let us prove first that OT → (πT)∗OT∞ is an isomorphism. Clearly it is sufficient to
prove that OT(T) → OT∞(T∞) is a bijection, for then the same reasoning will apply to
an étale morphism S → T. This map coincides with the natural map Hom(T, A1) →
Hom(T∞, A1) given by composition. Now note that, since T∞ = lim←−n

Tn, we have a
natural function

lim−→
n

Hom(Tn, A1)→ Hom(T∞, A1)
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which is moreover a bijection. This follows from the fact that morphisms Tn → A1 are
precisely morphisms Un → A1 that are Gn-invariant (where we are using the notation
of Section 2.2.1), and the same holds for T∞. Furthermore U∞ = lim←−n

Un, G∞ = lim←−n
Gn

and A1 is finitely presented over k, so lim−→n
Homeq(Un, A1) = Homeq(U∞, A1). Finally

we have Hom(Tn, A1) = Hom(T, A1) since T is the coarse moduli space of Tn.
For the first and third bullets it suffices to note that T∞ is a quotient stack of an affine

scheme by a diagonalizable group and in this situation pushforward corresponds to
taking invariants. By the discussion in SGA3 [ABD+66], in particular Expose I Théorème
5.3.3, taking invariants is exact, and proposition 4.5 of [Alp12] implies our thesis.

As a consequence, we see that X is a coarse moduli space of X∞, at least with respect
to maps to schemes.

Corollary 2.2.45. Let X be a fs log scheme. The morphism X∞ → X has the following property:
for any map X∞ → T to a scheme T, there exists a unique factorization X∞ → X → T.

Proof. Observe first of all that the morphism π : X∞ → X is a homeomorphism. This
follows from the fact that all projections from finite root stacks Xn → X are homeomor-
phisms, since they are coarse moduli spaces by 1.2.32.

Now if T is affine, the conclusion is immediate from the fact that π∗OX∞
∼= OX. The

general case follows from this by covering T with affines Ti and considering the inverse
images Xi ⊆ X∞, which will come from unique open subschemes Xi ⊆ X.

To conclude this section, let us prove what we anticipated in Remark 2.2.24 about
coherence of the infinite root stack. This is the analogue of Proposition 3.3 of [Niz08].

Proposition 2.2.46. Let X be a fine and saturated log scheme with a global chart P→ Div(X).
Assume that there is a cofinal system P ⊆ Qi ⊆ PQ of Kummer extensions such that the transition
maps XQj/P → XQi/P are flat for every j ≥ i. Then the infinite root stack X∞ is coherent.

Proof. We have an inverse system of flat presentations {Ui}i∈I of Xi = XQi/P, such that
the transition maps are affine and flat, and the inverse limit U∞ = lim←−i

Ui is an fpqc
presentation of X∞. This implies that for any i the projection πi : X∞ → Xi is flat.
Moreover by cofinality of the subsystem {Qi}i∈I we have FP(X∞) ∼= lim−→i

FP(Xi).
Take a finitely generated sheaf of ideals I ⊆ OX∞ , and call Q the cokernel, so we have

an exact sequence

0 // I // OX∞

p // Q // 0.

The sheaf Q on X∞ is finitely presented, so by the analogue of Lemma 2.2.36 it comes
from some Qi ∈ FP(Xi), and moreover we have a morphism pi : OXi → Qi that pulls
back to p. If we denote by Ii the kernel of pi, a finitely presented sheaf on Xi, by flatness
of πi we have that I ∼= π∗i Ii, and from this follows that I is finitely presented.
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2.2.3 Parabolic sheaves with rational weights

In this section we extend the BV equivalence to parabolic sheaves with arbitrary rational
weights. The definitions and results are immediate generalizations of the ones of [BV12]
that we recalled in Chapter 1 for finite root stacks (corresponding to “coherent” systems
of denominators). We spell them out anyway for the convenience of the reader.

Let us fix a log scheme X with DF structure L : A→ DivX. Assume first that there is
a global chart P→ DivX.

As we already noted in Chapter 1, recall that L : P → Div(X) extends to Lwt : Pwt →
Pic(X). For p ∈ Pgp, we will denote Lwt(p) just by Lp.

Definition 2.2.47. A parabolic sheaf (E, ρE) with rational weights on the log scheme X is
a functor E : Pwt

Q → QCoh(X) that we denote by a 7→ Ea, for a an object or an arrow
of Pwt

Q , with an additional datum for any p ∈ Pgp and a ∈ Pgp
Q

of an isomorphism of
OX-modules

ρE
p,a : Ep+a ∼= Lp ⊗ Ea

called the pseudo-periods isomorphism.
These isomorphism are required to satisfy some compatibility conditions. Let p, p′ ∈

Pgp, r ∈ P, q ∈ PQ and a ∈ Pgp
Q

. Then the following diagrams are commutative

Ea
Er //

��

Er+a

ρE
r,a
��

OX ⊗ Ea
σr⊗id // Lr ⊗ Ea

Ep+a
ρE

p,a //

Eq

��

Lp ⊗ Ea

id⊗Eq

��
Ep+q+a

ρE
p,q+a // Lp ⊗ Eq+a

Ep+p′+a

ρE
p+p′ ,a //

ρE
p,p′+a

��

Lp+p′ ⊗ Ea

µp,p′⊗id
��

Lp ⊗ Ep′+a

id⊗ρE
p′ ,a // Lp ⊗ Lp′ ⊗ Ea,

where µp,p′ : Lp+p′
∼= Lp ⊗ Lp′ is the natural isomorphism given by L, and the composite

Ea = E0+a
ρE

0,a // L0 ⊗ Ea ∼= OX ⊗ Ea

coincides with the natural isomorphism Ea ∼= OX ⊗ Ea.
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A morphism of parabolic sheaves with rational weights is a natural transformation
compatible with the pseudo-periods isomorphism.

As in the case of parabolic sheaves with fixed weights, the definition extends to
the general case (without a global chart), where one requires the commutativity of the
diagrams and compatibility of ρE with pullback. One shows that in the presence of a
global chart, the corresponding categories are equivalent (the analogous of Proposition
5.10 of [BV12].

This gives an abelian category Par(X) of parabolic sheaves with rational weights on
X, with a tensor product and internal Homs.

Recall that on the infinite root stack X∞ we have a universal DF structure L∞ : π∗AQ →
DivX∞ , and by restriction to π∗ 1

n A ⊆ π∗AQ, for every n we get a DF structure Ln : π∗ 1
n A→

DivX∞ ,
The following is an analogue of Theorem 6.1 in [BV12], and has the same exact proof,

by using the natural DF structure of X∞.

Proposition 2.2.48. There is a tensor equivalence of abelian categories Par(X) ∼= QCoh(X∞).

Proof. See the proof of Theorem 6.1 in [BV12], or the sketch of proof in 1.3.8.

Proposition 2.2.49. Let X be a log scheme with DF structure L : A→ DivX, and j : A→ B be
a system of denominators. Then pullback along π : X∞ → XB/A is fully faithful.

Proof. This is proved as the corresponding statement in the case of finite root stacks. We
refer to the discussion in Section 1.3.

As for the case of finite root stacks, alternatively this follows from Proposition 2.2.44,
which proves that the unit of the adjunction π∗ a π∗ is an isomorphism, so π∗ is fully
faithful.

This says that parabolic sheaves with respect to some system of denominators can be
seen inside the category of parabolic sheaves with arbitrary rational weights.

Example 2.2.50. Let us see how this happens in a simple case: assume that X is a scheme
and D ⊆ X is an effective Cartier divisor, and consider the log structure given by N →
Div(X) sending 1 to (OX(D), s). Then a parabolic sheaf E on X2 = X 1

2 N/N is determined
by three sheaves and two maps

−1 − 1
2 0

E⊗OX(−D) // E1 // E.
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A parabolic sheaf on X∞ is determined by a sheaf E corresponding to 0 (and in −1 there
will still be E ⊗ OX(−D)), but this time we have a sheaf Eq for any rational number
q ∈ (−1, 0), and an arrow Eq → Eq′ every time that q ≤ q′, and those will be compatible
with compositions.

If we follow the recipe for the pullback along π : X∞ → X2, it is easy to see that the
pullback of the parabolic sheaf E will have

(π∗E)0 = E

(π∗E)q = E⊗OX(−D) for − 1 ≤ q < −1
2

(π∗E)q = E1 for − 1
2
≤ q < 1

and the morphisms that are not the identity are given by the maps of E.
This situation is particularly simple because for any given rational q ∈ (−1, 0), the

set {q′ ∈ 1
2 Z | q′ ≤ q} has a maximum, and the direct limit in the construction of the

pullback is trivial. In the case of more complicated log structures one would need to take
more complicated colimits.

Note that it is clear from this description that Hom(π∗E, π∗E) = Hom(E, E), and also
that we have π∗π∗E ∼= E, from the description of the pushforward.

In conclusion the infinite root stack allows us to interpret parabolic sheaves with
arbitrary rational weights as quasi-coherent sheaves.

Remark 2.2.51. There are definition of parabolic sheaves with arbitrary rational weights
in the literature (for example in [Bor09]), but as far as we know they all assume that the
parabolic sheaf is completely determined by a finite set of rational numbers (as in the
example above), and in our definition this might not happen.

In fact in some situations (for example on a variety with a simple normal crossings
divisor) the sheaves that are determined by a finite number of (finitely presented) pieces
and with a “semicontinuity from the left” are exactly the ones that are finitely presented,
and they come from a finitely presented sheaf on some finite root stack Xn.

2.3 The infinite root stack determines the log scheme

In the last two sections of this chapter we will consider the following question:

Question 2.3.1. what can we deduce about the fs log scheme X from its infinite root
stack X∞?
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In the present section we will describe a reconstruction procedure that gives back the
log structure of X in terms of the infinite root stack X∞, and we will apply this to show
that two log schemes X and Y having isomorphic infinite root stacks must be isomorphic
themselves. As an application we will also give conditions for a morphism between two
infinite root stacks X∞ → Y∞ to come from a morphism of log schemes X → Y. In
the next section (2.4) we will show that the Kummer-flat topos of a log scheme can be
identified with the fppf topos of its infinite root stack.

To investigate these questions it is natural to consider the “infinite root stack” functor
(−)∞ : (FSLogSch) → (St) that associates to an fs log scheme X its infinite root stack.
A natural way to show that log schemes with isomorphic infinite root stacks must be
isomorphic would be to show that this functor is fully faithful. Although we will show
that it is faithful, it is not true that it is full.

Example 2.3.2. Consider the standard log point X = Spec(k) with k algebraically closed
and DF structure L : N→ k sending 1 to 0. Then it is easy to see that the only morphisms
X → X of log schemes are given by monoid endomorphisms of N, i.e. multiplication by
some n ∈N.

Moreover, we saw in Example 2.2.15 that the infinite root stack can be described as
the quotient

X∞ ∼=
[
Spec(k[t

1
n | n ∈N/(t))/µ∞

]
.

This is of course highly non-reduced, and its reduction (X∞)red ⊆ X∞ is the quotient
[Spec(k)/µ∞] = Bµ∞. It is clear that the morphism X → X corresponding to multiplica-
tion by n from N to itself induces the morphism X∞ → X∞ corresponding to t

1
m 7→ t

n
m .

Note that this kills all the t
1
k with k ≤ n (since t = 0), but the ones with k > n are not

killed.
Now note that the inclusion k ⊆ k[t

1
n | n ∈ N] induces a morphism X∞ → (X∞)red

and the composition X∞ → (X∞)red ⊆ X∞ does not come from a morphism X → X,
since all t

1
n are killed.

We give a name to morphisms of root stacks coming from a morphism between the
log schemes.

Definition 2.3.3. Let X and Y be fs log schemes. We say that a morphism φ : X∞ → Y∞ is
logarithmic if there exists a morphism of log schemes f : X → Y such that φ ∼= f∞ : X∞ →
Y∞.

The morphism constructed in the example above is not logarithmic. We will give
a characterization of logarithmic morphisms (Proposition 2.3.20), which will generalize
in some sense Example 2.3.2. This characterization will imply in particular that iso-
morphisms X∞ ∼= Y∞ do come from morphisms X → Y (that have to be isomorphisms
themselves).



76 CHAPTER 2. THE INFINITE ROOT STACK OF A LOGARITHMIC SCHEME

2.3.1 Recovering the log structure

We will now describe the reconstruction process that will let us recover the log structure
from the infinite root stack. From now on for a while we will focus on DF structures on a
single scheme X. Because of this, in the discussion that follows we will use the notation

∞√
(A, L) for the infinite root stack of the log scheme X with DF structure L : A→ DivX.
Let us first give an abstract definition of an “infinite root stack” over X.

Definition 2.3.4. An infinite root stack over a scheme X is a stack X on Xét with a mor-
phism X → X, that étale locally on X is the infinite root stack of some fs DF structure.

More precisely, there is an étale covering {Ui → X}i∈I and fs monoids {Pi}i∈I with
morphisms Ui → Spec(k[Pi]) and an isomorphism

X ×X Ui
∼= (Spec(k[P]))∞ ×X Ui

over Ui.

An infinite root stack over X is an fpqc stack, in the sense of Definition 2.2.20. Of
course, if (A, L) is a DF structure on X, then ∞√

(A, L) is an infinite root stack on X.
Moreover, we will show that every infinite root stack is of this form (Theorem 2.3.11).

Let us explain how to construct a DF structure on X, starting from an infinite root
stack X → X.

If X is an infinite root stack over X, we will use the notation DivXét for the symmetric
monoidal fibered category over Xét whose objects over U → X are the objects of Div(XU),
where XU denotes the fibered product X ×X U.

Definition 2.3.5. Let π : X → X be an infinite root stack. Consider the symmetric
monoidal fibered category AX → Xét defined as follows. For each étale map U → X, the
objects of AX (U) are of the form (Λ, Λn, φ, αm,n), where:

(a) Λ is an object of Div(U).

(b) For each positive integer n, Λn is an object of Div(XU).

(c) φ : Λ1
∼= π∗Λ is an isomorphism in Div(XU).

(d) For each m | n, αm,n : Λ⊗(n/m)
n

∼= Λm is an isomorphism in Div(XU).

(e) Suppose that p is a point of X; denote by Xp the fiber of X over p. If n is sufficiently
divisible and Λn = (Ln, sn), then the restriction of sn to Xp is nonzero.

We require the isomorphisms αm,n to be subject to the following compatibility condi-
tions.
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(i) αn,n = idΛn for any n.

(ii) if m | n and n | p, then

αm,p = α
⊗(p/n)
m,n ◦ αn,p : Λ⊗(p/n)

p
∼= Λm.

The arrows (Λ, Λn, φ, αm,n) → (Λ′, Λ′n, φ′, α′m,n) are given by isomorphisms Λ ∼= Λ′

and Λn ∼= Λ′n compatible with the φ’s and the αm,n’s. The fibered structure is obtained
from the evident pseudo-functor structure.

We call the objects of AX (U) infinite roots.

We will see that this fibered category gives a DF structure on X, and that if we started
from an infinite root stack of a DF structure, we get back the original DF structure. In
the rest of this section we sketch how the proof works. Some of the following statement
will be proved later, after we discussed the notion of an infinite root in a monoid.

Lemma 2.3.6. (Λ, Λn, φ, αm,n) and (Λ′, Λ′n, φ′, α′m,n) be infinite roots in an infinite root stack
X . Then the tensor product

(Λ⊗Λ′, Λn ⊗Λ′n, φ⊗ φ′, αm,n ⊗ α′m,n)

is also an infinite root.

Proof. Here this essential point is to show that if we set Λn = (Ln, sn) and Λ′n = (L′n, s′n),
then the restriction of sn ⊗ s′n to any geometric fiber is nonzero for sufficiently divisible
n. This follows from the second statement in Lemma 2.3.18 below.

This gives AX a symmetric monoidal structure by tensor product.

Proposition 2.3.7. Let X → X be an infinite root stack. Then the symmetric monoidal category
AX is fibered in equivalence relations.

Hence by dividing by isomorphism we obtain a sheaf of monoids on Xét, call it
AX : Xét → (CommMon), and the projection AX → AX is an equivalence. By choosing a
symmetric monoidal quasi-inverse AX → AX and composing with the obvious symmet-
ric monoidal functor AX → DivX that sends (Λ, Λn, φ, αm,n) to Λ, we obtain a symmetric
monoidal functor LX : AX → DivX, unique up to a unique isomorphism.

Proposition 2.3.8. The sheaf AX is fine saturated.

Proof. Since being fine saturated is a local condition in the étale topology, and étale-
locally X comes from a fine saturated DF structure, this follows from Proposition 2.3.9
below.
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Hence, from an infinite root stack X → X we obtain a fine saturated DF structure
(AX , LX ).

Now suppose that (A, L) is a DF structure on X, and X =
∞√
(A, L). Recall moreover

that there exist a symmetric monoidal functor L̃ : AQ → DivXét , and an isomorphism of
symmetric monoidal functors between the restriction of L̃ to A, and the composite of L
with the pullback DivX → DivXét . We will describe how to get a morphism A → AX of
symmetric monoidal categories on Xét.

Let U → X be an étale map, and a ∈ A(U). Then we obtain an object L(a) of Div(U).
Furthermore, for each positive integer n we also obtain an object L̃(a/n) ∈ Div(XU).
The fact that the functor is symmetric monoidal gives, for each m | n, isomorphisms
αm,n : L̃(a/n)⊗(n/m) ∼= L̃(a/m) in Div(XU). Furthermore, the isomorphism between the
restriction of L to A, and the composite of L with the pullback Div(U) → Div(XU)

yields an isomorphism φ : Λ1 = L̃(a) ∼= L(a). This gives a symmetric monoidal functor
A→ AX ; by definition, the composite of A→ AX with AX → DivX is precisely L.

Proposition 2.3.9. Suppose that (A, L) is a fine saturated DF structure on X, and set X =
∞√
(A, L). Then the composite A→ AX → AX is an isomorphism.

Corollary 2.3.10. The DF structures (A, L) and (AX , LX ) are isomorphic.

Now conversely, let us show how to compare the infinite root stack ∞√
(AX , LX ) of

the DF structure (AX , LX ) with X itself.
Given an infinite root stack X , let us produce a functor X → ∞√

(AX , LX ). Let
f : T → X be a morphism; we need to construct a morphism T → ∞√

(A, L), that is,
an extension ( f ∗A)Q → Div(T) of the DF structure f ∗L : f ∗A → DivT. Call f−1A the
pullback presheaf on Tét; its sections on an étale map V → T are colimits lim−→ A(U),
where the colimit is taken over all factorizations V → U → X, with U → X étale,
of the composite V → T → X → X. The sheafification of the presheaf BT on Tét

sending V to ( f−1A)(V) ⊗ Q is the sheaf ( f ∗A)Q; by [BV12, Proposition 3.3], every
symmetric monoidal functor BT extends uniquely to a symmetric monoidal functor
( f ∗A)Q → Div(T).

Consider the filtered category IV defines as follows. The objects are pairs (m, V →
U → X), where m is a positive integer and V → U → X is a factorization of the
composite V → T → X → X, with U → X étale. An arrow φ : (m, V → U → X) →
(n, V → U′ → X) exists only when m | n, in which case it consists of a morphism
φ : U → U′ such that the diagram

U

V X

U′

φ
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commutes. Composition is the obvious one.
There is a lax 2-functor from Iop

V into the 2-category of symmetric monoidal cate-
gories, sending each (m, V → U → X) into AX (U), and each morphism φ : (m, V →
U → X) → (n, V → U′ → X) into the composite of the pullback φ∗ : AX (U′) → AX (U)

with the functor AX (U) → AX (U) given by raising to the (n/m)th power. We have a
canonical equivalence of symmetric monoidal categories between lim−→IV

AX (U) and the
monoid BT(V).

There is also a symmetric monoidal functor lim−→IV
AX (U) → Div(V) that sends an

object (Λ, Λn, φ, αm,n
)

over (m, V → U → X) to h∗Λm, where h : V → XU is the mor-
phism induced by V → U and the composite V → T → X . By composing this
with a quasi-inverse of the equivalence lim−→IV

AX (U) → BT(V) we obtain a symmet-
ric monoidal functor BT(V) → Div(V). This induces the desired symmetric monoidal
functor BT → Div(T).

Theorem 2.3.11. The resulting functor X → ∞√
(AX , LX ) is an equivalence.

Proof. The statement is local in the étale topology on X, so we may assume that X =
∞√
(A, L) for a DF structure L : A → DivX. In this case the result follows immediately

from Proposition 2.3.9.

To prove these facts we need to study the corresponding notion of an infinite root for
a monoid P.

2.3.2 Infinite quotients in sharp fine saturated monoids

Let P be a sharp fine saturated monoid, and assume that Pgp has rank r. In other words
we have Pgp ∼= Zr, and consequently Pgp

Q
∼= Qr. Moreover Pgp

Q
/Pgp = Pgp ⊗ (Q/Z)

is isomorphic to (Q/Z)r. We consider Pgp
Q

as a topological space via the usual metric
topology on Qr.

Set
qP = lim←−

n
(Pgp

Q
/Pgp)[n] = Pgp ⊗ Ẑ ∼= Ẑr,

where the square brackets denote the n-torsion, the map (Pgp
Q

/Pgp)[n] → (Pgp
Q

/Pgp)[m]

for m | n is given by multiplication by n/m, and by Ẑ we denote the profinite completion
of Z. An element of qP consists of a collection {λn} of elements of Pgp

Q
/Pgp such that

λ1 = 0, and (n/m)λn = λm whenever m | n.
Set

∆P = PQ \ (P+ + PQ) ,
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where recall that P+ = P \ {0}. Since ∆P is the complement of an ideal in PQ, it has the
property that if γ, δ ∈ PQ and γ+ δ ∈ ∆P, then γ and δ are in ∆P. Hence, if n is a positive
integer, γ ∈ Pgp

Q
, and nγ ∈ ∆P, then γ ∈ ∆P.

The set ∆P is clearly bounded in Pgp
Q

. Also, if v1, . . . vm are the indecomposable
elements of P we have

∆P = PQ \
m⋃

i=1

(vi + PQ) ;

since PQ is closed in Pgp
Q

, we have that ∆P is open in PQ.
We set

∆0
P = {γ ∈ ∆P | (γ + Pgp) ∩ ∆P = {γ}} .

By definition, the restriction of the projection Pgp
Q
→ Pgp

Q
/Pgp to ∆0

P is injective.

Lemma 2.3.12. The set ∆0
P is a neighborhood of 0 in PQ.

Proof. It is easy to see that 0 ∈ ∆0
P. Also, we have

∆0
P =

⋂
γ∈Pgp\{0}

(
∆P \ (γ + ∆P)

)
;

but ∆P is bounded, so there exists a finite number of γ ∈ Pgp \ {0} such that ∆P ∩ (γ +

∆P) 6= ∅. So it is enough to prove that ∆P \ (γ + ∆P) is neighborhood of 0 in PQ for all
γ ∈ Pgp \ {0}.

If γ ∈ −PQ we have

∆P \ (γ + ∆P) = γ +
(
∆P \ (−γ + ∆P)

)
= ∅ .

Otherwise, we have 0 /∈ γ + PQ, so ∆P \ (γ + PQ) is neighborhood of 0 in PQ, and
∆P \ (γ + PQ) ⊂ ∆P \ (γ + ∆P). This finishes the proof.

There is a group homomorphism Pgp → qP sending each p ∈ Pgp into the element
p/∞ = {[p/n]} ∈ qP. This is easily seen to be injective. Consider the restriction P→ qP.

We need to recognize elements in qP that come from P. To do so, we introduce the
following definition.

Definition 2.3.13. Let {λn} be an element of qP. A determination function for {λn} is a
function Φ : N+ → {0, 1} with the following properties

(a) If m | n, then Φ(m) ≤ Φ(n).

(b) Φ(m) = 1 for some m ∈N+.
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(c) For every positive integer m the following holds: assume there exists a positive
integer k and a sequence γ1, . . . , γk of elements of λkm ∩ ∆P such that we have
γ1 + · · ·+ γk /∈ ∆P. Then Φ(m) = 0.

An element {λn} of qP is an infinite quotient if it admits a determination function. We
denote the set of infinite quotients in P by P/∞.

To motivate this definition let us note that the image p/∞ = {[p/n]} of an element
p ∈ P has a determination function. Let us define Φ by

n 7−→
{

1 if p/n ∈ ∆0
P

0 if p/n /∈ ∆0
P .

Let us check that this is a determination function. The first two conditions are immediate,
and for the third one, note that if Φ(m) = 1, then p/km ∈ ∆0

P for any k. Consequently
if we take a sequence γ1, . . . , γk of elements of [p/km] ∩ ∆P, we will necessarily have
γi = p/km for all i (basically by definition of ∆0

P), and the sum γ1 + · · · + γk will be
p/m ∈ ∆0

P ⊆ ∆P. This shows that also the third condition is satisfied.
The following proposition says in particular that the converse holds, i.e. infinite

quotients in qP correspond exactly to elements of P.

Proposition 2.3.14.

(a) Let {λn} be an infinite quotient in P. For every sufficiently divisible n we have λn = [γn]

for some γn ∈ ∆0
P.

(b) Let {λn} and {λ′n} be infinite quotients in P. For every sufficiently divisible n we have
λn = [γn] and λ′n = [γ′n] with γn + γ′n ∈ ∆0

P.

(c) The image of P in qP is precisely P/∞.

Thus P/∞ is a submonoid of qP, which is isomorphic to P.

Proof. Let us show that there is a norm |−| on Pgp
Q

with the property that |γ + δ| =
|γ|+ |δ| for any γ and δ in PQ. For this, notice that there is basis v1, . . . vr of Pgp

Q
∼= Qr

with the property that every vector in PQ has non-negative coordinates (in fact, since P
is sharp the cone in the dual space (Pgp

Q
)∨ that is dual to PQ has nonempty interior, so

it contains a basis of P∨Q , and the dual basis in Pgp
Q

has this property). Then the norm
|x1v1 + · · ·+ xrvr| = |x1|+ · · ·+ |xn| has this property.

Now choose a positive integer m such that Φ(m) = 1 and a positive real number ε

such that every γ ∈ PQ with |γ| ≤ ε is in ∆0
P. Since ∆P is bounded in Pgp

Q
, choose N > 0

with the property that Nε is larger than the diameter of ∆P. If n is divisible by m and
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n/m > N, then we claim that |γn| ≤ ε (where γn ∈ ∆P is such that [γn] = λn), so that
γn ∈ ∆0

P, which will conclude the proof of part (a).
In fact if |γn| > ε, then we can take k = n/m and the sequence γn, . . . , γn of k

copies of γn ∈ λkm ∩ ∆P. For the sum of these elements we have |kγn| > kε > Nε,
and consequently kγn /∈ ∆P. This contradicts the third condition in the definition of a
determination function and the fact that we chose m to satisfy Φ(m) = 1.

By a similar reasoning and by choosing ε such that every γ ∈ PQ with |γ| ≤ 2ε is in
∆0

P, we see that (b) holds.
For (c), for any p ∈ P we already gave a determination function for p/∞, and so

p/∞ ∈ P/∞.
Conversely, suppose that {λn} ∈ P/∞, and fix a determination function Φ : N+ →

{0, 1}. Choose m such that Φ(m) = 1 and λkm = [γkm] with γkm ∈ ∆0
P for all k (this

is possible by the first part of the proof). For every positive integer k we have kγkm =

γm + pk for some pk ∈ Pgp. If pk 6= 0 we would have γm + pk /∈ ∆P, because γm ∈ ∆0
P;

but this implies Φ(m) = 0, by the third condition in the definition of a determination
function. Hence γkm = γm/k for all k. Since q = mγm ∈ P we have γn = q/n for all n
divisible by m, which implies that this is true for all n, so that {λn} = q/∞.

2.3.3 Picard groups of infinite root stacks over geometric points

Next we need some results on the Picard group of an infinite root stack over a geometric
point. We will show that it can be identified with the quotient Pgp

Q
/Pgp, where P is the

stalk of the sheaf A at the point.
If k is a field, we will denote by ∞√P/k the infinite root stack of the DF structure (A, L)

on Spec(k), where A is the constant sheaf of monoids on (Spec(k))ét corresponding to P,
and L : A → DivSpec(k) corresponds to the homomorphism Λ : P → k that sends 0 into 1
and everything else into 0.

In other words, ∞√P/k is the fiber product Spec(k) ×Spec(k[P])
[
Spec(k[PQ])/µ∞(P)

]
,

where Spec(k) → Spec(k[P]) corresponds to the ring homomorphism k[P] → k deter-
mined by Λ. Or, again, we have

∞√
P/k =

[
Spec(k[PQ]/(P+))/µ∞(P)

]
where the action of µ∞(P) on Spec(k[PQ]/(P+)) is determined by the natural Pgp

Q
/Pgp-

grading on k[PQ]/(P+). Moreover the reduced substack (
∞√P/k)red is the classifying

stack Bkµ∞(P) =
[
Spec(k)/µ∞(P)

]
.

Set R = k[PQ]/(P+). This is a Pgp
Q

-graded algebra. If γ ∈ Pgp
Q

, we have dimk Rγ = 0
if γ /∈ ∆P, and dimk Rγ = 1 if γ ∈ ∆P. We will use the induced Pgp

Q
/Pgp-grading, so that

for any λ ∈ Pgp
Q

/Pgp we have Rλ = ⊕γ∈λ∩∆P Rγ.
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Invertible sheaves on ∞√P/k correspond to Pgp
Q

/Pgp-graded invertible modules on R;
this gives a very concrete description of Pic(∞√P/k). There is a natural homomorphism

Pgp
Q

/Pgp = Hom(µ∞(P), Gm
)
−→ Pic(

∞√
P/k)

that sends γ ∈ Pgp
Q

/Pgp into the graded R-module R(λ), where R(λ) = R as an R-
module, but the Pgp

Q
/Pgp-grading is defined by R(λ)µ = Rλ+µ.

Since R is the inductive limit of the local artinian rings k[ 1
n P]/(P+), every invertible

module on R is trivial; hence, every Pgp
Q

/Pgp-graded invertible module on R is of the
form R(λ) for λ ∈ Pgp

Q
/Pgp. So the homomorphism above is surjective. Since R(λ)⊗R

k = k(γ) is a Pgp
Q

/Pgp-graded vector space, we see that R(λ) ∼= R(µ) if and only if λ = µ,
and the homomorphism is also injective.

Let us record this in a lemma.

Lemma 2.3.15. The natural homomorphism

Pgp
Q

/Pgp = Hom
(
µ∞(P), Gm

)
−→ Pic(

∞√
P/k)

is an isomorphism.

Furthermore, if λ = [L] ∈ Pic(∞√P/k) = Pgp
Q

/Pgp, we have H0(
∞√P/k, L) = R(λ)0 =

Rλ. So dimk H0(
∞√P/k, L) = ](λ ∩ ∆P).

Let (Λ, Λn, φ, αm,n
)

and (Λ′, Λ′n, φ′, α′m,n
)

be infinite roots on ∞√P/k, and set Λn =

(Ln, sn) and Λ′n = (L′n, s′n). The following will be used later.

Lemma 2.3.16. For sufficiently divisible n, we have dimk H0(
∞√P/k, Ln) = 1, and the multipli-

cation map
H0(

∞√
P/k, Ln)⊗k H0(

∞√
P/k, L′n) −→ H0(

∞√
P/k, Ln ⊗ L′n)

is an isomorphism.

Proof. This follows from 2.3.14(a) and (b).

2.3.4 Proofs

Lemma 2.3.17. Let π : X → X be an infinite root stack. Assume that X is locally noetherian,
and let F be a finitely presented sheaf on X . Then π∗F is coherent.

Proof. The statement is local in the étale topology on X, so we may assume that X =

Spec(A), and that X is an infinite root stack coming from a DF structure endowed with
a Kato chart L : P→ A. For each n > 0 we have a factorization

∞√
(P, L) n√

(P, L) X ,
ρ φ



84 CHAPTER 2. THE INFINITE ROOT STACK OF A LOGARITHMIC SCHEME

where n√
(P, L) denotes the n-th root stack.

The sheaf F is finitely presented, so for some n there exists a finitely presented sheaf
G on n√

(P, L) and an isomorphism F ∼= ρ∗G. Since ∞√
(P, L) is fppf locally an infinite root

stack over n√
(P, L), we have that G = ρ∗ρ∗G by 2.2.44, so π∗F = φ∗G, and the statement

is clear.

Lemma 2.3.18. Let π : X → X be an infinite root stack, and let (Λ, Λn, φ, αm,n) be in infinite
root on X . Set Λn = (Ln, sn).

If X is quasi-compact, then for sufficiently divisible n the sheaf π∗Ln is an invertible sheaf on
X, and the section sn ∈ H0(X, π∗Ln) does not vanish anywhere.

Furthermore, let (Λ′, Λ′n, φ′, α′m,n) be another infinite root on X , and set Λ′n = (L′n, s′n).
Then for sufficiently divisible n the multiplication map

π∗Ln ⊗ π∗L′n −→ π∗(Ln ⊗ L′n)

is an isomorphism.

Proof. Since formation of AX commutes with base change on X, the pushforward π∗ also
commutes with base change, the statement is local in the étale topology, and every DF
structure is obtained étale-locally by base change from a scheme of finite type over Z, we
may assume that X is noetherian. Each Ln is invertible on X and π∗OX = OX, so we see
that the annihilator of π∗Ln is trivial. Since each π∗Ln is coherent, by Lemma 2.3.17, to
prove the statement it is enough to check that sn generates all the fibers of π∗Ln. Again
because π∗ commutes with base change, and by Nakayama’s lemma, we can reduce to
the case that X = Spec(k), where k is a field.

We can also assume that k is algebraically closed. Then X =
∞√P/k for a certain

sharp fine saturated monoid P. Then it is enough to show that dimk H0(
∞√P/k, Ln) = 1

for sufficiently divisible n; this is the content of Lemma 2.3.16.

Proof of Proposition 2.3.7. Since the category AX is fibered in groupoids, it is enough to
show that an object of some AX (U) ha no non-trivial automorphisms. We may assume
that X = U, and X is quasi-compact. Choose an object (Λ, Λn, φ, αm,n

)
of AX (X), and set

Λ = (L, s) and Λn = (Ln, sn). An automorphism of (Λ, Λn, φ, αm,n
)

is given by a sequence

of elements ξn ∈ O×X (X ) = O×X (X) with ξnsn = sn for all n, and such that ξ
(m/n)
n = ξm

whenever m | n. From Lemma 2.3.18 we see that ξn = 1 when n is sufficiently divisible,
and this implies that ξn = 1 for all n.

Proof of Proposition 2.3.9. The statement can be checked on the geometric stalks; since
formation of AX commutes with base change, we may assume that X = Spec(k) is the
spectrum of an algebraically closed field k, so that the logarithmic structure is given by a
sharp fine saturated monoid P and the monoidal functor L : P → DivSpec(k) sending 0 to
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(OSpec(k), 1) and anything else to (OSpec(k), 0). Then the root stack X =
∞√
(P, L) equals

X =
[
Spec(k[PQ]/(P+))/µ∞(P)

]
for a sharp fine saturated monoid P.

Let us identify Pic(X ) with Pgp
Q

/Pgp. We have a homomorphism of monoids AX → qP
sending an infinite root (Λ, Λn, φ, αm,n

)
to {[Ln]}, where Λn = (Ln, sn). The element

{[Ln]} has a determination function N+ → {0, 1}, sending n to 0 if sn = 0 and to 1
otherwise; hence this gives a homomorphism AX → P/∞.

Let (Λ, Λn, φ, αm,n
)

and (Λ′, Λ′n, φ′, α′m,n
)

be two infinite roots on XP. Assume that
[Ln] = [L′n] for all n; then from Lemma 2.3.16 we see that for sufficiently divisible n there
is a unique isomorphism Ln ∼= L′n carrying sn to s′n. These give an isomorphism of the
two infinite roots. This implies that the homomorphism AX → P/∞ is injective.

Now consider the composite P = A → AX → P/∞, which is easily seen to send
p ∈ P into p/∞ ∈ P/∞. Since AX → P/∞ is injective and P→ P/∞ is an isomorphism,
by Proposition 2.3.14(c), the result follows.

2.3.5 Morphisms of infinite root stacks

In this section we characterize morphisms of infinite root stacks that come from mor-
phisms of DF structures, by means of infinite roots.

Let (φ, Φ) : (A, L) → (B, M) be a morphism of DF structures on X. Recall that this
means that φ : A → B is a homomorphism of sheaves of monoids on Xét, while Φ : L ∼=
M ◦ φ is a base-preserving isomorphism of symmetric monoidal functors A → DivX.
A morphism of fine saturated DF structures as above induces a morphism of fibered
categories ∞√φ : ∞√

(B, M)→ ∞√
(A, L) by composition.

It is not true however that any morphism ∞√
(B, M) → ∞√

(A, L) of stacks over X
comes from a morphism of DF structures (for an example, see 2.3.2).

Definition 2.3.19. As in Definition 2.3.3, we call logarithmic the morphisms ∞√
(B, M) →

∞√
(A, L) between two infinite root stacks over X that come from morphisms of the cor-

responding DF structures.

We have the following characterization of logarithmic morphisms.

Proposition 2.3.20. A morphism f : Y → X of infinite root stack over X is logarithmic if and
only if for any geometric point p → X and any infinite root λ on the geometric fiber Xp, the
pullback f ∗p λ is again an infinite root on Yp.

Note that this excludes precisely what happens in example 2.3.2, where the map
X∞ → X∞ kills all the elements t

1
n .

Proof. The “only if” part follows from Proposition 2.3.9, and the “if” part is also imme-
diate from the previous discussion: a morphism f : Y → X satisfying the condition on
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infinite roots induces a morphism of monoids AX → AY by pullback, and this fits into a
morphism (φ f , Φ f ) : (AX , LX )→ (AY , LY ) of DF structures in the evident way.

Finally, it is easy to see that the morphism ∞√φ f coincides with f .

The composite of two logarithmic morphisms of infinite root stack is logarithmic.
Thus, infinite root stacks over X with logarithmic morphisms form a 2-category; we will
call it the 2-category of infinite root stacks. Taking the infinite root stack defines a functor
F from the opposite of the category of DF structures to this 2-category of infinite root
stacks over X.

Proposition 2.3.21. The functor F described above is faithful.

Proof. Assume that we have two morphisms of DF structures (φ, Φ), (ψ, Ψ) : (A, L) →
(B, M) that induce isomorphic maps between the root stacks f ∼= g : Y → X , where
X =

∞√
(A, L), Y =

∞√
(B, M) and f = ∞√φ, g = ∞√ψ. Now f and g will induce the

same morphism between the DF structures f ∗ = g∗ : (AX , LX ) → (AY , LY ), and since
the diagram

(A, L)
(φ,Φ) //

��

(B, M)

��
(AX , LX )

f ∗ // (AY , LY )

commutes, along with the analogous one with (ψ, Ψ), and the vertical maps are isomor-
phisms by 2.3.10, the conclusion follows.

As a corollary, we see that the functor that sends a fs log scheme to its infinite root
stack is faithful, and that the infinite root stack determines the log scheme.

Corollary 2.3.22. The functor X 7→ X∞ from (FSLogSch) to the category (St) of stacks over k
is faithful.

Proof. Assume that we have two morphisms of log schemes f , g : X → Y that induce
the same map f∞ ∼= g∞ : X∞ → Y∞. First of all from the fact that X and Y are “coarse
moduli spaces” of X∞ and Y∞ respectively (see Corollary 2.2.45) we conclude that the
two morphisms of schemes f , g : X → Y are equal.

Once we have this, the result follows from 2.3.21 after pulling back to X.

Corollary 2.3.23. Let X and Y be fs log schemes. Assume that we have an isomorphism X∞ ∼=
Y∞ of stacks over k. Then this is induced by an isomorphism of log schemes X ∼= Y.
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Proof. From Corollary 2.2.45 we see that the isomorphism X∞ ∼= Y∞ induces an isomor-
phism of the schemes X ∼= Y. After pulling everything back to X, we just have to note
that isomorphisms of infinite root stacks are logarithmic by Proposition 2.3.20 (since the
condition about infinite roots is trivially satisfied). Consequently the given isomorphism
comes from a morphism of DF structures and this has to be an isomorphism, once again
by Proposition 2.3.21.

To conclude, we prove a lemma which will be useful in the next section.

Lemma 2.3.24. Let (φ, Φ) : (A, L) → (B, M) and (ψ, Ψ) : (A, L) → (C, N) be morphisms of
DF structures on a scheme X, such that ψ is Kummer. Suppose that f : ∞√

(C, N) → ∞√
(B, M)

is a morphism of stacks over X making the diagram

∞√
(C, N)

∞√
(B, M)

∞√
(A, M)

f

∞√φ ∞√ψ

commute. Then f is logarithmic.

Proof. We need to check that f sends infinite roots in geometric fibers to infinite roots; by
base change, we may assume that X = Spec(k), where k is an algebraically closed field.
For consistency with the previous notation, set P = A, Q = B and R = C; we need to
check that the homomorphism f ∗ : Rgp

Q
/Rgp → Qgp

Q
/Qgp induced by f sends R/∞ into

Q/∞ (here we are using the identification Qgp
Q

/Q gp ∼= Pic(∞√Q/k)). Taking projective

limits and using the identifications qP ∼= Pgp ⊗ Ẑ we obtain a commutative diagram

Pgp ⊗ Ẑ

Rgp ⊗ Ẑ Qgp ⊗ Ẑ
f ∗

in which the two diagonal arrows take P into R and Q respectively. We need to show
that f ∗ takes R into Q. Since the homomorphism P→ R is Kummer, given r ∈ R we can
find a positive integer n such that nr comes from P; this implies that n f ∗(r) = f ∗(nr) is
in Q. Since Ẑ/Z is torsion free, we see that f ∗(r) ∈ Qgp; since Q is saturated this implies
f ∗(r) ∈ Q, and this concludes the proof.

Corollary 2.3.25. Let X, Y and Z be fs log schemes with two maps Z → X and Y → X, the first
one being Kummer, and let F : Z∞ → Y∞ be a morphism of infinite root stacks over X∞. Then F
is logarithmic.
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Proof. From Corollary 2.2.45 we see that Z∞ → Y∞ induces a morphism of schemes
Z → Y that makes the diagram

Z

��

// Y

��
X

commute.
Now we can pullback the log structures of Y and X (together with their infinite root

stacks) to Z, and the result follows from the preceding proposition.

2.4 The infinite root stack recovers the Kummer-flat topos

In this section we will show that the Kummer-flat topos of a log scheme ([Kat, Niz08,
INT13]) can be recovered as the fppf topos of the corresponding infinite root stack.

We briefly recall the construction of the Kummer-flat topos of a log scheme.

Definition 2.4.1. A morphism of fine saturated log schemes f : Y → X is Kummer-flat
if it is log-flat and Kummer, and the underlying map of schemes is locally of finite
presentation.

Recall that a morphism f : Y → X is log-flat if the following holds: fppf locally on X
and Y we can find Kato charts P→ MX and Q→ MY and a morphism P→ Q such that
the diagram

Y //

��

Spec(k[Q])

��
X // Spec(k[P])

commutes, and the induced map Y → X ×Spec(k[P]) Spec(k[Q]) is flat. A morphism
f : Y → X is Kummer if the corresponding f ∗AX → AY is Kummer, meaning that the ho-
momorphism of monoids ( f ∗AX)y → (AY)y is Kummer for any geometric point y→ Y.

Since charts can be made up from stalks, if f : Y → X is Kummer-flat, then locally
we can find charts as above such that in addition P → Q is Kummer, and it is proven in
[INT13] that we can also make Y → X×Spec(k[P]) Spec(k[Q]) locally of finite presentation.

For a log scheme X, there is a site, called the Kummer-flat site and denoted by kfl(X),
whose objects are morphisms of log schemes U → X that are Kummer-flat, with mor-
phisms of log schemes over X as arrows, and with jointly surjective families {Ui → U}i∈I
of Kummer-flat morphisms as coverings. The corresponding topos Xkfl is called the
Kummer-flat topos of X.
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Remark 2.4.2. The site Xkfl has a final object and fibered products. Given a diagram

V

��
Z // Y

in Xkfl, the fibered product is given by the fibered product V ×Y Z in the category of fine
saturated log schemes over k, together with the induced Kummer-flat map V ×Y Z → X.

Remark 2.4.3. If we have two objects Y → X and Z → X of Xkfl, then any morphism
Z → Y in Xkfl is also Kummer. This follows from the fact that if two morphisms of
fs torsion-free monoids P → Q and P → R are Kummer and we have a commutative
diagram

P //

��

R

Q

??

then also Q→ R is Kummer.
Indeed, any r ∈ R has some multiple nr coming from p, which means that it also

comes from Q. Moreover the map is injective: if q and q′ go to the same element r, take
n ∈ N such that nr, nq and nq′ all come from P. Then if say p goes to nq and p′ goes to
nq′, since P → R is injective and p, p′ both go to nr, we must have p = p′, which means
nq = nq′, and so q = q′ by torsion-freeness.

One can also restrict to considering Kummer-étale morphisms, where the definitions
are the analogous ones, with “flat” replaced by “étale” in all the instances. The results
are the Kummer-étale site két(X) and the corresponding Kummer-étale topos Xkét. In the
characteristic zero case these étale variants are usually enough for applications.

Proposition 2.4.4. Let f : Y → X be a Kummer-flat (resp. Kummer-étale) morphism of log
schemes. Then the induced morphism f∞ : Y∞ → X∞ between the infinite root stacks is repre-
sentable and fppf (resp. representable and étale).

Proof. Since the question is local for the fppf topology of X and Y, we can assume that
we have a diagram

Y

((

--

X×Spec(k[P]) Spec(k[Q]) //

��

Spec(k[Q])

��
X // Spec(k[P])
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where Y → X×Spec(k[P]) Spec(k[Q]) is fppf (resp. étale) and strict, and P→ Q is Kummer.
Now in turn this means that we have a commutative diagram

XQ/P

��
Y

==

// X

where the map Y → XQ/P is strict and flat (resp. étale). Consequently by taking infinite
root stacks we have a cartesian diagram

Y∞ //

��

(XQ/P)∞ ∼= X∞

��
Y // XQ/P

where we used Remark 2.2.9 and Proposition 2.2.25, and from this we see that Y∞ → X∞

is flat (resp. étale).
Representability follows from the local description of the map Y∞ → X∞ as a map

between quotient stacks, and the following lemma.

Lemma 2.4.5. Let G be a diagonalizable group (not necessarily of finite type) over a ring R, and
H ⊆ G be a diagonalizable subgroup. Assume that H acts on an affine scheme T and G acts on
an affine scheme S over R, and we have a morphism T → S that is equivariant with respect to the
immersion H ⊆ G. Then the induced morphism

[T/H]→ [S/G]

between the quotient stacks is affine.

Proof. By fpqc descent, to check that the map is affine (as well as any map between fpqc
stacks) we can reduce to checking it for a particular fpqc presentation of the target stack.

Now note that we have a diagram

[T/H] // [S/H] //

��

[S/G]

��
BRH // BRG

where the square is cartesian, and the conclusion follows from the two cartesian dia-
grams

[G/H] //

��

Spec(R)

��
BRH // BRG
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and

T //

��

S

��
[T/H] // [S/H]

and the fact that the quotient [G/H] is represented by a diagonalizable group, and in
particular is affine.

Because of proposition 2.4.4 there is a natural functor F : kfl(X)→ fppf(X∞) from the
Kummer-flat site of X to the small fppf site of X∞, acting on objects by taking f : Y → X
to f∞ : Y∞ → X∞, and on arrows by taking g : Z → Y over X to g∞ : Z∞ → Y∞ over X∞.

Lemma 2.4.6. The functor F preserves fibered products.

Proof. The statement means that if

W //

��

V

��
Z // Y

is a cartesian diagram in Xkfl, then the diagram

W∞ //

��

V∞

��
Z∞ // Y∞

is 2-cartesian, i.e. the induced morphism W∞ → Z∞ ×Y∞ V∞ is an equivalence.
Recall first of all that the morphisms Z → Y and V → Y are Kummer, and denote

by A, B, C, D the sheaves of monoids giving the log structures of Y, V, Z, W respectively.
Recall that W is obtained in the following way: we first form the fibered product of the
underlying schemes V ×Y Z and, locally where we have charts P → A, Q → B, R → C,
equip it with the log structure coming from the pushout Q⊕P R of the diagram

P //

��

Q

��
R // Q⊕P R
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and then base change along Spec(k[(Q ⊕P R)fs]) → Spec(k[Q ⊕P R]). Now note that
since the functor P 7→ PQ preserves pushouts (Remark 1.1.15), the diagram

PQ
//

��

QQ

��
RQ

// (Q⊕P R)Q

is also a pushout, but in this case the maps PQ → QQ and PQ → RQ are isomorphisms,
since P → Q and P → R are Kummer. Consequently the remaining two maps in the
diagram are also isomorphisms, and we have (Q⊕P R)Q

∼= PQ.
Now we construct a quasi-inverse to the natural functor W∞ → Z∞ ×Y∞ V∞. Take an

object of (Z∞ ×Y∞ V∞)(T), i.e. a triple (ξ, η, f ) where ξ : (BT)Q → DivT and η : (CT)Q →
DivT are liftings of the DF structures coming from V and Z respectively, and f is an
isomorphism between their restrictions to (AT)Q. Call E the pushout of the diagram

AT //

��

BT

CT

of sheaves of monoid over T. The preceding remarks imply that (AT)Q, (BT)Q, (CT)Q are
all isomorphic, and they are also isomorphic to EQ, so we have an induced DF structure
EQ → DivT. Moreover since EQ = (AT)Q is integral and saturated, the map E → EQ

factors through E→ Efs, the fine saturation of the sheaf E. By restriction along Efs → EQ,
this gives a log structure on T that makes the diagram

T //

��

V

��
Z // Y

a commutative diagram of fs log schemes. Consequently there is an induced (strict)
morphism T →W, and together with the lifting (DT)Q

∼= EQ → DivT of the DF structure
coming from W this gives our object of W∞(T). We leave the remaining verifications to
the reader.

Remark 2.4.7. The stronger statement that the functor X 7→ X∞ from fine saturated log
schemes over k to stacks over k preserves fibered products is probably false. For the
preceding proof it is essential that the morphisms involved are Kummer.

Proposition 2.4.8. The functor F gives a morphism of topoi Xkfl → (X∞)fppf, which is an
equivalence.
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Proof. We will apply the following lemma from the Stacks Project (Lemma 7.27.1 in
[Sta13, Tag 039Z]).

Lemma 2.4.9. Let C, D be sites and u : C → D a functor. If

1. u is continuous and cocontinuous

2. given a, b : U′ → U in C such that u(a) = u(b), then there exists a covering { fi : U′i →
U′} in C such that a ◦ fi = b ◦ fi for every i,

3. given U, U′ ∈ C and a morphism c : u(U′) → u(U) in D, then there exists a covering
{ fi : U′i → U′} in C and morphisms ci : U′i → U such that u(ci) = c ◦ u( fi) for every i,

4. given V ∈ D, then there exists a covering of V in D of the form {u(Ui)→ V},

then there is an equivalence Sh(C) ∼= Sh(D).

Note that, as remarked in the proof in the Stacks Project, the functor α : Sh(D) →
Sh(C) that plays the role of the “pullback functor” of the mentioned equivalence is
defined in the natural way by α(G)(c) = G(u(c)) for an object c ∈ C.

Back to the proof, the fact that F is continuous follows from Proposition 2.4.4 and
Lemma 2.4.6. Showing that it is cocontinuous amounts to proving that for any object
Z∞ → X∞ of (X∞)fppf, where Z → X is Kummer-flat, any covering {Ai → Z∞} in
(X∞)fppf can be refined by the family of maps {(Zi)∞ → Z∞}, for some Kummer-flat
covering {Zi → Z}. Clearly this will follow from item number 4 applied to Z in place of
X.

Note that item number 2 (local faithfulness) follows directly from Corollary 2.3.22,
and item number 3 (local fullness) from Corollary 2.3.25, that implies that every mor-
phism Z∞ → Y∞ in (X∞)fppf is logarithmic, i.e. comes from a morphism Z → Y of log
schemes. All that is left is to prove item number 4.

Let us fix an object A → X∞ of (X∞)fppf. After étale-shrinking X, we can assume that
we have a Kato chart P → OX for the log structure of X. We will find a Kummer-flat
morphism Y → X with a factorization Y∞ → A → X∞, such that Y∞ → A is fppf and
surjective.

Take a presentation U∞ → X∞ coming from a compatible system of presentations
Un → Xn, as in the discussion preceding 2.2.14, and the groups Gn and G∞. Consider
the pullback of U∞ to A, as in the cartesian square

V //

��

U∞

��
A // X∞.



94 CHAPTER 2. THE INFINITE ROOT STACK OF A LOGARITHMIC SCHEME

where V is an algebraic space and V → U∞ is fppf, since A → X∞ is representable and
fppf.

Note that the description of X∞ as a quotient [U∞/G∞] gives a presentation of A as
[V/G∞] for the induced action, and we have a groupoid presentation of the form

V × G∞ ⇒ V → A.

Since the morphism V → U∞ is fppf and U∞ = lim←−n
Un, we have an fppf morphism

Vn → Un such that the diagram
V //

��

Vn

��
U∞ // Un

is cartesian.
Now we claim that in fact the whole groupoid presentation of A comes from some

finite level: in fact, also the action of G∞ on V, which can be seen as a morphism V ×
G∞ → V × G∞ (over U × G∞), must come from some morphism Vn × G∞ → Vn × G∞

(over Un × G∞) where Vn is as above, since V × G∞ → U × G∞ is fppf and U × G∞ =

lim←−n
(Un × G∞). Moreover by increasing n we may assume that this last morphisms also

gives an action of G∞ on Vn.
The action of G∞ = lim←−n

Gn factors through some finite stage Gm, because Vn is of
finite type. This simply follows from looking at the coaction of the Hopf algebra of G∞.
This gives us an action Gm ×Vn → Vn.

Now denote by k the least common multiple of n and m. We first pull the action back
along Vk → Vn (where Vk = Vn ×Un Uk), obtaining an action Gm × Vk → Vk, and finally
by means of the map Gk → Gm, we get an action Gk ×Vk → Vk, and we take the quotient
stack Ak = [Vk/Gk].

The morphism Vk → Uk induces a representable and fppf map Ak = [Vk/Gk] →
[Uk/Gk] = Xk, and the diagram

A //

��

Ak

��
X∞ // Xk.

is cartesian.
In fact, the morphism X∞ → Xk factors as

X∞ = [U∞/G∞]→ [Uk/G∞]→ [Uk/Gk] = Xk

and we can calculate the fibered product in two steps. For the rightmost map, we have
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A×Xk [Uk/G∞] ∼= [Vk/G∞], since in the diagram

[Vk/G∞] //

��

[Vk/Gk]

��
[Uk/G∞] //

��

[Uk/Gk]

��
BG∞ // BGk

the two squares are cartesian.
For the second base change, note that the following square is cartesian

[V/G∞]

��

// [Vk/G∞]

��
[U/G∞] // [Uk/G∞]

since V ∼= Vk ×Uk U by construction. In conclusion A = [V/G∞] ∼= Ak ×Xk X∞.
Moreover if we equip Ak with the pullback of the log structure of Xk along the map

Ak → Xk we have an isomorphism (Ak)∞ ∼= A. This is just because by construction
Ak → Xk is strict, and so we have an isomorphism (Ak)∞ ∼= Ak ×Xk (Xk)∞ ∼= A, since
(Xk)∞ ∼= X∞.

Now if we also endow Vk with the pullback log structure from Xk the composition
Vk → X will be Kummer-flat, and we have a factorization (Vk)∞ → (Ak)∞ ∼= A → X∞.
All that is left is to note that the map (Vk)∞ → A is surjective, fppf and representable (i.e.
a cover in the fppf site). This follows from the fact that Vk → Ak has those properties and
is strict, so the map between the infinite root stacks is a base change, by Remark 2.2.9.
This concludes the proof.

The same line of reasoning proves the analogue of these results for the Kummer-étale
topos, which is particularly relevant in characteristic zero. In this case the étale variant
of the topos is typically sufficient for applications, whereas in the positive characteristic
case one often has to look at the Kummer-flat one.

We state the result in this case.
Let X be a log scheme over a field of characteristic 0, and let ét(X∞) denote the

small étale site of X∞, consisting of the category of isomorphism classes of representable
étale morphisms A → X∞ endowed with the étale topology. Denote by (X∞)ét the
corresponding topos. By Proposition 2.4.4 the association (Y → X) 7→ (Y∞ → X∞) gives
a functor két(X)→ ét(X∞).
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Theorem 2.4.10. This functor induces an equivalence of ringed topoi Xkét
∼= (X∞)ét.

Back to the general situation, by combining Proposition 2.4.8 with 2.2.40 we see that
finitely presented (and in particular, for example, locally free of finite rank) Kummer-flat
sheaves on a log scheme are precisely finitely presented sheaves on its infinite root stack,
i.e. finitely presented parabolic sheaves.

Corollary 2.4.11. There is an equivalence of categories FP(Xkfl) ∼= FP(X∞).

Proof. This follows formally from the fact that the equivalence of Proposition 2.4.8 is
an isomorphism of ringed topoi, after we equip them with the structure sheaf O on
both sides. This is immediate from the description of the functor α : (X∞)fppf → Xkfl as
α(G)(Y → X) = G(Y∞ → X∞) (see the proof of 2.4.8), and the fact that for π : Y∞ → Y
we have π∗OY∞

∼= OY (Proposition 2.2.44).



Chapter 3

Moduli of parabolic sheaves with
fixed weights

The subject of this chapter is the moduli theory for parabolic sheaves on a log scheme X,
with a fixed system of denominators.

The strategy will be the following: by the BV equivalence, parabolic sheaves on X
with denominators in B/A correspond to quasi-coherent sheaves on the root stack XB/A.
We can therefore study the moduli theory of coherent sheaves on said root stack.

The moduli theory for coherent sheaves on a tame DM stack has been developed in
[Nir]. Apart from assuming that X is projective over a field and choosing a polarization,
one also has to choose a generating sheaf on the root stack. In general there are many
choices for such a sheaf, and it is not clear which of them is best suited to generalize the
notion of stability given by Seshadri and Maruyama and Yokogawa in the case of curves
and varieties with a divisor.

One case where it is possible to find a distinguished generating sheaves that general-
izes the situations in the literature is the case in which we have a global chart P→ Div(X)

for the log structure of X, or more generally what we call a locally constant sheaf of charts
on X. In this case we isolate a generating sheaf that gives back the stability notions al-
ready present in the literature in the particular cases, and we get moduli spaces for pure
parabolic sheaves with weights in B/A.

We will also see that the choice of the sheaf of charts changes the notion of stability.
This phenomenon is analogous to the change of the stability when one changes the
polarization in the context of moduli of coherent sheaves on a projective scheme.

For the whole chapter, X will be a fine and saturated log scheme with a DF structure
L : A → DivX, and j : A → B will be our fixed system of denominators. Moreover X
will be projective over k, and from Section 3.2 on X will denote the root stack XB/A. To
apply Nironi’s machinery we will also have to assume the root stack XB/A is Deligne–

97
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Mumford. This is automatic if for example char(k) does not divide the order of the group
Bgp

x /Agp
x for any geometric point of X (see 1.2.31).

3.1 Pullbacks of parabolic sheaves

Let X be a log scheme with log structure L : A → DivX, and f : Y → X a morphism of
schemes. Equip Y with the pullback log structure, and assume furthermore that j : A →
B is a system of denominators. We want to define a pullback functor f ∗ from parabolic
sheaves on X with respect to j to parabolic sheaves on Y with respect to the pullback
system of denominators f ∗ j : f ∗A→ f ∗B. The BV equivalence suggests a natural way to
do it: recall that we denote the functors giving the equivalence by Φ : QCoh(XB/A) →
Par(X, j) and Ψ : Par(X, j)→ QCoh(XB/A) (see Section 1.2.1 for details).

Assume more generally that Y is a log scheme with log structure N : C → DivY,
h : C → D is a system of denominators, f : Y → X is a morphism of log schemes and the
morphism f ∗A→ C fits in a commutative diagram

f ∗A

��

// C

��
f ∗B // D.

Then we have a natural morphism of root stacks Π : YD/C → XB/A and a commutative
diagram

YD/C //

��

XB/A

��
Y

f // X

sending an object ξ : φ∗D → DivT of YD/C(T), where φ : T → Y, to the composition
Π(ξ) : ( f ◦ φ)∗B→ φ∗D → DivT, which is an object of XB/A(T).

In case N = f ∗L and h = f ∗ j, the diagram is also cartesian, so that Yf ∗B/ f ∗A
∼=

XB/A ×X Y.

Definition 3.1.1. Given a parabolic sheaf E ∈ Par(X, j), the pullback f ∗E of E along f is
the parabolic sheaf Φ(Π∗(Ψ(E))) ∈ Par(Y, h) corresponding via the BV equivalence to
the pullback of the quasi-coherent sheaf Ψ(E) ∈ QCoh(XB/A) along Π.

The pullback f ∗E is unique up to isomorphism, and functorial, in the sense that
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f ∗ : Par(X, j)→ Par(Y, h) is a functor. Moreover by definition the diagram

Par(X, j)
f ∗ //

Ψ
��

Par(Y, h)

Ψ
��

QCoh(XB/A)
Π∗ // QCoh(YD/C)

is 2-commutative.
We can now define a fibered category Par(X, j)→ (Sch /X) of parabolic sheaves on X

by taking as Par(X, j)(T), where φ : T → X, the category Par(T, φ∗ j) of parabolic sheaves
over T, equipped with the pullback log structure, and with respect to φ∗ j. The arrows of
Par(X, j) are defined using the notion of pullback just described.

On the other hand we also have the fibered category QCoh(XB/A) → (Sch /X),
whose fiber category over φ : T → X is QCoh(Tφ∗B/φ∗A) and the arrows are again de-
fined by pullback.

Basically by definition, we have the following extension of Theorem 1.3.8.

Proposition 3.1.2. There are equivalences of fibered categories Φ : QCoh(XB/A) → Par(X, j)
and Ψ : Par(X, j) → QCoh(XB/A) that coincide with the BV equivalences on every fiber cate-
gory.

Proof. The functors Φ(T) and Ψ(T) for T → X are defined by the functors of the BV
equivalence on T (equipped with the pullback log structure), and the resulting Φ and Ψ
are cartesian by construction. Finally, they are equivalences since they are so fiberwise.

This implies in particular that Par(X, j) is a stack for the fpqc (or any coarser) topol-
ogy of (Sch /X), as one can verify directly by standard arguments of descent theory.

In the case where X and the system of denominators have a global chart, the pullback
of a parabolic sheaf along a strict morphism f : Y → X has a simple “purely parabolic”
description (which seems to be lacking for example for a non-strict morphism): assume
that we have charts L0 : P → Div(X) for L and j0 : P → Q for j. Then P and j0 also give
charts on Y for f ∗A and f ∗ j, and given a parabolic sheaf E : Qwt → QCoh(X), we can
define f ∗E as the composition Qwt → QCoh(X) → QCoh(Y), where the last functor is
pullback of quasi-coherent sheaves.

Proposition 3.1.3. The functor f ∗E is a parabolic sheaf on Y, and the corresponding quasi-
coherent sheaf Ψ( f ∗E) on the root stack Yf ∗B/ f ∗A is naturally isomorphic to the pullback along
Π : Yf ∗B/ f ∗A → XB/A of the quasi-coherent sheaf Ψ(E) on XB/A corresponding to E.
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Proof. It is clear that f ∗E is a parabolic sheaf, by applying f ∗ to the pseudo-periods
isomorphism ρE and all the relevant diagrams.

Let us now show that the parabolic sheaf Φ(Π∗Ψ(E)) ∈ Par(Y, f ∗ j) is isomorphic to
f ∗E as defined above.

For q ∈ Qgp, let us calculate

( f ∗E)q = f ∗Eq = f ∗π∗(Ψ(E)⊗Λq)

and
Φ(Π∗Ψ(E))q = (πY)∗(Π∗Ψ(E)⊗ (ΛY)q).

Note now that (ΛY)q = Π∗Λq, so

(πY)∗(Π∗Ψ(E)⊗ (ΛY)q) ∼= (πY)∗Π∗(Ψ(E)⊗Λq).

Now we apply Proposition 1.5 of [Nir] to the cartesian diagram

Yf ∗B/ f ∗A
Π //

πY
��

XB/A

π

��
Y

f // X

to get a functorial base change isomorphism f ∗π∗ → (πY)∗Π∗ of functors QCoh(XB/A)→
QCoh(Y).

This gives an isomorphism ( f ∗E)q → Φ(Π∗Ψ(E))q for any q ∈ Q. By functoriality,
by putting all these isomorphisms together we get a natural isomorphism of functors
Qwt → QCoh(X), which moreover respects the pseudo-periods isomorphisms, and so is
an isomorphism of parabolic sheaves.

This also gives a local description of the pullback as defined in general, using local
charts for the Kummer morphism j.

When there is no global chart, it is still possible to give a parabolic description of the
pullback along a strict morphism, even though it is more complicated. Since we are not
going to use this description, we only sketch it briefly for completeness.

With notations as above, assume that E : Bwt → QCohX is a parabolic sheaf on X.
Both Bwt and QCohX are stacks on the small étale site Xét, and we can pull them back
together with the morphism E using f , thus obtaining a morphism f ∗(Bwt)→ f ∗QCohX
of stacks over Yét. The composition with the natural morphism f ∗QCohX → QCohY will
be our desired f ∗E.

Proposition 3.1.4. We have a natural equivalence of symmetric monoidal stacks f ∗(Bwt) ∼=
f ∗(B)wt on Yét, and the resulting functor f ∗E : f ∗(B)wt → QCohY is a parabolic sheaf on Y.
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Proof. To see that f ∗(Bwt) ∼= f ∗(B)wt note that Bwt has a presentation (as a stack over Xét)
as Bgp × B ⇒ Bgp, and by pulling back everything we get a presentation for f ∗(Bwt). On
the other hand f ∗(Bgp) ∼= f ∗Bgp, and the presentation f ∗Bgp × f ∗B ⇒ f ∗B gives f ∗Bwt.

Let us show that f ∗E is a parabolic sheaf. Recall that the pseudo-periods isomorphism
ρE can be seen an an isomorphism of functors E ◦ + ∼= ⊗ ◦ (Lwt × E) : Awt × Bwt →
QCohX, and the only other condition for E to be a parabolic sheaf is that it should be
Awt-equivariant. Pulling back ρE along f , and using the fact that the diagram

f ∗ PicX × f ∗QCohX
f ∗⊗X //

��

f ∗QCohX

��
PicY ×QCohY

⊗Y // QCohY

is 2-commutative, we get a pseudo-periods isomorphism for f ∗E. Finally, f ∗E is clearly
f ∗Awt-equivariant, so it is a parabolic sheaf.

One can show that the pullback of parabolic sheaves thus defined is compatible with
the BV equivalence and pullback of quasi-coherent sheaves on the root stacks, so it coin-
cides (as always up to isomorphism) with the one we defined before.

3.2 Families of parabolic sheaves

Using the notion of pullback, we can now define families of parabolic sheaves on a
fixed log scheme X, and with respect to a Kummer morphism j : A → B. We define a
fibered category ParX → (Sch) by setting, for a scheme T, ParX(T) = Par(T ×k X, π∗T j)
(with πT : T ×k X → X the second projection), and by declaring that pullback along
a morphism f : S → T over k is given by the pullback of parabolic sheaves along the
induced morphism S×k X → T ×k X of log schemes. Of course here T ×k X plays the
role of a trivial family with fiber X, and a parabolic sheaf over T×k X is seen as a “naive”
(i.e. without any flatness hypothesis) family of parabolic sheaves over X.

On the other hand we have a second fibered category QCohXB/A
→ (Sch) of quasi-

coherent sheaves over the root stack XB/A, where for a scheme T, we have

QCohXB/A
(T) = QCoh(T ×k XB/A) = QCoh((T ×k X)π∗T B/π∗T A)

with pullback along S→ T defined by the induced morphism S×k XB/A → T ×k XB/A.
To ease the notation, for the rest of this chapter X will denote the root stack XB/A,

and for a scheme T, a subscript (−)T will denote a base change to T, or to the fibered
product XT = T×k X along the projection πT : XT → X (this ambiguity should cause no
real confusion). For example LT : AT → DivXT will denote the pullback log structure.
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Also, in what follows we will repeatedly consider properties of parabolic sheaves on
XT relative to the base T. It will be useful to keep in mind the following diagram, where
all the squares are cartesian.

XT //

��

X

��
XT //

��

X

��
T // Spec(k)

Note that XT ∼= (XT)BT/AT , from Proposition 1.2.33. Moreover the projection XT → XT

is a coarse moduli space for any T, since the log structure of T is fine and saturated (see
1.2.32).

The proof of Theorem 3.1.2 yields, with minor modifications, the following result.

Proposition 3.2.1. There are equivalences Φ : QCoh
X
→ ParX and Φ : ParX → QCoh

X
, re-

stricting to the BV equivalences on the fiber categories.

This allows us to systematically transport various (absolute and relative) notions from
ordinary quasi-coherent sheaves to parabolic sheaves. Some of the notions that we will
examine will also have a parabolic interpretation.

Definition 3.2.2 (Meta-definition). A parabolic sheaf E ∈ Par(XT, jT) has some property,
absolute or over the base T (for example is coherent, finitely generated, finitely presented,
locally free, flat over T), if the corresponding Ψ(E) ∈ QCoh(XT) has said property.

These definitions also make sense for an arbitrary log scheme, not of the form XT.
We restrict to this case because we are interested in families of parabolic sheaves over a
fixed log scheme X.

From this point onward, we focus on moduli theory for sheaves on X. This requires
some hypotheses.

Assumptions 3.2.3. From now on X will be projective over k, with a fixed very ample
line bundle OX(1). This polarization will be fixed throughout all that follows, so we will
omit it from the notations.

As sketched in the introduction, the strategy is to reduce to moduli of coherent
sheaves on the root stack X. For this we need to introduce some properties of parabolic
sheaves, that will single out the correct concept of “family of coherent parabolic (pure)
sheaves”.

Let us start with coherence: the definition is contained in 3.2.2, but let us spell it out
again.
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Definition 3.2.4. A parabolic sheaf E ∈ Par(XT, jT) is coherent if the corresponding
Ψ(E) ∈ QCoh(XT) is coherent.

Here is a parabolic interpretation of coherence.

Proposition 3.2.5. A parabolic sheaf E ∈ Par(XT, jT) is coherent if and only if for every étale
morphism U → XT and every section b ∈ Bwt

T (U), the quasi-coherent sheaf Eb ∈ QCoh(U) is
coherent.

Proof. Assume first that E is coherent. Then, since πT : XT → T is proper, the pushfor-
ward Eb = (πT)∗(E⊗Λb) is still coherent.

In the other direction, this is a local problem so we can assume that there is a global
chart. In this case, recall that the quasi-coherent sheaf on X corresponding to E is ob-
tained by taking

⊕
v∈Qgp Ev as a sheaf on X, with an action of the sheaf of algebras

A =
⊕

u∈Pgp Lu, and then by descending it on the quotient stack X. Now it suffices to
notice that a finite number of the Ev generate the direct sum as a sheaf of A-modules
(thanks to the pseudo-periods isomorphism), and since the Ev’s are coherent we are
done.

Now let us turn to flatness.

Definition 3.2.6. A parabolic sheaf E ∈ Par(XT, jT) is flat over T if the corresponding
Ψ(E) ∈ QCoh(XT) is flat over T.

The following proposition gives a parabolic interpretation of flatness.

Proposition 3.2.7. A parabolic sheaf E ∈ Par(XT, jT) is flat over T if and only if for every étale
morphism U → XT and every section b ∈ Bwt

T (U) the quasi-coherent sheaf Eb ∈ QCoh(U) is
flat over T.

Proof. Assume first that the sheaf Ψ(E) ∈ QCoh(XT) is flat over T. Given f : U → XT

étale, call U the base change of XT to U, πU : U → U the projection to the coarse moduli
space, and fU : U→ XT the base change of f .

U
fU //

πU
��

XT

πT
��

U
f // XT

Now for b ∈ Bwt
T (U) we have

Eb = (πU)∗( f ∗UΨ(E)⊗ (ΛT)b) ∈ QCoh(U).
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Since (ΛT)b is invertible (so flat over T, since XT, and hence U, are) and Ψ(E) is flat over
T by assumption (so that also its pullback to U is), the sheaf f ∗UΨ(E)⊗ (ΛT)b is flat over
T. Furthermore since X is tame, so that U also is, the pushforward along the projection
to the coarse moduli space πU : U→ U preserves flatness over the base T (Corollary 1.3
of [Nir]). In conclusion Eb is flat over T.

Conversely, since the question is local we can assume that X has a global chart.
Now recall once again that the sheaf Ψ(E) is defined by forming

⊕
q∈Qgp Eq, a quasi-

coherent sheaf on X. Then this is regarded as a quasi-coherent sheaf on the relative
spectrum of a sheaf of algebras on X, and by descent this gives a quasi-coherent sheaf
on the root stack X (which is a quotient stack of this relative spectrum). Now since
by assumption all the Eq are flat over T, their direct sum is flat over T, and the quasi-
coherent sheaf induced on the relative spectrum mentioned above will be as well. Finally
by descent Ψ(E) itself will be flat over T.

In moduli theory of coherent sheaves (and in all of moduli theory, in fact), flatness is
a crucial condition to impose on a family.

Definition 3.2.8. A family of parabolic sheaves on X with denominators in B/A over a base
scheme T is a coherent parabolic sheaf E ∈ Par(XT, jT) that is flat over T.

From now on the wording “family of parabolic sheaves” will always include this
flatness condition.

The last important concept in moduli of coherent sheaves is pureness.
For the definition of a pure sheaf on an algebraic stack we refer to [Nir] and [Lie07].

It is the natural generalization of the concept for schemes; one possible definition is
that a coherent sheaf on a (noetherian) Artin stack is pure if and only if its pullback to
a smooth presentation is. Moreover one can define the support of a coherent sheaf F
on an algebraic stack X as the closed substack defined by the kernel of the morphism
OX → End(F). The dimension of F will be the dimension of the support, and a sheaf is
pure of dimension d if and only if all of its subsheaves have dimension d.

We declare the zero sheaf to be pure of arbitrary dimension. This allows us to simplify
some statements and does no harm, since the property of being zero for a flat sheaf over
a projective family if open and closed.

We will say that a coherent sheaf F is torsion-free on a noetherian algebraic stack X if
it is if pure of maximal dimension (the dimension of X ). Note that this does not imply
that F is supported everywhere unless X is integral.

Definition 3.2.9. A parabolic sheaf E ∈ Par(XT, jT) is pure of dimension d if the corre-
sponding Ψ(E) ∈ QCoh(XT) is pure of dimension d.
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As for the preceding properties, there is a parabolic interpretation of pureness.

Proposition 3.2.10. A parabolic sheaf E ∈ Par(XT, jT) is pure of dimension d if and only
if for every étale morphism U → XT and every section b ∈ Bwt

T (U) the quasi-coherent sheaf
Eb ∈ QCoh(U) is pure of dimension d.

Here we use the convention that the zero sheaf is pure of arbitrary dimension. Let us
first prove the following lemma.

Lemma 3.2.11. Let E be a coherent sheaf on a noetherian scheme X, and set d = dim(F). Then
E is pure of dimension d if and only if for every open subset U ⊆ X such that dim(X \U) < d,
the adjunction map σ : E→ i∗i∗E is injective, where i : U → X is the inclusion.

Proof. First note that the injectivity of E→ i∗i∗E is equivalent to the fact that if V ⊆ X is
open, and f ∈ E(V) is such that f |U∩V = 0, then f = 0.

Assume first that the second condition holds, and by contradiction that E is not pure,
so that there is a non-zero subsheaf G ⊆ E with dim(G) < d. Take U = X \ Supp(G),
which is an open subscheme of X with dim(X \U) < d. Now by assumption if V ⊆ X is
any open subset and f ∈ E(V), if the restriction of f to U ∩V is zero, then f itself is. In
particular every section of G(V) ⊆ E(V) will be zero, since it restricts to zero on U ∩ V
by construction of U. So G(V) = 0 for any V, against the fact that G was non-zero.

Vice versa, assume that there is an open subset U ⊆ X with dim(X \U) < d and such
that σ : E → i∗i∗E is not injective. Set G = ker(σ), and notice that this is a subsheaf of E
of dimension strictly less than d, so that E is not pure. In fact we have Supp(G) ⊆ X \U,
since if x ∈ U, then the map σx : Ex → (i∗i∗E)x ∼= Ex is the identity, so Gx = 0.

Corollary 3.2.12. If X is a noetherian DM stack and E ∈ Coh(X ) is pure of dimension d then
for every open substack U ⊆ X such that dim(X \ U ) < d, the adjunction map σ : E → i∗i∗E
is injective, where i : U → X is the inclusion.

Proof. One can take a groupoid presentation R ⇒ U → X and repeat the proof of the
above lemma on U with “equivariant” (with respect to the groupoid) sheaves and open
subsets.

Proof of Proposition 3.2.10. Assume first that G = Ψ(E) is pure of dimension d, and fix
f : U → X étale, and b ∈ Bwt(U). Moreover call U the base change of X to U, πU : U→ U
the projection, and fU the base change of f .

U
fU //

πU
��

X

π
��

U
f // X
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We will show that the coherent sheaf Eb = (πU)∗( f ∗U(G) ⊗ Λb) ∈ Coh(U) is pure of
dimension d. Set G′ = f ∗U(G), and notice that this is still pure of dimension d on U (it
may be zero).

Notice that since πU is proper and quasi-finite, if Eb is not zero (in which case there
is nothing to prove) than it has dimension d. Take an open subset V ⊆ U with dim(U \
V) < d, and call i : V → U the inclusion. We will show that the adjunction map σ : Eb →
i∗i∗Eb is injective, and by Lemma 3.2.11 this will prove that Eb is pure of dimension d.

Call V the fiber product V×U U, denote by j : V→ U the base change of the inclusion
V ⊆ U and πV : V → V the base change of the projection. The map j is an open
immersion, so V is an open substack of U, with complement of dimension less than d.
Since G′ is pure, by Corollary 3.2.12 the map σ′ : G′ → j∗ j∗G′ is injective.

Now the pushforward (πU)∗ and tensor product with Λb are both exact functors, so
the induced map

Eb = (πU)∗(G′ ⊗Λb)→ (πU)∗(j∗ j∗(G′)⊗Λb)

is still injective. Now note that by the projection formula we have

j∗ j∗(G′)⊗Λb
∼= j∗(j∗(G′)⊗ j∗(Λb)) ∼= j∗ j∗(G′ ⊗Λb).

From the cartesian diagram

V
j //

πV
��

U

πU
��

V i // U

we first see that (πU)∗ j∗ = i∗(πV)∗, and since i is flat, by base change (Proposition 1.5 of
[Nir]) we also have a canonical isomorphism (πV)∗ j∗ ∼= i∗(πU)∗.

By putting everything together we have that the composite

Eb = (πU)∗(G′ ⊗Λb)→ (πU)∗ j∗ j∗(G′ ⊗Λb) ∼= i∗i∗(πU)∗(G′ ⊗Λb) ∼= i∗i∗Eb,

which coincides with the adjunction map of Eb, is injective, and this is what we had to
show.

Note that some of these Eb can be zero (see Example 1.3.9), which is consistent with
our convention about the zero sheaf, but if E is not zero as a parabolic sheaf, than
necessarily we will have Eb 6= 0 for some U → X étale and b ∈ Bwt(U).

Now for the converse, assume that all the Eb’s are pure of dimension d, and that E is
not zero (otherwise there is nothing to prove). If by contradiction Ψ(E) is not pure, then
there is a non zero pure subsheaf Ψ(G) ⊆ Ψ(E), of dimension strictly less than d, say
d′ ≥ 0. Now pick U → X étale and b ∈ Bwt(U) such that Gb 6= 0.
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By the first part of the proof 0 6= Gb ⊆ Eb is pure of dimension d′, so Eb is non
zero and thus of dimension d > d′. In particular Eb is not pure, and this contradicts the
assumption.

In case the log structure of X is generically trivial, the maps between the pieces of a
torsion-free parabolic sheaf are injective.

Proposition 3.2.13. Let X be a noetherian log scheme with generically trivial log structure and
with a chart P → Div(X), and let j : P → Q be a Kummer extension of fine saturated monoids.
Take a torsion-free parabolic sheaf E ∈ Par(X, j). Then for any pair q, q′ ∈ Qwt such that q ≤ q′,
the morphism Eq → Eq′ is injective.

Proof. If Eq is zero there is nothing to prove.
Otherwise, by assumption we have a schematically dense open subscheme U ⊆ X on

which the log structure is trivial. Consequently the restriction of the projection XQ/P →
X to U is an isomorphism UQ/P

∼= U, and the morphism Eq → Eq′ is an isomorphism on
U. If K is the kernel of this morphism, it follows that K has dimension strictly less then
the dimension of X, but then since Eq is pure of maximal dimension by 3.2.10, we must
have K = 0, i.e. the map is injective.

Finally, we give the definition of a family of pure parabolic sheaves.

Definition 3.2.14. A family of pure d-dimensional parabolic sheaves on X with denominators
in B/A over a base scheme T is a coherent sheaf E ∈ Par(XT, jT) that is flat over T, and
such that for any geometric point t→ T, the pullback Et on Xt is pure of dimension d.

Now that we have these basic properties laid out we will discuss (semi-)stability, in
order to get a well-behaved moduli stack.

3.3 Generating sheaves and stability conditions

As in the case of sheaves on schemes, if we want to construct moduli spaces we need to
come up with some good notion of stability. The equivalence with coherent sheaves on
an algebraic stack together with the theory for moduli of coherent sheaves on algebraic
stacks of [Nir] suggest that a way to do this is to find a (canonical, ideally) generating
sheaf on the root stack XB/A. For generalities about generating sheaves see [Nir] and the
references therein.

Although root stacks are probably always global quotient stacks, so that they will
have generating sheaves, in general there does not seem to be a canonical choice of
such a sheaf. It is possible to single out distinguished generating sheaves in presence
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of a global chart for the logarithmic structure, or in slight greater generality, of a locally
constant sheaf of charts.

Another important aspect of this is the behavior of the stability with respect to the
maps between the root stacks, when we have a morphism of Kummer extensions. This
will be the main topic of the next chapter, where we will discuss a moduli theory with
varying denominators.

We will recall Nironi’s method along the way. We first give the definition of a gener-
ating sheaf, and recall how it is used to give a notion of Hilbert polynomial and slope.
The definition makes sense for X any tame Artin stack.

Definition 3.3.1. A locally free sheaf E of finite rank on X is a generating sheaf if for any
geometric point x → X the fiber Ex contains every irreducible representation of Stab(x).

Once we have a generating sheaf, we can define what Nironi calls the modified Hilbert
polynomial. We will drop the adjective “modified” for brevity.

Definition 3.3.2. The Hilbert polynomial (with respect to E ) of a coherent sheaf F ∈
Coh(X) is the Hilbert polynomial

PE (F) = P(π∗(F⊗ E∨)) ∈ Q[m]

of the coherent sheaf π∗(F⊗ E∨) on X, with respect to OX(1).

Note that, since π∗(− ⊗ E∨) preserves the dimension (see [Nir], Proposition 3.6),
PE (F) will be a polynomial of degree d where d = dim(F), and as usual we can write it
as

PE (F)(m) =
d

∑
i=0

αi(F)
i!

mi

where αi(F) are rational numbers, that depend also on E of course. Sometimes, when
the sheaf F is clear from the context, we will denote these coefficients just by αi

The number αd(F), which is always positive, will be called the multiplicity of the sheaf
F. If X is integral and F has maximal dimension, it coincides with the rank of the sheaf
π∗(F⊗ E∨) on X.

Definition 3.3.3. The reduced Hilbert polynomial or (generalized) slope of a coherent sheaf
F ∈ Coh(X) is the polynomial

pE (F) =
PE (F)
αd(F)

=
1
d!

md + . . . +
α0(F)
αd(F)

∈ Q[x].
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Remark 3.3.4. We are aware that the word “slope” is usually reserved to the quotient

µ(F) =
αd−1(F)
αd(F)

,

that in the case of curves is closely related to the ratio deg(F)/ rk(F), but nonetheless
in this document we will use it to mean the reduced Hilbert polynomial, since we will
never have to mention the “real” slope.

This slope will give a notion of (semi-)stable parabolic sheaves, and we will restrict
to that class in order to get well-behaved moduli stacks and moduli spaces. Before
describing how this happens (which we will do in Section 3.3.4), let us focus on the
choice of the generating sheaf.

3.3.1 The case of a variety with a divisor

To get some clues for the choice of the generating sheaf, let us look at the case of a pro-
jective variety X over k, equipped with the log structure induced by an effective Cartier
divisor. In this case, moduli spaces of parabolic sheaves with rational weights have been
constructed in [MY92], by generalizing the classical GIT construction of moduli spaces
of (semi-)stable coherent sheaves on a projective scheme. Their result in turn generalizes
the first results of Seshadri [Ses82] on curves.

Let us recall their definition of a parabolic sheaf. Let X be a projective smooth (con-
nected) scheme over k, and D ⊆ X an effective Cartier divisor.

Definition 3.3.5. A MY-parabolic sheaf E∗ on X is given by the following data:

• a coherent torsion-free sheaf E ∈ Coh(X),

• a sequence of real numbers a1, . . . , ak called weights, such that 0 ≤ a1 < a2 < · · · <
ak < 1, and

• a filtration E(−D) = Fk+1(E) ⊂ Fk(E) ⊂ · · · ⊂ F1(E) = E of E, where E(−D) is the
image of the natural map OX(−D)⊗ E→ E.

The rank of E∗ will be the rank of the torsion-free sheaf E.
From now on we will assume that the weights a1, . . . , ak are rational numbers. This is

crucial for the correspondence with quasi-coherent sheaves on a root stack to work, and
also for the moduli theory developed in [MY92] (the rationality assumption is on page
94). Moreover, in light of what follows it is more convenient to think about the opposites
−1 < −ak < · · · < −a1 ≤ 0.

Let us now describe explicitly how this definition is connected with our definition of
a parabolic sheaf.
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First observe that the divisor D induces a log structure on X, given by the morphism
L : N → Div(X) that sends 1 ∈ N to (OX(D), s), where s is the section of OX(D)

corresponding to the natural map OX → OX(D). This coincides with what we called the
“induced log structure” (which is “finer”) in Example 1.2.7 only if D is irreducible.

Given a MY-parabolic sheaf E, let us take n to be the least common multiple of the
denominators of the weights ai, and consider the system of denominators j : N→ 1

n N.
Now we define a parabolic sheaf, that we still denote by E ∈ Par(X, j), as follows.

Set ai = bi
n with bi ∈ N, and for q = a

n with −n < a ≤ 0 define E a
n
= Fi(E), where

−bi ≤ a < −bi−1, with the convention that b0 = 1 and bk+1 = −1. For an arbitrary
a
n ∈ Q, we set E a

n
= E a′

n
⊗ OX(bD), where −n < a′ ≤ 0, b ∈ N and a

n = a′
n + b, and

for a
n ≤

a′
n there is an obvious morphism E a

n
→ E a′

n
, which is either the identity or an

inclusion. Moreover by construction there is a pseudo-periods isomorphism, and this
gives a parabolic sheaf in our sense.

Conversely, given a parabolic sheaf E ∈ Par(X, j) such that the maps E a
n
→ E a′

n
are

all injective, we obtain a MY-parabolic sheaf by taking as weights the opposites of the
numbers i

n ∈ Q ∩ (−1, 0] such that E i−1
n
→ E i

n
is not an isomorphism, and the filtration

consisting of the sheaves E a
n

with −n ≤ a ≤ 0, but without repetitions.
This gives an equivalence between MY-parabolic sheaves and parabolic sheaves with

injective maps. The injectivity condition is implied by torsion-freeness of E, see Proposi-
tion 3.2.13.

From this description we see that the weights of the MY definition are nothing else
than (the opposites of) what we could call “jumping numbers” for a parabolic sheaf with
injective maps, i.e. the numbers i

n ∈ (−1, 0] where the subsheaf E i
n
⊆ E “jumps” with

respect to the preceding one.

Remark 3.3.6. If E∗ is a MY-parabolic sheaf and L ∈ Pic(X) is an invertible sheaf, then
there is a natural MY-parabolic sheaf E∗ ⊗ L obtained by tensoring everything with L. In
particular this gives for any m ∈ Z the MY-parabolic sheaf E∗(m) = E∗ ⊗OX(m).

In [MY92], in order to construct moduli spaces, they define a parabolic Hilbert poly-
nomial. Let us briefly recall their definitions and results.

Definition 3.3.7. The MY-parabolic Euler characteristic of a MY-parabolic sheaf E∗ is the
rational number

χMY(E∗) = χ(E(−D)) +
k

∑
i=1

aiχ(Gi),

where Gi is the quotient Fi(E)/Fi+1(E).
The MY-parabolic Hilbert polynomial of E∗ is the polynomial with rational coefficients

given by
PMY(E∗)(m) = χMY(E∗(m)),
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where E∗(m) = E∗ ⊗OX(m).
The MY-reduced parabolic Hilbert polynomial of E∗ is the polynomial

pMY(E∗) =
PMY(E∗)
rk(E∗)

.

Remark 3.3.8. The rank of E∗ is the rank of the torsion-free sheaf E. Note that, since
Gi = Fi(E)/Fi+1(E) is generically zero, if instead of using rk(E∗) we use the leading
coefficient of PMY(E∗) (as one does when dealing with pure sheaves, not necessarily
torsion-free), we would get a scalar multiple of pMY(E∗), which of course would then
give the same stability condition.

Definition 3.3.9. A parabolic subsheaf F∗ ⊆ E∗ of a MY-parabolic sheaf E∗ is a MY-
parabolic sheaf F∗ such that

• F ⊆ E is a subsheaf with E/F torsion-free,

• Fbi ⊆ Eaj for every i, where bi are the weights of F∗, and aj is the smallest weight of
E∗ such that aj ≥ bi.

Remark 3.3.10. This is slightly different from the stronger definition given in [MY92],
and on the other hand agrees with the one given later in [Yok93].

Definition 3.3.11. A MY-parabolic sheaf E∗ is (semi-)stable if for any parabolic subsheaf
F∗ ⊆ E∗ we have

pMY(F∗) (≤) pMY(E∗).

This notion of (semi-)stability has many properties resembling the ones of classical
(semi-)stability for coherent sheaves, for example the existence of Harder-Narasimhan
and Jordan-Hölder filtrations.

Now let us define the moduli functor for parabolic sheaves. Fix finitely many rational
numbers a1, . . . , ak with 0 ≤ a1 < . . . < ak < 1, polynomials H, H1, . . . , Hk and define for
a scheme T

MY(T) =

{
flat families of MY-parabolic sheaves E∗ on XT

with weights a1, . . . , ak and property (*)

}/
∼ .

where property (*) is: for any geometric point t → T, the restriction (E∗)t is semi-stable,
P((E)t) = H and P((E)t/Fi+1(E)t) = Hi, where P denotes the Hilbert polynomial on X.
We omit the dependence of the functor on the polynomials and the weights for brevity.

The equivalence relation ∼ is defined as follows: E∗ ∼ F∗ if there are global filtrations
of the two sheaves such that:
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• they restrict to Jordan-Hölder filtrations on every geometric point,

• the associated graded parabolic sheaves are flat over the base scheme, and differ by
an invertible sheaf coming from the base scheme.

Note that the polynomials Hi and H determine the parabolic Hilbert polynomial of (E∗)t.
Vice versa, if we fix the parabolic Hilbert polynomial we have finitely many choices for
H, H1, . . . , Hk, since fixing these is equivalent to fixing the Hilbert polynomials of the
pieces of the sheaf in [−1, 0). We also have a subfunctor MY ⊆ MY, corresponding to
families of stable MY-parabolic sheaves.

These functors satisfy some boundedness and openness properties. The following is
the main result of [MY92] and [Yok93] (in the latter the result is stated more generally
for parabolic Higgs bundles).

Theorem 3.3.12 ([MY92, Yok93]). The functor MY has a coarse moduli space M which is locally
of finite type and separated. If the family of parabolic sheaves with fixed data H, H1, . . . , Hk and
a1, . . . , ak is bounded (for example if char(k) = 0), then M is projective over k.

The subfunctor MY has a coarse moduli space M, which is an open subscheme of M.

To extend these result to general log schemes we aim to find in this particular case
a generating sheaf E on X = X 1

n N/N (for some fixed n) that gives the parabolic Hilbert
polynomial of Maruyama and Yokogawa, where the parabolic sheaves have weights in
1
n N.

A little thought produces the locally free sheaf

E = OX(D)⊕OX(2D) · · · ⊕ OX(nD) =
n⊕

i=1

OX(iD),

where D is the universal root on X of the pullback of the divisor D: in fact assume
we have a torsion-free parabolic sheaf E ∈ Par(X, j), with weights a1, . . . , ak, and thus
jumping numbers −ak, . . . ,−a1 ∈ (−1, 0] ∩ 1

n N. Let us write aj =
bj
n for bj ∈N.

The MY-parabolic Hilbert polynomial of the MY-parabolic sheaf corresponding to E
is

PMY(E∗)(m) = χ(E(−D)(m)) +
k

∑
i=1

bi

n
χ(Gi(m))

=
1
n

(
nχ(E(−D)(m)) +

k

∑
i=1

biχ(Fi(E)(m)/Fi+1(E)(m))

)

=
1
n

(
nχ(E(−D)(m)) +

k

∑
i=1

bi(χ(Fi(E)(m))− χ(Fi+1(E)(m)))

)
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=
1
n

(
(n− bk)χ(E(−D)(m)) +

k−1

∑
i=0

(bi+1 − bi)χ(Fi+1(E)(m)))

)
where in the last line b0 = 0.
On the other hand the Hilbert polynomial we get by using the sheaf E above is

PE (E)(m) = P(π∗(E⊗ E∨))(m) = P

(
n⊕

i=1

π∗(E⊗OX(−iD))
)
(m)

=
n

∑
i=1

P
(

E− i
n

)
(m) =

n

∑
i=1

χ
(

E− i
n
(m)

)
.

(recall that E− i
n
= π∗(E⊗OX(−iD))) and this last expression coincides with PMY(E∗)(m)

after dividing by n, since among the sheaves E− i
n
, with 1 ≤ i ≤ n there are exactly n− bk

copies of E(−D) = Fk+1(E) (just to the right of −1), exactly bk − bk−1 copies of Fk(E),
and so on. Of course the constant factor 1

n does not affect the notion of (semi-)stability
that we get.

Remark 3.3.13. This says that the notion of (semi-)stability for MY-parabolic sheaves
is equivalent to the notion of stability when we use the generating sheaf E introduced
above, so the two moduli theories that we get should be the same.

There is a minor detail, though, related to the fact that by working on the root stack
X = X 1

n N/N we only bound the denominators of the weights (in the divisibility sense),
when in [MY92] and [Yok93], the authors fix the jumps of the parabolic sheaves, and the
parabolic Hilbert polynomials of the quotients Fi(E)/Fi+1(E).

We will return later on this point, and describe a comparison between our moduli
stacks/spaces and Maruyama and Yokogawa’s (Section 3.3.5).

3.3.2 The general case

Now we turn to the general case of a log scheme X with a global chart L : P → Div(X),
and a Kummer extension j : P → Q, that gives a chart for the system of denominators
A → B. The previous example suggests the following construction: since Q is sharp
and fine, its finite number of indecomposable elements are a minimal set of generators
(see Proposition 1.1.13), call them q1, . . . , qr. Moreover, call di the order of the image of
qi ∈ Qgp in the quotient Qgp/Pgp.

If Λ : Q→ Div(X) is the universal lifting of the log structure of X, for any qi we have
an associated invertible sheaf Λi = Λ(qi) on X, and we consider the locally free sheaf

E = EQ/P =
⊕

1≤ai≤di

Λ

(
∑

i
aiqi

)
=

⊗
i=1,...,r

 ⊕
j=1,...,di

Λ⊗j
i

 .
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Note that if X is the log scheme given by a variety with an effective Cartier divisor, then
this sheaf corresponds to the one described in the last section: in fact for N ⊆ 1

n N, we
have the only indecomposable element 1

n , and the order d is exactly n, so that

E =
⊕

1≤i≤n

Λ
(

i
n

)
=

⊕
1≤i≤n

OX(iD),

since in this case the universal DF structure of X is the functor Λ : 1
n N → Div(X) that

sends 1
n to the universal root (OX(D), s) of the pullback of the divisor D.

We will denote this sheaf by E when the Kummer extension is clear, and by EQ/P
when it needs to be specified. In particular we will write En for E 1

n P/P, or more generally
E 1

n Q/P for a fixed Kummer extension P ⊆ Q, which will be clear from the context.

Remark 3.3.14. One could argue that the sheaf

E ′ =
⊕

0≤ai<di

Λ

(
∑

i
aiqi

)
=

⊗
i=1,...,r

 ⊕
j=0,...,di−1

Λ⊗j

 .

in which we take OX instead of Λ⊗di
i (which is the pullback of something from X, so

corresponds to the trivial representation of the stabilizer of any point of X) in each
summand would be somewhat more natural. In fact one could twist different pieces
of the direct sum with an invertible sheaf coming from X and still have a perfectly good
generating sheaf.

The choice of the one we singled out is guided by the fact that in the case of a variety
with a divisor it gives back the (semi-)stability of Maruyama and Yokogawa, and, as we
will see in the next chapter, it will allow semi-stability to be preserved after changing
denominators, something that does not happen for example with the generating sheaf
written down in the last formula. Actually we will also need to use the alternative sheaf
E ′ in that instance, but only as an accessory.

Proposition 3.3.15. The locally free sheaf E is a generating sheaf on X.

Proof. Recall from that the global chart for the system of denominators gives the follow-
ing description for the stack of roots: the map X → [Spec(k[P])/P̂] corresponding to the
chart P→ Div(X) for the logarithmic structure of X gives a P̂-torsor η : E→ X, and X is
isomorphic to the quotient stack [E×Spec(k[P]) Spec(k[Q])/Q̂], where the action of Q̂ on
the first factor is induced by the action of P̂ on E and the natural homomorphism Q̂→ P̂.
In particular a quasi-coherent sheaf on X corresponds to a Q̂-equivariant quasi-coherent
sheaf on E×Spec(k[P]) Spec(k[Q]), or equivalently to a Qgp-graded quasi-coherent sheaf of
modules over the sheaf of rings B = A⊗k[P] k[Q], where A = η∗OE.
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Now fix a geometric point p → X. We will show that the fiber Ep = p∗E at p of
E contains every irreducible representation of the stabilizer group Stab(p) ⊆ Ĝ ⊆ Q̂.
Notice that being a closed subgroup of a diagonalizable group we will have Stab(p) =

D[M] for a quotient M of the group G, and the action of Stab(p) on Ep will correspond
to an M-grading. Moreover since Stab(p) is diagonalizable, irreducible representations
correspond to characters, so what we need to verify is that in the M-grading every piece
is non zero.

This grading is obtained as follows: the Qgp-grading on the sheaf corresponding to
E on E×Spec(k[P]) Spec(k[Q]) is inherited by the various summands, and by construction
the sheaf corresponding to Λi = Λ(qi) is in degree qi. This gives a Qgp grading on
Ep by pulling back, and we finally get the M-grading by means of the homomorphism
Qgp → G → M.

More explicitly, following through the above we find

Ep ∼=
⊕

m∈M

k(p)⊕a(m)

where a(m) is the number of r-tuples (e1, . . . , er) of integers such that 0 < ei ≤ di and
e1m1 + . . . + ermr = m, where mi is the image of qi in M. Since the qi’s generate G, the
mi’s will generate M (and still have order at most di), so a(m) ≥ 1 for any m. This means
that every character of Stab(p) appears in Ep, so E is a generating sheaf on X.

This settles the choice of a generating sheaf in the case where there is a global chart.
One would hope that this construction could be generalized to an arbitrary log scheme,
by patching the local generating sheaves on open subsets where there is a chart. Unfor-
tunately, it is not so clear how to do this.

Example 3.3.16. Let us look at the simplest example of a log scheme coming from a
normal crossing divisor, but not simple normal crossing.

Take X to be a projective smooth surface over k, with an irreducible curve D with one
ordinary node p ∈ D ⊆ X as effective divisor, inducing a log structure L : A → DivX.
In this example X does not have a global chart: it has a chart with monoid N on the
complement of the node U = X \ {p}, and one with N2 in some étale neighborhood
V → X of the node p, where the two branches are separated, call them D1, D2.

Let us say we are considering square roots, so let X,U,V denote the root stacks
of X, U, V (the last two with the pullback log structure) with respect to the Kummer
extensions A → 1

2 A, N → 1
2 N and N2 → 1

2 N2 respectively. Our construction gives us
generating sheaves EU and EV on the root stacks of U and V, and the idea would be
to glue them along the intersection U×X V, which is none other than the root stack of
V \ {q}, where q is the preimage of the node.
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It is clear though that this can not work for a pretty stupid reason: the sheaf EU =

OU(D)⊕OU(2D) has rank 2 and EV = OV(D1 +D2)⊕OV(2D1 +D2)⊕OV(D1 + 2D2)⊕
OV(2D1 + 2D2) has rank 4.

Then one could think of constructing a generating sheaf on X by taking OX(D) ⊕
M ⊕ N, where M and N have ranks 2 and 1 respectively, and are obtained by descent
from OV(2D1 + D2)⊕OV(D1 + 2D2) and OU(2D)⊕OU(D), and OV(2D1 + 2D2) and
OU(2D) respectively (we will see that something like this works in the equivariant case
described below).

This attempt also fails: the sheaves OV(2D1 + 2D2) and OU(2D) are naturally iden-
tified after restricting to U×X V, so they give the desired sheaf N by descent, but there
is no natural way to identify the restrictions of OV(2D1 + D2) ⊕ OV(D1 + 2D2) and
OU(2D)⊕OU(D). The “moral” reason for this is that in V one can tell apart the branches
of the curve around the node, and in U one can not do it.

This shows that the obvious strategy will not work in general. The next example
will demonstrate that if we add some structure to the situation, then we can obtain a
generating sheaf.

Example 3.3.17. A case where we get a generating sheaf is the following: assume that
the X described in the last example admits a µ2-cover Y → X (assume char(k) 6= 2, for
simplicity) from another surface Y, that has two irreducible smooth curves D1, D2 ⊆ Y
that are exchanged by the action, and that map to D ⊆ X. In other words there is
an involution µ : Y → Y that exchanges D1 and D2, and we have X = Y/µ and D =

(D1 ∪ D2)/µ.
For example, we could take a curve C of genus 2 and fix two Weierstrass points

p, q ∈ C. Then we can embed C in its Jacobian J, a surface, by c 7→ OC(c − p), and
consider the translation C̃ of C by the point of order 2 given by OC(q− p). Since the self
intersection C2 is 2 and C ∩ C̃ contains OC and OC(q− p), these are the only points in
the intersection and the intersection is transverse. The quotient of J by the translation by
OC(q− p) gives our X, and the image of the union C ∪ C̃ is the nodal curve.

Back to the general situation, note first of all that the morphism of log schemes
f : Y → X (where the log structures are given by the divisors) is strict, so the following
diagram is cartesian

Y
f //

πY
��

X

πX
��

Y
f // X

where Y and X are the root stacks parametrizing square roots of the log structures.
In particular f : Y → X is a µ2-torsor (call µ : Y → Y the corresponding involu-

tion), and we can use descent for quasi-coherent sheaves with respect to f : note that we



3.3. GENERATING SHEAVES AND STABILITY CONDITIONS 117

have natural isomorphisms µ∗OY(D1) ∼= OY(D2) and µ∗OY(D2) ∼= OY(D1), so both
OY(2D1 +D2)⊕OY(D1 + 2D2) and OY(2D1 + 2D2) will be µ2-equivariant. By descent
we get two locally free sheaves M and N on X of rank 2 and 1 respectively, and by
construction the locally free sheaf

E = OX(D)⊕M⊕ N

is a generating sheaf on X.

This example can be generalized to a situation in which we have what we call a
locally constant sheaf of charts for the log structure of X, which is something that binds
together charts on different open subsets of X, and consequently will bind together the
corresponding generating sheaves on such opens.

In the example above, this sheaf is obtained by descent from the constant sheaf of
monoids N2

Y on Y, glued to itself along f , using the morphism N2 → N2 that switches
the two coordinates.

3.3.3 Locally constant sheaves of charts

We introduce the additional structure that allows us to define a generating sheaf.

Definition 3.3.18. Let X be a log scheme with DF structure L : A → DivX and fix a
system of denominators j : A→ B. A locally constant sheaf of charts for this data is a sheaf
of monoids Q on X, together with the following:

• an étale covering {Ui → X}i∈I and isomorphisms φi : Q|Ui
∼= (Q0)Ui , where Q0 is a

fixed fine sharp monoid (hence the “locally constant”),

• a morphism of sheaves of monoids α : Q→ B, which is a cokernel (hence the “sheaf
of charts”),

• for every i ∈ I, a fine monoid Pi, a Kummer morphism βi : Pi → Q0 and a morphism
of monoids Pi → A(Ui), that together with α and the φi’s gives a chart for j on Ui.

We will refer to a locally constant sheaf of charts as above by writing (Q, Q0, {Ui →
X}i∈I , Pi → Q0).

Remark 3.3.19. Clearly a global chart for A→ B gives a locally constant sheaf of charts.
Another particular case of interest is the following: the sheaf A has a locally constant

sheaf of charts, i.e. a sheaf of monoids P which is locally (P0)Ui for some fixed fine and
sharp monoid P0 and with a cokernel P→ A, as in the definition, and B = 1

n A for some
n ∈N.
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The datum of a locally constant sheaf of charts is essentially equivalent to that of
a torsor ϕ : Y → X for a finite group G, such that ϕ∗B has a global chart, which is in
some sense equivariant with respect to G, as in example 3.3.17. This is the content of the
construction that follows.

Suppose we have a locally constant sheaf of charts, with the same notation as above.
Consider the sheaf F = Isom(Q, Q0) on the big étale site of X, which associates to a
map f : T → X the set Isom(Q, Q0)(T) = Isom( f ∗Q, (Q0)T) of isomorphisms of sheaves
of monoids, and acts in the obvious way on the morphisms. Notice that this is a locally
constant sheaf for the étale topology on X, and specifically we have isomorphisms F|Ui

∼=
Isom((Q0)Ui , (Q0)Ui) = Aut(Q0)Ui .

Set G = Aut(Q0), the group of monoid automorphisms of Q0, and notice that this is a
finite group: in fact since Q0 is fine and sharp, it has a finite number of indecomposable
elements (see Proposition 1.1.13), and those must be permuted by any automorphism,
which in turn is completely determined by the induced permutation.

Being a finite locally constant sheaf, F is represented by a scheme Y over X, call
ϕ : Y → X the structure morphism.

Remark 3.3.20. In other words, by the Yoneda Lemma, we have a functorial bijection

HomX(T, Y) = {( f , η) where f : T → X and η : f ∗Q ∼= (Q0)T}

and the identity idY ∈ HomX(Y, Y) corresponds to a universal object (ϕ, ξ), with ξ : ϕ∗Q ∼=
(Q0)Y, such that for any morphism f : T → X and η : f ∗Q ∼= (Q0)T there is a unique mor-
phism f : T → Y such that f = ϕ ◦ f and the following diagram commutes

f
∗
ϕ∗Q

��

f
∗
ξ // (Q0)T

f ∗Q,

η

::

where the vertical arrow is the canonical isomorphism.

In particular note that on Y we have ξ : ϕ∗Q ∼= (Q0)Y and ϕ∗α : ϕ∗Q → ϕ∗B is still a
cokernel, since α is. Composing the two we get a cokernel (Q0)Y → ϕ∗B, corresponding
to a chart Q0 → (ϕ∗B)(Y) for the pullback ϕ∗B.

Moreover since F is a G-torsor by means of the obvious left action obtained by com-
position, ϕ is also a G-torsor. Denote by Y the stack of roots of the DF structure on Y
with respect to the kummer morphism ϕ∗(A)→ ϕ∗(B), which is just the fibered product
X ×X Y. Notice that the induced map ϕ̃ : Y → X is a representable G-torsor, for the
G-action induced on Y by that on Y.
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Now our strategy is to take a “naturally defined” generating sheaf on Y, which is
G-equivariant, by generalizing slightly the construction of 3.3.2, and then get by descent
a sheaf on X, which will be our generating sheaf.

We start by defining the generating sheaf E on Y: call {q1, . . . , qr} the indecomposable
elements of Q0. Notice that this time the monoid giving the chart for the DF structure
ϕ∗A of Y is not the same over all of Y: we have an étale covering {Yi → Y}i∈I induced by
the covering {Ui → X}i∈I in the definition of the sheaf of charts, and on each Yi we have
a chart βi : Pi → Q0 for the kummer morphism ϕ∗A → ϕ∗B. Let us set Gi = Q0

gp/Pgp
i

with projection πi : Qgp
0 → Gi, and this time put

di = gcd{ord(πi( f (qi))) for f ∈ Aut(Q0)},

where ord is the order of an element in the finite group Gi.
Finally denote by Λ : Q0 → Div(Y) the pullback of the universal DF structure on X

along the projection ϕ̃ : Y→ X, and set Λi = Λ(qi), and

E =
⊕

1≤ai≤di

Λ

(
∑

i
aiqi

)
=

⊗
i=1,...,r

 ⊕
j=1,...,di

Λ⊗j
i

 .

as in 3.3.2.
Since ϕ̃ : Y→ X is a representable G-torsor, to give E the structure of a G-equivariant

sheaf we have to give an isomorphism λ : α∗E ∼= π∗2E , where α, π2 : Y×X G → Y are
the action and the second projection, that satisfies a compatibility condition on the triple
product Y×X G ×X G. Here we are considering the finite group G as a relative group
scheme over X in the usual way, as G = äg∈G X, so in particular we have Y×X G ∼=
äg∈G Y, and the action corresponds to morphisms ψ(g) : Y→ Y for g ∈ G. The resulting
map ψ : G → AutX(Y) is an injective group homomorphism, so in particular all the ψ(g)
are automorphisms. All of this holds for Y too, and from now on we will make the
following abuse of notation: we will write simply g in place of ψ(g), and also to denote
the corresponding automorphism Y → Y over X.

The above discussion shows that in order to give the isomorphism λ as above, we can
equivalently give isomorphisms λg : g∗E ∼= E for g ∈ G, satisfying the natural compati-
bility property with respect to composition.

Proposition 3.3.21. There are canonical isomorphisms λg : g∗E ∼= E for g ∈ G, such that for
any g, h ∈ G we have λg ◦ g∗λh = λhg : (hg)∗E ∼= E .

Proof. We will show that there are canonical isomorphisms g∗Λ(qi) ∼= Λ(g(qi)) for each
i, compatible with composition in G. Putting all of those and their various tensor powers
together, we will get isomorphisms λg : g∗E ∼= E with the desired properties.
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First of all let us fix g ∈ G, and describe the pullback g∗F for a quasi-coherent sheaf

on Y: given an étale map f : U → Y from a scheme, we have (g∗F)(U) = F(U
g◦ f−→ Y)

as an OU(U)-module.
Secondly, by unraveling the definitions one checks that the map g(U) : Y(U)→ Y(U)

takes an object of Y, which will be a morphism a : U → Y together with a lifting
a∗ϕ∗B→ DivU of the pullback of the DF structure ϕ∗A→ DivY to U, to the composition
g ◦ a, together with the induced lifting a∗g∗ϕ∗B → DivU , obtained using the canonical
isomorphism a∗g∗ϕ∗B ∼= a∗ϕ∗B (recall that ϕ ◦ g = ϕ).

Putting these facts together, the conclusion follows from the claim that we have a
commutative diagram

(Q0)Y

gY

��

// ϕ∗Q

can
��

(Q0)Y // g∗ϕ∗Q

of sheaves of monoids on Y, where all the maps are isomorphisms, can stands for the
canonical isomorphism (coming from ϕ ◦ g = ϕ), and the horizontal arrows are the maps
corresponding to idY (top one) and g : Y → Y (bottom one) in the Yoneda correspondence
described in Remark 3.3.20. In other words the top arrow is ξ−1, and the bottom one is
g∗ξ−1, and the equality to prove is

can ◦ ξ−1 = g∗ξ−1 ◦ gY. (3.3.22)

Let us show that the conclusion follows from this: in fact, g∗Λ(qi)(U) for an étale f : U →
Y will be Λ(qi) applied to the composition U → Y

g→ Y, so we have to ask ourselves
what is the image of qi ∈ Q0 in Div(U), with respect to the morphism Q0 → Div(U)

coming from the composition

(Q0)U ∼= f ∗φ∗Q ∼= (g ◦ f )∗ϕ∗Q→ DivU

where the first two maps are the top row and the right one of the preceding diagram,
pulled back to U. The above claim shows that this image is precisely Λ(g(qi)).

To prove the claim we need to give names to various morphisms of sheaves of
monoids: recall from above that a morphism f : Y → Y over X corresponds to an
isomorphism f ] : ϕ∗Q ∼= (Q0)Y. Let us put α( f ) = f ] ◦ ξ−1, where ξ : ϕ∗Q ∼= (Q0)Y
is the universal isomorphism of the Yoneda correspondence. Then one can check that
α : AutX(Y)→ Aut((Q0)Y) is an isomorphism of groups, and in particular for g ∈ G, we
have α(ψ(g)) = gY : (Q0)Y → (Q0)Y.

Writing down how f ] is obtained as a pullback of the universal object ξ, we get that, if
we denote by β( f ) : ϕ∗Q ∼= f ∗ϕ∗Q the canonical isomorphism, then β( f ) = f ∗(ξ−1) ◦ f ].
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Now using these equalities we get

β( f ) ◦ ξ−1 = f ∗ξ−1 ◦ f ] ◦ ξ−1 = f ∗ξ−1 ◦ α( f ),

and applying this to g ∈ G seen as the corresponding g : Y → Y, we get exactly the
equality 3.3.22.

The statement about the composition can again be checked on the single LQ0(qi), and
boils down to a similar calculation, using the commutative diagram

(Q0)Y

gY

��

// ϕ∗Q

��
(Q0)Y //

hY
��

g∗ϕ∗Q

��
(Q0)Y // g∗h∗ϕ∗Q.

By descent along torsors, the data given in the previous proposition give a locally
free sheaf E ∈ Coh(X).

Proposition 3.3.23. The sheaf E is a generating sheaf on X.

Proof. Take a geometric point p → X. Since the map Y→ X is étale and surjective there
exists a lifting q→ Y of p, so that Ep = Eq, and moreover there is an index i ∈ I such that
the image of p in X is in the image of Ui → X, where {Ui → X}i∈I is an étale covering
that satisfies the requirement in the definition of a locally constant sheaf of charts.

By construction of Y we have Stab(q) = Stab(p) ⊆ Ĝi ⊆ Q̂0, so it suffices to verify
that every character of Stab(q) = D[M] appears in the decomposition of the k(q)-vector
space Eq for the action of Stab(q), and this is true by the same argument used in the proof
of proposition 3.3.15, since the images of the qi’s will generate both Gi and its quotient
M.

3.3.4 Results

From now on we will assume that the log scheme X has a locally constant sheaf of charts
(Q, Q0, {Ui → X}i∈I , Pi → Q0), that may in particular be a global chart P → Q for the
Kummer extension j : A→ B. In fact this last situation will come up more often than the
more general one, since we will be able to say more with a global chart.

In this situation we can produce a generating sheaf E on the root stack X = XB/A,
and we can apply Nironi’s theory [Nir] for moduli of coherent sheaves on an algebraic
stack. In this section we will summarize the notions and results that we get from it.



122 CHAPTER 3. MODULI OF PARABOLIC SHEAVES WITH FIXED WEIGHTS

The proof of the results that are simply stated in this section can all be found in [Nir].

Remark 3.3.24. In order to apply Nironi’s theory we have to assume that the root stack
XB/A is Deligne–Mumford. For example, this is assured by the condition the char(k)
does not divide the order of the quotient Bgp

x /Agp
x for any geometric point x → X (as in

1.2.31). We will include this assumption in our treatment from now on.
This will force us to assume that char(k) = 0 in the next chapter, since we will have

to consider a cofinal system of root stacks, and, for example if we consider the system of
root stacks Xn, it would do no good to exclude indices divisible by some fixed prime p.

We remark that it seems likely Nironi’s theory also applies to tame Artin stacks,
without the Deligne–Mumford assumption. If this were true our results would hold in
arbitrary characteristic.

Notation 3.3.25. From now on we will use the same letter to denote a coherent sheaf
E ∈ Coh(X) on the root stack and the corresponding parabolic sheaf Φ(E) ∈ Par(X, j).
In particular we will denote by Eb the piece π∗(Φ(E)⊗ Λb) ∈ Coh(X) of the parabolic
sheaf corresponding to the element b ∈ Bwt(U).

From now on we will be drawing parabolic sheaves more often. We recall how to
visualize them, in the case where there is a global chart P→ Q for the system of denom-
inators: one has to picture the lattice Qgp, and imagine a quasi-coherent sheaf Eq on X
on each point q of the lattice. Moreover there are maps Eq → Eq′ exactly when q ≤ q′, in
the sense that there exists q′′ ∈ Q such that q′ = q + q′′, and if p ∈ P, then the sheaf Eq+p

is isomorphic to Eq ⊗ Lp, and the map Eq → Eq+p corresponds to multiplication by the
distinguished section of Lp. In practice it will be enough to draw a small portion of the
sheaf, which will determine it uniquely.

The starting point is the definition of the generalized slope pE (E) ∈ Q[m] for a
parabolic sheaf E ∈ Par(X, j) (Definition 3.3.3). We recall that it is defined as

pE (E)(m) =
PE (E)(m)

αd(E)
=

χ(π∗(E⊗ E∨)(m))

αd(E)

where d is the degree of the Hilbert polynomial PE (E) = P(π∗(E⊗ E∨)), and αd(E) is d!
times its leading coefficient, a positive rational number.

From now on this will be simply called the slope of E, and if there is no risk of
confusion we will omit to mention E in Euler characteristics, Hilbert polynomials and
slopes.

If the Kummer extension j : A→ B has a global chart P→ Q, then E is a sum of line
bundles and π∗(E⊗ E∨) also splits as a direct sum

π∗(E⊗ E∨) = π∗(E⊗ (
⊕

1≤ai≤di

Λ⊗a1
1 ⊗ · · · ⊗Λ⊗ar

r )∨)
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=
⊕

1≤ai≤di

π∗(E⊗ (Λ⊗a1
1 ⊗ · · · ⊗Λ⊗ar

r )∨) =
⊕

1≤ai≤di

E−∑ aiqi

of pieces of E in some kind of (negative) “fundamental region” for the Kummer extension
P→ Q.

We will give a name to the pieces of E that show up in this decomposition.

Definition 3.3.26. The fundamental pieces of E are the pieces Eq with q = −∑ aiqi and
1 ≤ ai ≤ di, where qi are the indecomposable elements of Q and di is the order of the
image of qi in the quotient Qgp/Pgp.

Example 3.3.27. For example, if P = N2 and we are considering the extension N2 →
1
2 N2, then for a parabolic sheaf E ∈ Par(X, j) the fundamental pieces are the four sheaves
in the “negative unit square”

−1 − 1
2

E−1,− 1
2

// E− 1
2 ,− 1

2
− 1

2

E−1,−1

OO

// E− 1
2 ,−1

OO

−1

A similar description holds if P is free and we are considering the extension P→ 1
n P.

From the fundamental pieces of a parabolic sheaf we can reconstruct all of its pieces,
since for any q ∈ Qgp there is a p ∈ Pgp such that q + p = −∑ aiqi for 1 ≤ ai ≤ di, and
consequently Eq ∼= E−∑ aiqi ⊗ L∨p . We can even reconstruct the morphisms between the
pieces of E (and then the whole sheaf), from the morphisms between the fundamental
pieces and, for example, all morphisms

E(− ∑
i 6=i0

aiqi − qi0)→ E(− ∑
i 6=i0

aiqi)

for varying i0 and ai.
In example 3.3.27, these additional morphisms would be the ones going up and right

of the negative unit square, to the pieces of E “lying on the coordinate axes”, i.e. the
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thicker arrows in the following picture

−1 − 1
2 0

E−1,−1 ⊗ L0,1 // E− 1
2 ,−1 ⊗ L0,1 // E−1,−1 ⊗ L1,1 0

E−1,− 1
2

//

KS

E− 1
2 ,− 1

2
+3

KS

E−1,− 1
2
⊗ L1,0

OO

− 1
2

E−1,−1

OO

// E− 1
2 ,−1

+3

OO

E−1,−1 ⊗ L1,0

OO

−1.

Remark 3.3.28. Note that if P is not free, then it is not necessarily the case that every
fundamental piece shows up exactly once in π∗(E⊗ E∨). Take for example

P = 〈p, q, r | p + q = 2r〉,

the Kummer extension P ⊆ 1
4 P, and denote by Λ1 = Λ( 1

2 p), Λ2 = Λ( 1
2 q) and Λ3 =

Λ( 1
2 r), where Λ : 1

2 P→ DivX is the universal DF structure on the root stack X. Note that
since p + q = 2r, we have Λ1 ⊗Λ2 ∼= Λ⊗2

3 . Then the generating sheaf is

E =

(
4⊕

i=1

Λ⊗i
1

)
⊗
(

4⊕
i=1

Λ⊗i
2

)
⊗
(

4⊕
i=1

Λ⊗i
3

)
and for example the piece Λ⊗2

1 ⊗Λ⊗2
2 ⊗Λ3 shows up also as Λ1 ⊗Λ2 ⊗Λ⊗3

3 , since in 1
4 P

we have

2
(

1
4

p
)
+ 2

(
1
4

q
)
+

1
4

r =
1
4

p +
1
4

q + 3
(

1
4

r
)

.

So accordingly, the fundamental piece E(−2
( 1

4 p
)
− 2

( 1
4 q
)
− 1

4 r) will appear twice in
π∗(E⊗ E∨).

From the splitting of π∗(E⊗ E∨) described above we also see that

PE (E) = P(π∗(E⊗ E∨)) = P(
⊕

1≤ai≤di

E−∑ aiqi) = ∑
1≤ai≤di

P(E−∑ aiqi)

is the sum of the Hilbert polynomials of the fundamental pieces of F. Consequently,
assuming that the fundamental pieces of F all have dimension d (and recall that by our
conventions the zero sheaf is pure of any dimension), for the slope of F we have

pE (E) =
∑1≤ai≤di

P(E−∑ aiqi)

∑1≤ai≤di
αd(E−∑ aiqi)

= ∑
1≤ai≤di

γ(ai)p(E−∑ aiqi) (3.3.29)
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where d is the dimension of E, and

γ(ai) =
αd(E−∑ aiqi)

∑1≤ai≤di
αd(E−∑ aiqi)

are rational numbers such that 0 ≤ γ(ai) ≤ 1 and ∑1≤a1≤di
γ(ai) = 1.

In other words the slope of the parabolic sheaf E (provided that all its non-zero pieces
are of the same dimension) is a weighted mean of the slopes of its non-zero fundamental
pieces. The condition about the pieces is satisfied in particular if E is pure, as we saw in
Proposition 3.2.10.

Definition 3.3.30. A parabolic sheaf is (semi-)stable if it is pure, and for any subsheaf
G ⊆ E we have

pE (G) (≤) pE (E).

As is usually done in moduli theory of sheaves, we write (≤) to indicate that one
should read ≤ when he considers semi-stability, and < when he considers stability.

This notion of stability has many properties of the classical notion of Gieseker stability
on a projective scheme.

Remark 3.3.31. For example, as in the classical case, (semi-)stability can be checked on
saturated subsheaves G ⊆ E, i.e. subsheaves such that the quotient E/G is pure of the
same dimension as E. This implies that line bundles are all stable.

Moreover, a direct sum E1 ⊕ E2 is never stable, and is semi-stable if and only if E1

and E2 are semi-stable of the same slope.

Let us see some examples to get a feeling for this notion of (semi-)stability.

Example 3.3.32. It is quite clear that if the fundamental pieces of a parabolic sheaf E
are all (Gieseker) (semi-)stable (as coherent sheaves on X, with respect to the same po-
larization that we fixed at the beginning), then E will be (semi-)stable. In fact, any of
fundamental pieces Fq of any subsheaf F ⊆ E are subsheaves Fq ⊆ Eq are subsheaves of
the corresponding fundamental piece of E, and by (semi-)stability of Eq we have

P(Fq)α
d(Eq) (≤) P(Eq)α

d(Fq)

where P is the ordinary Hilbert polynomial on X, and αd is its leading coefficient.
By summing on the fundamental pieces and diving by the sum of the αd’s, we get

exactly
pE (F) (≤) pE (E)

so E is (semi-)stable. In particular if all the fundamental pieces of a parabolic sheaf are
line bundles, then it is semi-stable.
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The following two results are also identical to the corresponding ones for classical
moduli theory of sheaves. They provide filtrations that “break up” a parabolic sheaf in
semi-stable pieces, and a semi-stable parabolic sheaf in stable pieces.

Proposition 3.3.33 (Harder-Narasimhan filtration). For any parabolic sheaf E ∈ Par(X, j)
there is a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek ⊂ Ek+1 = E

such that

• the quotients Ei/Ei−1 are semi-stable for i = 1, . . . , k + 1; call pi the slope pE (Ei/Ei−1),

• the slopes are such that p1 > · · · > pk+1.

Moreover this filtration is unique, and it is called the Harder-Narasimhan filtration of the
parabolic sheaf E.

Proposition 3.3.34 (Jordan-Hölder filtration). For any semi-stable parabolic sheaf E ∈ Par(X, j)
there is a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fh ⊂ Fh+1 = E

such that the quotients Fi/Fi−1 are stable with slope pE (E) for i = 1, . . . , h + 1.
This filtration is not unique, but the set {Fi/Fi−1}i=1,...,h+1 of partial quotients of the filtration

is unique, as is their direct sum

gr(E) =
h+1⊕
i=1

Fi/Fi−1,

sometimes called the associated graded sheaf of E.
Any such filtration is called a Jordan-Hölder filtration of the parabolic sheaf E.

Note that since the quotients Fi/Fi−1 of the above filtration are stable with the same
slope, the parabolic sheaf gr(E) is semi-stable with the same slope as E.

Definition 3.3.35 (S-equivalence). Two parabolic sheaves E, E′ ∈ Par(X, j) are said to be
S-equivalent if their associated graded sheaves gr(E) and gr(E′) are isomorphic.

Equivalently one can say that the sets {Fi/Fi−1} and {F′i /F′i−1} of quotients of a
Jordan-Hölder filtrations of the two sheaves are the same, i.e. such quotients are pairwise
isomorphic.

Recall that a semi-stable sheaf is called polystable if it is a direct sum of stable sheaves,
which then must all have the same slope. Every parabolic semi-stable sheaf E ∈ Par(X, j)
is S-equivalent to exactly one polystable sheaf, the sheaf gr(E).

The notion of (semi-)stability satisfies some openness and boundedness conditions,
as shown in [Nir]. We summarize the final product of the theory.
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Fix a polynomial H ∈ Z[x], and define the stack Mss
H over (Sch) having as objects

of Mss
H(T) for a scheme T families of parabolic sheaves E ∈ Par(XT, jT) such that for

every geometric point t→ T, the restriction Et ∈ Par(Xt, jt) is pure and semi-stable with
Hilbert polynomial H, and as arrows isomorphisms of parabolic sheaves. The pullback
Mss

H(T)→Mss
H(S) for S→ T is the pullback of parabolic sheaves we discussed earlier.

Note that of course this stack also depends on the system of denominators A → B,
but we omitted it in the notation to keep it lighter.

Denote by Ms
H ⊆ Mss

H the subcategory parametrizing families of parabolic sheaves
that are stable on the fibers, instead of merely semi-stable. This is an open substack.

Remark 3.3.36. To define (semi-)stability on the base change Xt = X ×k Spec(k(t)) we
use the pullback of the generating sheaf E that we have on X along the natural map
(Xt)B/A → XB/A = X.

Here is the result that we obtain from [Nir, Section 6].

Theorem 3.3.37. Let X be a projective log scheme with a DF structure L : A → DivX and
j : A → B a system of denominators with a locally constant sheaf of charts. Moreover assume
that the root stack XB/A is Deligne–Mumford.

Then the stack Mss
H of semi-stable parabolic sheaves is an Artin stack of finite type over k,

and it has a presentation as a global quotient stack [Q/GLN,k], where Q is an open subscheme of
a certain quot scheme. Moreover it has a good (resp. adequate, in positive characteristic) moduli
space in the sense of Alper [Alp12, Alp], that we denote by Mss

H. This moduli space is a projective
scheme, constructed with GIT techniques.

The open substackMs
H ⊆ Mss

H of stable sheaves also has a good moduli space Ms
H, which is

an open subscheme of Mss
H, and the mapMs

H → Ms
H is a Gm-gerbe.

Some comments about this theorem.

Remark 3.3.38. We should have included also the locally constants sheaf of charts in the
notation for the stackMss

H, since stability is not independent of the choice, as we will see
shortly.

Remark 3.3.39. We chose to fix the Hilbert polynomial in this formulation, but one can
also fix other invariants of coherent sheaves, for example Chern classes, or the reduced
Hilbert polynomial h. The corresponding moduli stacks are defined analogously, and the
results one obtains translate verbatim.

In particular, in the next chapter we will fix the reduced Hilbert polynomial h ∈ Q[x],
that is obtained from H by dividing it by d! times its leading coefficient, d being the
degree, and consider the corresponding stacks Ms

h ⊆ Mss
h . Note that for example Mss

h
will be a disjoint union

Mss
h =

⊔
H=h

Mss
H
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where H is H divided by d! times its leading coefficient. This has a good moduli space,
the disjoint union of the corresponding moduli spaces, and the same is true for the
substack of stable sheaves.

In the same spirit one can form the disjoint unionMss =
⊔

H∈Z[x]Mss
H and the anal-

ogous one for stable sheaves. This stack, that parametrizes parabolic sheaves on X with
respect to the system of denominators A → B without fixing invariants, will still have a
good moduli space, the disjoint union of the Mss

H, which of course will not be projective
anymore.

Remark 3.3.40. The points of the good moduli space Mss
H do not correspond to isomor-

phism classes of semi-stable sheaves, but rather to S-equivalence classes, or, in other
words, to isomorphism classes of polystable sheaves. This follows from the GIT con-
struction.

Moreover, a point of the stack Mss
H is closed if and only if the corresponding sheaf

is polystable. This follows from the description as a quotient and from the fact that an
orbit of a point is closed if and only if it is polystable (see Theorem 6.20 of [Nir]).

3.3.5 Comparison with Maruyama and Yokogawa’s theory

In this short section we remark that this construction recovers the moduli spaces of
Maruyama and Yokogawa. Recall from 3.3.1 that they considered the case of a projective
variety X with an effective Cartier divisor D ⊆ X. This induces a log structure on
X, given by the global chart N → Div(X) sending 1 to (OX(D), s). Recall also their
definition of a parabolic sheaf on X as a torsion-free sheaf E with a filtration E(−D) =

Fk+1(E) ⊂ Fk(E) ⊂ · · · ⊂ F1(E) = E and rational weights 0 ≤ a1 < · · · < ak < 1.
Let us fix a common denominator n ∈ N for the weights ai, and consider the root

stack Xn = X 1
n N/N. Torsion-free quasi-coherent sheaves on Xn correspond to parabolic

sheaves of the form

−1 − n−1
n . . . − 1

n 0

E⊗OX(−D)
fn−1 // En−1

fn−2 // . . .
f1 // E1

f0 // E.

where every sheaf is torsion-free and the maps are injective by 3.2.10 and 3.2.13.
This resembles closely the definition of a MY-parabolic sheaf. The difference is that

Maruyama and Yokogawa fix the weights, i.e. the sequence of numbers − a
n correspond-

ing to maps Ea+1 → Ea that are not isomorphisms. We will check now that fixing the
weights gives a component of our moduli stack of parabolic sheaves, and that this com-
ponent gives back the moduli spaces of Maruyama and Yokogawa.
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Let us fix a sequence of rational weights 0 ≤ a1 < · · · < ak < 1 and a polynomial
H ∈ Q[x]. Write ai =

bi
n , and let us denote by Mss(a1, . . . , ak) the stack of families of

parabolic torsion free sheaves on X, such that the morphism Ej+1 → Ej is an isomorphism
if and only if j is not in {b1, . . . , bk} (in other words, −ai are exactly the indices where
the sheaf jumps).

This clearly gives a subcategory Mss(a1, . . . , ak) ⊆ Mss of the moduli stack we de-
fined above, and moreover this map of stacks is an open and closed immersion.

To see this we need the following lemma, which says moreover that the flatness of the
cokernels that is required in [MY92] in the definition of the moduli functor is actually
automatic.

Lemma 3.3.41. Let X be a noetherian log scheme with generically trivial log structure, j : P→ Q
a chart for a system of denominators on X and E ∈ Par(XT, jT) be a family of torsion-free
parabolic sheaves on a scheme T. Then for every pair q ≤ q′ in Qgp the cokernel of the map
Eq → Eq′ is flat over T.

Proof. Note first of all that the map Eq → Eq′ is injective. This follows from the fact that
it is injective on the geometric fibers, by 3.2.13, from projectivity of XT → T and flatness
of the sheaves over T.

The conclusion now follows from the local criterion of flatness: if we pull back the
exact sequence

0 // Eq // Eq′ // Q // 0

along a point t of T, then the map Eq ⊗ k(t) → Eq′ ⊗ k(t) is injective by 3.2.13, since it is
a map between pieces of a parabolic sheaf over a log scheme with generically trivial log
structure (the fiber Xt). Consequently, since by flatness of Eq′ we have Tor1(Eq′ , k(t)) = 0,
we also have Tor1(Q, k(t)) = 0, and by the local criterion of flatness this shows that Q is
flat over T.

What we stated above follows from the fact that if E is a family of torsion-free
parabolic sheaves on Xn over a scheme T, then the cokernels of the injective maps
Ea+1 → Ea are flat over T, and consequently the locus where they are trivial (which
is the locus where these maps are isomorphisms) is open and closed in T (since it coin-
cides with the locus where the Hilbert polynomial of the cokernels is zero, for example).

On the other hand we have an obvious “projection” map Mss(a1, . . . , ak) → MY to
the moduli functor of Maruyama and Yokogawa (we recalled their definition in Section
3.3.1; note that here we did not fix Hilbert polynomials). Moreover one can check that, if
we denote by Mss(a1, . . . , ak) the good moduli space ofMss(a1, . . . , ak), there is a factor-
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ization

Mss(a1, . . . , ak) //

��

MY

xx
Mss(a1, . . . , ak)

of the mapMss(a1, . . . , ak) → Mss(a1, . . . , ak), and this implies that Mss(a1, . . . , ak) is the
moduli space constructed by Maruyama and Yokogawa.

In conclusion the moduli spaces of Maruyama and Yokogawa are open and closed
subschemes of the moduli spaces that we produce.

Remark 3.3.42. In this discussion we did not fix Hilbert polynomials for our parabolic
sheaves nor for MY-parabolic sheaves. Nevertheless the arguments carry through if one
fixes them (the ones that Maruyama and Yokogawa fix determine our parabolic Hilbert
polynomial), and the corresponding spaces will be open and closed in the ones we con-
sidered here, as usual.

We also considered only semi-stable sheaves, but the same conclusions hold for stable
sheaves.

3.4 Dependance of stability on the chart

Since there are many choices for a chart or a locally constant sheaf of charts of a logarith-
mic structure with a kummer morphism (when they exist, of course), the problem of the
dependance of the (semi-)stability of a parabolic sheaf on the chart or the sheaf of charts
is a very natural one. It turns out that the (semi-)stability is not independent of the chart
(or the locally constant sheaf of charts), as we will show with the following example.

Take X = P1 × P1, with effective divisor D = D1 + D2 where D1 and D2 are two
distinct closed fibers of the first projection X → P1, so that O(D1) ∼= O(D2) ∼= O(1, 0)
and O(D) ∼= O(2, 0). The DF structure induced by D, call it L : A → DivX, has two
natural charts l : N → Div(X), sending 1 to (O(D), sD), with sD the canonical section
of O(D) as usual, and l′ : N2 → Div(X), sending (1, 0) to (O(D1), sD1) and (0, 1) to
(O(D2), sD2).

Notice that any cokernel of monoids P→N2 would give us a new chart P→ Div(X)

for the DF structure L, since the composite of two cokernels is still a cokernel (this is an
easy verification). The simplest case of this is a projection Nr → N2 with r ≥ 3, but in
this case a calculation shows that the (semi-)stability does not change.

Take instead P = N4/(e1 + e2 = e3 + e4), where the ei’s are the canonical basis, call
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pi the image of ei in P, and consider the morphism φ : P→N2 determined by

φ(p1) = (1, 0)
φ(p2) = (0, 1)
φ(p3) = (1, 1)
φ(p4) = (0, 0).

We claim that φ is a cokernel, and so the composition P → N2 → DivX gives a chart for
the DF structure L.

Lemma 3.4.1. The map φ is a cokernel.

Proof. We denote an element p of P by a quadruple (a, b, c, d), where a, b, c, d > 0 and p =

ap1 + bp2 + cp3 + dp4. Clearly such a quadruple is not unique, as we have (a, b, c, d) =

(a + 1, b + 1, c− 1, d− 1) if c, d > 1, and the analogue for a, b > 1. In this representation,
the map φ sends (a, b, c, d) to (a + c, b + c).

With a simple computation one sees that φ−1(0) = 〈p4〉 ⊆ P, so to show that φ is
a cokernel we have to verify that if φ(p) = φ(p′), then there exist e, e′ ∈ N such that
p + ep4 = p′ + e′p4.

Now φ(p) = φ(p′) means (a + c, b + c) = (a′ + c′, b′ + c′). Assume without loss of
generality that a ≥ b; then (a, b, c, d) = (a− b, 0, c + b, d + b), and since

a′ − b′ = (a′ + c′)− (b′ + c′) = (a + c)− (b + c) = a− b,

we also have a′ ≥ b′ and (a′, b′, c′, d′) = (a′ − b′, 0, c′ + b′, d′ + b′). Since a− b = a′ − b′

and c + b = c′ + b′, we only have to worry about the last term, and this is easy: if
d + b ≤ d′ + b′, just take e = (d′ + b′) − (d + b) and e′ = 0, otherwise take e = 0 and
e′ = (d + b)− (d′ + b′).

Remark 3.4.2. The map φ above is an example of a cokernel P → N2 that “does not
split”, i.e. such that N2 is not a direct summand of P: there is a natural section N2 → P
of φ, but the resulting map N2 ⊕ 〈p3, p4〉 → P is not an isomorphism, so that φ does not
“split”.

Now take the kummer morphism j : A → 1
2 A, and as usual call X the stack of roots

of X with respect to j, denote by D1,D2 and D = D1 +D2 the universal square roots of
D1, D2 and D respectively, and call E and E ′ the two generating sheaves associated to the
charts l′ : N2 → Div(X) and l′ ◦ φ : P → Div(X). By following the construction of the
generating sheaf we get

E = O(D)⊕O(2D1 +D2)⊕O(D1 + 2D2)⊕O(2D)
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and, noting that the indecomposable elements of P are precisely the pi’s, we get E ′ =
E ′′ ⊕ E ′′ (since Λp4

∼= Λ2p4
∼= O), where

E ′′ = O(2D)⊗ (O ⊕O(D1)⊕O(D2)⊕O(D)⊕
⊕O(2D1 +D2)⊕O(D1 + 2D2)⊕O(D)⊕O(2D));

in particular pE ′(F) = pE ′′(F) for any parabolic sheaf F ∈ Par(X, j).
Our objective is to find a parabolic sheaf F ∈ Par(X, j) that is E -(semi-)stable but not

E ′-(semi-)stable. Our example will be an extension of two line bundles L and L′ on the
root stack X: the point will be that such an extension is semi-stable (and in fact stable, if
is not trivial) if and only if L and L′ have the same slope. To find an F with the property
we want, it will suffice then to find L and L′ such that

pE (L) = pE (L′)

but
pE ′(L) 6= pE ′(L′).

Now recall that to give a torsion-free parabolic sheaf F ∈ Par(X, j), it suffices to
give a torsion-free coherent sheaf F0 ∈ Coh(X), together with a subsheaf F1 ⊆ F0 such
that F0(−D) ⊆ F1. In particular we can take F1 = F0, and we get a (somewhat trivial)
parabolic sheaf, we will denote it by F̃0 ∈ Par(X, j). For such a parabolic sheaf, using

π∗
(

F̃0 ⊗O(−Di)
)
= F0

π∗
(

F̃0 ⊗O(−D)
)
= F0

π∗
(

F̃0 ⊗O(−2D)
)
= F0(−D)

π∗
(

F̃0 ⊗O(−2D1 −D2)
)
= F0(−D1)

π∗
(

F̃0 ⊗O(−D1 − 2D2)
)
= F0(−D2)

we find

pE
(

F̃0

)
=

1
4
(p(F0) + p(F0(−D1)) + p(F0(−D2)) + p(F0(−D)))

=
1
4
(p(F0) + 2p(F0(−D1)) + p(F0(−D)))

where p denotes the usual Gieseker (generalized) slope of the coherent sheaf F0 on X
with respect to the fixed polarization, that in our case will be H = O(1, 1), and D1 ∼ D2

in our case.
The calculation for E ′′ gives

pE ′′
(

F̃0

)
=

5
8

p(F0(−D)) +
1
8
(p(F0(−2D)) + p(F0(−D− D1)) + p(F0(−D− D2)))



3.4. DEPENDANCE OF STABILITY ON THE CHART 133

=
5
8

p(F0(−D)) +
1
8
(p(F0(−2D)) + 2p(F0(−D− D1))) .

Now take L0 = O(2, 0) and L′0 = O(1, 1). A straightforward calculation using

χ(O(a, b)(m)) = (a + 1 + m)(b + 1 + m)

and recalling that O(−D) ∼= O(−2, 0) and O(−D1) ∼= O(−1, 0) , yields

pE
(

L̃0

)
= m2 + 3m + 2 = pE

(
L̃′0
)

but
pE ′′

(
L̃0

)
= m2 +

3
2

m +
1
2

and
pE ′′

(
L̃′0
)
= m2 +

3
2

m− 1

as we wanted.

Remark 3.4.3. This shows that it is not true that (semi-)stability is independent of the
chart, but it could well be that nonetheless the moduli spaces of (semi-)stable sheaves are
isomorphic. For example there could be some autoequivalence fE ,E ′ : Coh(X)→ Coh(X)
such that F ∈ Coh(X) is E -(semi-)stable if and only if fE ,E ′(F) is E ′-(semi-)stable.

For example, if X is a log scheme coming from a divisor D and D denotes the uni-
versal square root on X = X2, then instead of the sheaf O(D)⊕O(2D) we could take
O ⊕O(D) as generating sheaf, as we remarked in 3.3.14. In this case though there is a
very simple autoequivalence as above, namely tensoring by O(−D), that does the trick.

In the example we just gave, using the fact that every invertible sheaf on X is of the
form L = π∗M⊗O(aD1 + bD2) for M ∈ Pic(X) and a, b are either 1 or 0, a computation
shows that tensoring by any L does not make the slopes corresponding to E and E ′
equal. We do not know if in this case there is some other autoequivalence of Coh(X) that
identifies the moduli spaces.
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Chapter 4

Moduli of parabolic sheaves with
varying weights

In this chapter we consider the moduli problem of parabolic sheaves with rational weights
on a log scheme X, without bounding the denominators or fixing a finitely generated
Kummer extension. For this, the infinite root stack X∞ is a natural object to consider, in
view of the correspondence between quasi-coherent sheaves on it and parabolic sheaves
with rational weights.

The natural approach to this problem is to take a limit of the moduli theory at finite
levels, and this is what we will do in this chapter. In particular this will require X to
have a global chart P→ Div(X), giving us, as we saw in the last chapter, the generating
sheaves En on the root stacks Xn = X 1

n P/P, and the moduli spaces and stacksMs
n ⊆Mss

n

and Ms
n ⊆ Mss

n of (semi-)stable parabolic sheaves on X (here the subscript keeps track of
the denominators, and the Hilbert polynomial is not fixed for now).

In order to have this for every n, in this chapter we will assume that the characteristic
of k is zero. As remarked in the last chapter (see 3.3.24), this would be unnecessary if we
knew that Nironi’s machinery works on projective tame Artin stacks.

The ideal situation to take a limit would be the following.

Ideal Theorem 4.0.1 (?). Let X be a projective log scheme over k with a global chart P →
Div(X). Then for every pair n, m ∈ N with n | m there is a morphism ιn,m : Mss

n → Mss
m,

that induces in,m : Mss
n → Mss

m between the good moduli spaces, given by the pullback along
Xm → Xn. Moreover these morphisms are open and closed immersions.

This would allow us to make sense of the direct limit lim−→n
Mss

n as a scheme, which
would be a moduli space for parabolic sheaves with arbitrary rational weights on X.

Even without the last statement about the morphisms, the direct limit would still
make sense as an ind-scheme, and we will see that it would be a good candidate for a

135
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“moduli space” of parabolic sheaves with arbitrary rational weights.
Unfortunately even the first part of Ideal Theorem 4.0.1 does not always hold. We

will see that semi-stability is preserved by pullback along Xm → Xn if P is free, and the
following example shows that in general this need not necessarily be.

Example 4.0.2. Let us take P = 〈p, q, r | p + q = 2r〉 and a projective curve X over k with
log structure induced by the morphism P → Div(X) that sends p, q and r to invertible
sheaves Lp, Lq, Lr, together with the zero section.

Their degrees need to satisfy deg(Lp) + deg(Lq) = 2 deg(Lr) since L⊗2
r
∼= Lp ⊗ Lq;

let us assume that deg(Lp) = 0, deg(Lq) = 2 and deg(Lr) = 1. Let us consider a fourth
line bundle L on X, of degree d. The sheaf L on X can be seen as a parabolic sheaf on
X1 = X, and as such, being a line bundle, it is stable. We will show that its pullback
along π : X2 → X is not semi-stable.

Note that parabolic sheaves on X2 can be visualized as in the following diagram

−2 − 3
2 −1 − 1

2 0

◦oo

��

F(0,0) ⊗ L∨p // F(−1,0)
// F(0,0) 0

F(− 3
2 ,− 1

2 )

;;

// F(− 1
2 ,− 1

2 )

;;

− 1
2

F(0,0) ⊗ L∨r

;;

OO

// F(0,−1)

OO

−1

· · · F(− 1
2 ,− 3

2 )

OO

;;

− 3
2

F(0,0) ⊗ L∨q

OO

−2

where we have a sheaf for every point ( a
2 , b

2 ) with a and b integers which are congruent
modulo 2, and all the sheaves are uniquely determined by the ones in the diagram. In
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particular since we chose the zero sections when we defined the log structure, note that
all the maps Fb → Fb ⊗ Lp are zero, and the same holds with Lq and Lr.

One calculates the pullback π∗L (as explained in Section 1.3), and checks that in the
diagram above it has

F(0,0) = L

F(− 1
2 ,− 1

2 )
= L⊗ L∨r

F(−1,0) = L⊗ L∨p ⊕ L⊗ L∨r
F(0,−1) = L⊗ L∨q ⊕ L⊗ L∨r

F(− 3
2 ,− 1

2 )
= L⊗ L∨p ⊗ L∨r ⊕ L⊗ (L∨r )

⊗2

F(− 1
2 ,− 3

2 )
= L⊗ L∨q ⊗ L∨r ⊕ L⊗ (L∨r )

⊗2

(the direct sums come from taking a direct limit, of course). One also checks that the
pieces that contribute to the slope (i.e. the fundamental pieces), using the generating
sheaf

E =
(

Λ
( p

2

)
⊕Λ (p)

)
⊗
(

Λ
( q

2

)
⊕Λ (q)

)
⊗
(

Λ
( r

2

)
⊕Λ (r)

)
,

are two copies of each of the following

L⊗ (L∨r )
⊗2

L⊗ (L∨r )
⊗3

L⊗ (L∨r )
⊗3 ⊕ L⊗ L∨q ⊗ (L∨r )

⊗2

L⊗ (L∨r )
⊗3 ⊕ L⊗ L∨p ⊗ (L∨r )

⊗2

and so the parabolic degree of π∗L is

2(d− 2 + d− 3 + d− 3 + d− 4 + d− 3 + d− 2) = 12d− 34

and its parabolic rank is 12, so that the parabolic slope (the ratio of degree divided by
the rank) is µE (π

∗L) = d− 17
6 . In the present case (semi-)stability can be described by

using this slope, since we are on a curve.
Finally one sees that π∗L has a parabolic subsheaf G were the only relevant pieces

for the slope are two copies of L⊗ L∨p ⊗ (L∨r )⊗2, and the remaining ones are all zero, so
that its parabolic degree is 2(d− 2) = 2d− 4. Since its parabolic rank is 2, its parabolic
slope will be µE (G) = d− 2, which is greater than µE (π

∗L).
In conclusion π∗L is not semi-stable.

This example leaves us with two choices: either we put additional hypotheses on
the monoid, or we choose a different cofinal system of submonoids of PQ with better
properties.
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Our solution is a mix of these two strategies: we will assume that P is what we call
a simplicial monoid, and we will take a slightly different cofinal system, made up of the
monoids 1

n Nr for a Kummer extension P ⊆Nr.

4.1 Simplicial logarithmic structures

In this section we briefly describe simplicial monoids and logarithmic structures.

Definition 4.1.1. A monoid P is simplicial if it is fine, saturated, sharp and the positive
rational cone PQ it generates inside Pgp

Q
is simplicial, meaning that its extremal rays are

linearly independent.

Definition 4.1.2. An indecomposable element p ∈ P that lies on an extremal ray of the
rational cone PQ will be called extremal. Non-extremal indecomposables will be called
internal.

In other words, an indecomposable p ∈ P is extremal if q + r ∈ 〈p〉 implies q, r ∈ 〈p〉.
Assume P is a simplicial monoid, and call p1, . . . , pr its extremal indecomposable

elements, and q1, . . . , qs its internal ones. For any q ∈ P, we can write q = ∑i ai pi in PQ,
where ai ∈ Q, and by simpliciality of P the ai are uniquely determined.

In particular for every qj we have get a relation cjqj = ∑i aij pi in P where (cj, {aij}) =
1. These relations will be called the standard relations of P.

Proposition 4.1.3. Every simplicial monoid has a Kummer morphism to some free monoid Nr.
Viceversa, if a fine saturated monoid P has a Kummer morphism P ⊆Nr, then P is simplicial.

In fact we will see that there is a minimal such Kummer extension, that we well call
the free envelope of P.

The preceding proposition is the reason for introducing this simpliciality hypothesis.
The Kummer extension P ⊆ Nr gives us a sequence P ⊆ 1

n Nr = Pn of finitely generated
Kummer extensions such that

⋃
n Pn = PQ, and since Nr is free the transition maps

Xm → Xn between the corresponding root stacks are flat, as the following lemma shows.

Lemma 4.1.4. Let X be a log stack with a global chart Nr → Div(X). Then for any n, the
projection π : Xn → X is flat.

This implies that all projections Xm → Xn between root stacks are flat as well, and
actually for this one needs to assume that the log structure of X is locally free, in the sense
that the stalks of A are all free monoids. For example if D ⊆ X is a normal crossings
divisor, then the induced log structure on X is locally free, but does not necessarily have
a global chart.
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Proof. We can assume that X is a log scheme. Then this follows from the fact that the
projection Xn → X is a base change of the morphism [Ar/µr

n]→ Ar induced by the map
Ar → Ar given by raising the variables to the n-th power. This last morphism is flat,
and the conclusion follows.

This assures that purity of coherent sheaves is preserved by pullback (recall that a
semi-stable sheaf is pure). This cofinal system of root stacks will also be crucial for the
arguments that we will use in the rest of this chapter.

Let us remark that this simpliciality assumption is forced if we want to find a cofinal
system of root stacks with flat transition maps on the universal model.

Recall the following criterion from [Kat89].

Proposition 4.1.5. If P and Q are integral monoids and h : P → Q is an injective morphism,
then the induced map Z[P] → Z[Q] is flat if and only if the following condition is satisfied: for
any x1, x2 ∈ P, y1, y2 ∈ Q such that h(x1)y1 = h(x2)y2, there exist x3, x4 ∈ P and y ∈ Q such
that y1 = h(x3)y, y2 = h(x4)y, (and then automatically x1x3 = x2x4).

Proposition 4.1.6. Let P be a fine saturated torsion-free sharp monoid. If the natural morphism
Z[P]→ Z[PQ] is flat, then P is a free monoid.

Proof. Let p1, . . . , pk denote the indecomposable elements of P, so that P has a presen-
tation with generators the pi’s and some relations. We need to show that there are no
(nontrivial) relations.

First notice that we can assume that every pi is in some nontrivial relation, otherwise
we can write P = P′ ⊕Nh where P′ satisfies this condition, and focus on P′.

Let us now embed P in some Nr (using 1.1.14), so that every p ∈ P can be identified
with a vector with r coordinates. Thus we can write pi = (pi1, . . . , pir) for pij ∈ N, and
for every pi we can consider the sum s(pi) = ∑j pij ∈ N of its components. Among the
pi’s there will be one, assume it is p1, such that s(pi) ≥ s(p1) for every i. Notice that
this implies that for every i 6= 1 there exists an m ∈ {1, . . . , r} such that pim > p1m. This
embedding also allows us to define a monoid homomorphism λ : P→N, by composing
the embedding in Nr with the map that takes the sum of the coordinates, landing in N.
This map has the property that λ(p) = 0 if and only if p = 0.

By assumption p1 will show up in some relation ∑i ai pi = ∑i bi pi with a1 6= b1. In
particular we can assume (by integrality of P) that (exactly) one among a1 and b1 is zero,
say b1 = 0, and more generally for any i, at least one of ai and bi is zero. Among all such
relations, we can consider one in which λ(∑i ai pi) = λ(∑i bi pi) ∈N is minimal.

So we have a relation in P of the form

∑
i∈I

ai pi = ∑
j∈J

bj pj (4.1.7)
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where I, J ⊆ {1, . . . , r} are non-empty, I ∩ J = ∅, 1 ∈ I and ai, bj > 0 for any i ∈ I, j ∈ J.
Now we pick and element of J, say it is 2, and call d = ∑i 6=1 ai pi, d′ = ∑j 6=2 bj pj, so that
our relation becomes a1 p1 + d = b2 p2 + d′.

Relation 4.1.7 gives, for any positive integer n, the relation

∑
i∈I

ai
pi

n
= ∑

j∈J
bj

pj

n
(4.1.8)

in PQ. This can also be written as

a1
p1

n
+

d
n
= b2

p2

n
+

d′

n
.

Using the last line, we get the following equality in PQ:

a1 p1 +
d
n
+ (n− 1)b2

p2

n
= b2 p2 +

d′

n
+ (n− 1)a1

p1

n
.

This is a relation in PQ of the form x1 + y1 = x2 + y2, with xi ∈ P and yi ∈ PQ,

where x1 = a1 p1 + b (n−1)b2
n cp2, x2 = b2 p2 + b (n−1)a1

n cp1, y1 = d
n +

{
(n−1)b2

n

}
p2 and y2 =

d′
n +

{
(n−1)a1

n

}
p1, where as usual b·c and {·} are the floor and fractional part of a rational

number. From the flatness hypothesis and proposition 4.1.5, we know that there exist
x3, x4 ∈ P and y ∈ PQ such that

d
n
+

{
(n− 1)b2

n

}
p2 = x3 + y

d′

n
+

{
(n− 1)a1

n

}
p1 = x4 + y.

Now the claim is that for n big enough, we necessarily have x4 = 0 or x4 = p1.
This would conclude the proof: notice that for n big enough,

{
(n−1)b2

n

}
= 1− b2

n , and{
(n−1)a1

n

}
= 1− a1

n . So if x4 = 0, the equalities above would give d− d′ = nx3 + (n−
a1)p1 − (n− b2)p2 in Pgp. But we also know that d− d′ = b2 p2 − a1 p1 in Pgp, and this
gives n(x3 + p1) = np2 in P, and by torsion-freeness we finally get p2 = x3 + p1, a
contradiction since p1 and p2 are distinct indecomposable elements of P.

In case x4 = p1, we get d′ = a1 p1 + ny (notice that ny ∈ P by saturation of P, since
ny is both in Pgp and in PQ, and so it has a multiple in P). Since this is a relation in P
involving p1 (recall d′ = ∑j 6=2 bj pj, and 1 /∈ J \ {2}) and clearly λ(d′) < λ(∑i bi pi), this
contradicts the minimality of λ(∑i bi pi) among such relations. Notice that λ(d′) = 0 also
gives a contradiction with the sharpness of P, since then a1 p1 + ny = 0.
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To prove that x4 = 0 or p1 for n big, let us write x4 = ∑i ci pi. Notice that for any
m ∈ {1, . . . , r}, the m-th coordinate of d′/n converges to zero as n grows. Since there are
a finite number of coordinates, we can take n large enough so that

(
d′
n

)
m
< 0, 000001 for

any m. Let us show that ci has to be zero for i 6= 1: if ci ≥ 1, pick m such that pim > p1m,
and consider the m-th coordinate in the equality defining x4.

We get
(

d′
n

)
m
+ p1m >

(
d′
n

)
m
+
(
1− a1

n

)
p1m = ∑i ci pim + ym ≥ pim, and since

(
d′
n

)
m

is small and p1m, pim are integers, we can conclude p1m ≥ pim, a contradiction. For the
same reason c1 ≤ 1, and so x4 = 0 or x4 = p1, concluding the proof.

Proposition 4.1.9. If there is a sequence of monoids Qn ⊆ PQ containing P, and such that
Qn ⊆ Qm every time that n|m,

⋃
n Qn = PQ and Z[P] → Z[Qn] is flat for every n (or even for

n very divisible), then Z[P]→ Z[PQ] is flat as well.

Proof. This follows immediately from the flatness criterion recalled above.

Corollary 4.1.10. If P is such that there exists a sequence of monoids Qn ⊆ PQ containing P,
and such that Qn ⊆ Qm every time that n|m,

⋃
n Qn = PQ and Z[Qn] → Z[Qm] is flat every

time that n|m, then P is simplicial.

This shows that simpliciality of P is forced if we want to have flat transition maps in
the universal model.

Let us now construct for a simplicial monoid P the minimal Kummer extension to a
free monoid.

Proof of Proposition 4.1.3. Let cjqj = ∑i aij pi be the standard relations of P, and let bij =

ci/ gcd(ci, aij), a positive integer. The standard relations can be rewritten as follows

qj = ∑
i

aij

gcd(ci, aij)
· pi

bij
.

Finally, let di = lcm(bij | j = 1, . . . , r), and let F(P) be the (free) submonoid of Pgp ⊗Z Q

generated by the elements p1
d1

, . . . , pr
dr

. By construction we have P ⊆ F(P), and PQ =

F(P)Q, so the morphism is Kummer.
The converse is clear, since if we have a Kummer morphism P ⊆ Nr, then PQ

∼= Qr
+,

which is a simplicial cone.

Definition 4.1.11. We will call the monoid F(P) constructed in the proof the free envelope
of P. The rank of P will be the rank of the free monoid F(P), or equivalently of the free
abelian group Pgp.
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Example 4.1.12. Let P = 〈p, q, r | p + q = 2r〉. Then p and q are the extremal indecom-
posables, and the only standard relation

r =
p
2
+

q
2

gives the two generators p
2 and q

2 for the free envelope F(P).
If we identify P with the submonoid of N2 generated by (2, 0), (1, 1), (0, 2), then F(P)

coincides with N2, as p
2 = (1, 0) and q

2 = (0, 1).

The free envelope has the following universal property.

Proposition 4.1.13. For any Kummer homomorphism φ : P → Nr there exists a unique (injec-
tive) homomorphism φ̄ : F(P)→Nr extending φ.

The proof is easy and left to the reader.
One can give the following definition of a simplicial log scheme.

Definition 4.1.14. A fs log scheme X is simplicial if for any geometric point x → X the
stalk (AX)x is a simplicial monoid.

Since charts can be made up from stalks, a simplicial log scheme has local charts
P→ Div(X) with P a simplicial monoid.

The converse (if there are simplicial charts, then the stalks are simplicial) is also true,
and follows from the fact that the kernel of a morphism P→ Q from a simplicial monoid
to a sharp fs monoid is generated by extremal indecomposables. From this one sees that
the map PQ → QQ corresponds to a quotient by the span of a subset of a basis of Pgp

Q
,

and consequently QQ is still a simplicial cone inside Qgp
Q

.

Remark 4.1.15. Despite this general definition, for the rest of this chapter we will assume
that X has a global chart P→ Div(X), in which P is moreover simplicial.

4.2 (semi-)stability and extension of denominators

For the rest of this chapter, X will be a projective simplicial log scheme with a global
chart P→ Div(X), where P is a simplicial monoid of rank r.

The first thing we want to do is to replace X by the root stack X1 = XF(P)/P, where
F(P) ∼= Nr is the free envelope of P introduced in the last section. After we have done
this, when considering parabolic sheaves on Xn = X 1

n F(P)/P = (X1) 1
n F(P)/F(P) we can see

them as parabolic sheaves on the log stack X1, where the log structure has a free chart,
and the transition maps Xm → Xn will be flat (see 4.1.4). This way we can effectively
argue as if the log structure on X itself had a free chart to start with.



4.2. (SEMI-)STABILITY AND EXTENSION OF DENOMINATORS 143

Denote by En the generating sheaf on Xn coming from the root stack structure over
X, and Ẽn the generating sheaf that comes from seeing it as a root stack over X1. We
would like to say that these two generating sheaves give the same stability. This is true,
provided that we equip X1 with the right generating sheaf relative to X.

The following lemma relates the generating sheaves of two root stacks of X, where
one of them is obtained by taking n-th roots over the other one.

Lemma 4.2.1. Let X be a log scheme with a global chart P → Div(X), and let P ⊆ Q be a
Kummer extension. Consider the commutative diagram

X 1
n Q/P

π //

p′ ""

XQ/P

p
}}

X

and the generating sheaves En on X 1
n Q/P and E on XQ/P relative to X, and Erel on X 1

n Q/P ob-

tained by seeing it as a root stack over XQ/P with respect to the Kummer extension Q ⊆ 1
n Q.

Denote by L : Q → Div(XQ/P) the universal DF structure on XQ/P and by pi the indecompos-
able elements of Q.

Then we have an isomorphism

En ∼= π∗E ⊗ Erel ⊗ π∗M

where M = (
⊗r

i=1 L(pi))
∨ = L(∑i−pi).

Proof. Denote by Ln : 1
n Q→ Div(X 1

n Q/P) the universal DF structure on X 1
n Q/P, and by di

the order of the image of pi in Qgp/Pgp.
Let us write down the generating sheaves. We have

En =
⊕

0<ai≤ndi

Ln

(
∑

i
ai

pi

n

)

E =
⊕

0<bi≤di

L

(
∑

i
bi pi

)

Erel =
⊕

0<ci≤n
Ln

(
∑

i
ci

pi

n

)
so that, since π∗L (pi) ∼= Ln

(
n pi

n

)
,

π∗E =
⊕

0<bi≤di

Ln

(
∑

i
nbi

pi

n

)
.
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In conclusion

π∗E ⊗ Erel ⊗ π∗M ∼=
⊕

0<bi≤di
0<ci≤n

Ln

(
∑

i
(nbi + ci − n)

pi

n

)

and this is En, since every 0 < ai ≤ ndi arises exactly once as nbi + ci − n for 0 < bi ≤ di
and 0 < ci ≤ n.

Remark 4.2.2. The locally free sheaf E ⊗ M on XQ/P of the previous lemma is still a
generating sheaf, and it is precisely the generating sheaf E ′ of Remark 3.3.14.

If we equip X1 with the generating sheaf E ⊗ M, then the stability notions on Xn

corresponding to En relative to X and Ẽn relative to X1 are the same. Indeed if F ∈
Coh(Xn), then (keeping the notation of the lemma, with Q = F(P)) from the previous
lemma and the projection formula for π we see that

pEn(F) = p(p′∗(F⊗ E∨n ))
= p(p∗π∗(F⊗ π∗(E ⊗M)∨ ⊗ Ẽn

∨
))

= p(p∗(π∗(F⊗ Ẽn
∨
)⊗ (E ⊗M)∨))

= pE⊗M(π∗(F⊗ Ẽn
∨
))

where p denotes the reduced Hilbert polynomial on X. Note also that if P is already
free, then E ⊗M is indeed trivial. In conclusion we can replace X by X1 in what follows,
even though we will keep this notation for clarity.

Notation 4.2.3. From now on we will fix an isomorphism F(P) ∼= Nr, and denote the
canonical log structure on Xn by Ln : 1

n Nr → Div(Xn). Moreover pi for i = 1, . . . , r
will denote the indecomposable elements of F(P) ∼= Nr, and for any r-tuple of integers
(a1, . . . , ar), we will denote by L(ai)

n the invertible sheaf Ln
(
∑i ai

pi
n

)
on the root stack Xn.

In particular Li
n will be the invertible sheaf L(0,...,1,...,0)

n = Ln
( pi

n

)
on Xn.

In the same spirit, if E is a parabolic sheaf on Xn and (e1, . . . , er) is an element of
Zr, we denote by E(ei) the piece of the parabolic sheaf E corresponding to the element
( e1

n , . . . , er
n ) of 1

n Zr.

We will consider the generating sheaves En on Xn that we introduced in the last
chapter, the notion of (semi-)stability defined by them, the corresponding moduli stacks
Mss

n and Ms
n of (semi-)stable sheaves, with good moduli spaces Mss

n and Ms
n. If F is a

coherent sheaf on Xn, with pn(F) we will denote the reduced Hilbert polynomial pEn(F)
obtained by using the generating sheaf En. We will also denote just by p the reduced
Hilbert polynomial on X1, with respect to the generating sheaf E ⊗M discussed above.

We summarize here the results of this section.
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Theorem 4.2.4. Let X be a projective simplicial log scheme over k with a global chart, and n, m
two natural numbers with n | m. Then:

• the pullback along π : Xm → Xn of a semi-stable sheaf is semi-stable (with the same reduced
Hilbert polynomial), so we get a morphism ιn,m : Mss

n → Mss
m. This morphism in turn

induces in,m : Mss
n → Mss

m between the good moduli spaces.

• ιn,m is always an open immersion, and in,m is proper, open and injective on geometric points
(in particular it is also finite).

• if pullback along π preserves stability (for example this happens if the log structure of X is
generically trivial), then ιn,m restricts to a morphism ιon,m : Ms

n →Ms
m between the stacks

of stable sheaves, and correspondingly in,m restricts to io
n,m : Ms

n → Ms
m between the good

moduli spaces. Moreover in this case all the maps are open and closed immersions.

Remark 4.2.5. The fact that in,m is an open and closed immersion (i.e. an immersion of
a union of connected components) will allow us to make sense of the direct limit of the
moduli spaces as a scheme.

We will see that the pullback along π does not preserve stability in general, and if this
happens we will not be able to take the direct limit of the stack/space of stable sheaves,
nor to conclude that in,m is an immersion of a union of connected components. Being
open, closed and injective, its image will still be a union of connected components, but it
may not be an isomorphism onto the image. We do not have any example where it does
not happen, but we also have no reason for why it could not happen.

Let us see with a simple example why semi-stability is preserved

Example 4.2.6. Assume that X is an integral projective log scheme with a rank 1 free
chart N → Div(X), and denote by (L, s) ∈ Div(X) the image of 1 ∈ N, and say we
are considering pure sheaves of maximal dimension. Let us consider the extension of
denominators π : X4 → X2, and a semi-stable coherent sheaf F ∈ Coh(X2). Let us give
names to the fundamental pieces of F, say

−1 − 1
2 0

F = F0 // F1 // F0 ⊗ L

so that

p2(F) =
p(F0) + p(F1)

rk(F0) + rk(F1)
.
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The pullback π∗F ∈ Coh(X4) corresponds to the parabolic sheaf

−1 − 3
4 − 1

2 − 1
4 0

π∗F = F0 F0 // F1 F1 // F0 ⊗ L

and notice that

p4(π
∗F) =

2(p(F0) + p(F1))

2(rk(F0) + rk(F1))
= p2(F).

Now take a subsheaf G ⊆ π∗F, corresponding to the following diagram

−1 − 3
4 − 1

2 − 1
4 0

π∗F = F0 F0 // F1 F1 // F0 ⊗ L

G = G0
f0 //

?�

OO

G1
f1 //

?�

OO

G2
f2 //

?�

OO

G3
f3 //

?�

OO

G0 ⊗ L
?�

OO

and with

p4(G) =
p(G0) + p(G1) + p(G2) + p(G3)

rk(G0) + rk(G1) + rk(G2) + rk(G3)
.

Now note that from G we can get the following two subsheaves G′, G′′ of our original F

−1 − 1
2 0

F = F0 // F1 // F0 ⊗ L

G′ = G0
f1◦ f0 //

?�

OO

G2
f3◦ f2//

?�

OO

G0 ⊗ L
?�

OO

and
−1 − 1

2 0

F = F0 // F1 // F0 ⊗ L

G′′ = G1
f2◦ f1 //

?�

OO

G3
f0◦ f3//

?�

OO

G1 ⊗ L
?�

OO
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where f0 ◦ f3 : G3 → G1⊗ L denotes the composition of f3 with f0⊗ id : G0⊗ L→ G1⊗ L.
We have

p2(G′) =
p(G0) + p(G2)

rk(G0) + rk(G2)
≤ p2(F)

p2(G′′) =
p(G1) + p(G3)

rk(G1) + rk(G3)
≤ p2(F)

since F is semi-stable, and it is easy to see that p4(G) = α1 p2(G′) + α2 p2(G′′), where 0 ≤
αi ≤ 1 and α1 + α2 = 1. In conclusion p4(G) ≤ α1 p2(F) + α2 p2(F) = p2(F) = p4(π

∗F), so
π∗F is semi-stable on X4.

Note that G′ and G′′ can be zero, but the argument still works. If they are both zero,
then G itself is zero and there is nothing to prove. Otherwise assume that G′ is zero and
G′′ is not. In this case G′ doesn’t contribute to the reduced Hilbert polynomial of G at
all, and in fact p4(G) = p2(G′′), and the rest of the argument applies.

The following lemma relates the generating sheaves of Xn and Xm, and is the starting
point of the proof.

Lemma 4.2.7. Set m = nk, and consider the commutative diagram

Xm
π //

p′ !!

Xn

p}}
X1.

We have an isomorphism
Em ∼= π∗En ⊗ En,m ⊗M

where En,m is the generating sheaf of Xm as a root stack of Xn and M =
(⊗r

i=1 Li
m
)⊗(−k)

=

Lm(∑i−k pi
m ).

Proof. This is a particular case of Lemma 4.2.1.

Lemma 4.2.8. With the notation of the previous lemma, let G ∈ Coh(Xm) be a coherent sheaf on
Xm. Then pm(G) is a weighted mean of the reduced Hilbert polynomials of the non-zero sheaves
among π∗

(
G⊗ L(di)

m

)
on Xn, with 0 ≤ di < k.

Proof. Let us compute pm(G), using the previous lemma and the projection formula for
the morphism π (Proposition 1.2.35):

pm(G) = p(p′∗(G⊗ E∨m))
= p(p∗π∗(G⊗ π∗E∨n ⊗ E∨n,m ⊗M∨))
= p(p∗(π∗(G⊗ E∨n,m ⊗M∨)⊗ E∨n ))
= pn(π∗(G⊗ E∨n,m ⊗M∨))
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(where p denotes the reduced Hilbert polynomial on X1) and since we have E∨n,m⊗M∨ =⊕
0≤di<k Lm

(
∑i di

pi
m

)
=
⊕

0≤di<k L(di)
m , the last expression is equal to

pn(
⊕

0≤di<k

π∗(G⊗ L(di)
m ))

and this is a weighted mean of the polynomials pn(π∗(G⊗ L(di)
m )), as claimed.

Note that if for some (di) the sheaf π∗(G ⊗ L(di)
m ) is zero, then the corresponding

Hilbert polynomial will not contribute to the reduced Hilbert polynomial of G (this
accounts for the “non-zero” part of the statement).

Remark 4.2.9. Let us describe the sheaf G(di) = π∗(G⊗ L(di)
m ) in a more concrete way as

a parabolic sheaf on X1. This will be important for the proof of the next results.

Let us take (ei) ∈ Zr with 0 ≤ ei < n, and let us calculate the component (G(di))(ei) ∈
Coh(X1).

We have

(G(di))(ei) = p∗(π∗(G⊗ L(di)
m )⊗ L(ei)

n )

= p∗(π∗(G⊗ L(di)
m ⊗ π∗L(ei)

n ))

= p∗(π∗(G⊗ L(di)
m ⊗ L(kei)

m ))

= p∗π∗(G⊗ Lm(∑i(di + kei)
pi
m ))

= p′∗(G⊗ Lm(∑i(di + kei)
pi
m ))

= G(di+kei).

This calculation has the following “pictorial” interpretation: the parabolic sheaf G(di) is
obtained by dividing the unit hypercube in 1

m Nr in nr smaller hypercubes (of “size” kr),
by subdividing each segment in n pieces, and then by picking the pieces of G in position
(di) in each of these hypercubes, together with the induced maps.

Let us clarify this with a simple example in rank 2: let us assume that X has a
free log structure L : N2 → Div(X), and take m = 4, n = 2 and a parabolic sheaf
F ∈ Coh(X4). If we take (di) = (1, 1), then by the calculation above the parabolic sheaf
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F(1,1) = π∗(F⊗ L(1,1)
4 ) ∈ Coh(X2) (where π : X4 → X2) takes the following form

−1 − 1
2 0

F−3,−3 ⊗ L0,1 // F−1,−3 ⊗ L0,1 // F−3,−3 ⊗ L1,1 0

F−3,−1 //

OO

F−1,−1 //

OO

F−3,−1 ⊗ L1,0

OO

− 1
2

F−3,−3 //

OO

F−1,−3 //

OO

F−3,−3 ⊗ L1,0

OO

−1

and we see that it is obtained by subdividing the (negative) unit square of 1
4 N2 in four

smaller squares and looking at the top right sheaf, corresponding to (1, 1), in each of
these squares, together with the maps between them:

−1 − 3
4 − 1

2 − 1
4 0

F−4,−4 ⊗ L0,1 // F−3,−4 ⊗ L0,1 // F−2,−4 ⊗ L0,1 // F−1,−4 ⊗ L0,1 // F−4,−4 ⊗ L1,1 0

F−4,−1 //

OO

F−3,−1 //

OO

F−2,−1 //

OO

F−1,−1 //

OO

F−4,−1 ⊗ L1,0

OO

− 1
4

F−4,−2 //

OO

F−3,−2 //

OO

F−2,−2 //

OO

F−1,−2 //

OO

F−4,−2 ⊗ L1,0

OO

− 1
2

F−4,−3 //

OO

F−3,−3 //

OO

F−2,−3 //

OO

F−1,−3 //

OO

F−4,−3 ⊗ L1,0

OO

− 3
4

F−4,−4 //

OO

F−3,−4 //

OO

F−2,−4 //

OO

F−1,−4 //

OO

F−4,−4 ⊗ L1,0

OO

−1.

From this example we see that F is literally “made up” from the sheaves π∗(F ⊗ L(di)
m ).

This will be useful in some of the following arguments.

Proposition 4.2.10. With the notation of the previous lemmas, let F ∈ Coh(Xn) be a coherent
sheaf on Xn. Then pm(π∗F) = pn(F), and if F is semi-stable, then π∗F is semi-stable as well.

For the proof, we will need the following lemma.
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Lemma 4.2.11. Let Y be a log stack with a free global chart L : Nr → Div(Y), and consider the
root stack π : Yn → Y, with Ln : 1

n Nr → Div(Yn) the canonical lifting of the log structure of Y.
Then for any 0 ≤ di < n, we have

π∗L
(di)
n
∼= OY.

Proof. This is a calculation on the universal model for the root stack.
First of all by taking a presentation we can assume that Y is a log scheme with a free

global chart. The chart gives a cartesian diagram

Yn //

π
��

[Ar/µr
n]

π′

��
Y //Ar

where the vertical map π′ is induced by raising the variables to the n-th power. Now π′ is
a coarse moduli space of a tame DM stack and the diagram is cartesian, so we have a base
change formula (Proposition 1.5 of [Nir]), and L(di)

n is a pullback of the corresponding
sheaf on [Ar/µr

n], so we can reduce to proving the statement in the universal case.
In this case, the invertible sheaf L(di)

n over [Ar/µr
n] corresponds to the module of rank

one over A = k[x1, . . . , xr] generated by xd1
1 · · · x

dr
r . Pushing forward amounts to taking

invariants for µr
n, and if 0 ≤ di < n it is clear that the invariants are k[xn

1 , . . . , xn
r ]. This

shows that π′∗L
(di)
n
∼= OAr in this case, and concludes the proof.

Proof of Proposition 4.2.10. We will apply the last lemma to the morphism π : Xm → Xn,
which is a relative root stack morphism.

First let us prove that pm(π∗F) = pn(F): by Lemma 4.2.8, pm(π∗F) is a weighted
mean of the polynomials pn(π∗(π∗F⊗ L(di)

m )). But in this case by the projection formula
for π (Proposition 1.2.35) and the previous lemma we have

pn(π∗(π
∗F⊗ L(di)

m )) = pn(F⊗ π∗L
(di)
m ) = pn(F)

so that pm(π∗F) = pn(F).
Now let us show that if F is semi-stable on Xn, then π∗F is semi-stable on Xm. For

any subsheaf G ⊆ π∗F, we know that pm(G) is a weighted mean of the non-zero ones
among the reduced Hilbert polynomials pn(π∗(G⊗ L(di)

m )) for 0 ≤ di < k. Now note that
by exactness of π∗ the inclusion G⊗ L(di)

m ⊆ π∗F⊗ L(di)
m will induce

π∗(G⊗ L(di)
m ) ⊆ π∗(π

∗F⊗ L(di)
m ) ∼= F⊗ π∗L

(di)
m
∼= F

and by semi-stability of F we see that if π∗(G⊗ L(di)
m ) is non-zero, then

pn(π∗(G⊗ L(di)
m )) ≤ pn(F).
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This in turn implies that pm(G) ≤ pn(F) = pm(π∗F), so we conclude that π∗F is semi-
stable on Xm.

Corollary 4.2.12. The pullback functor along π : Xm → Xn induces a morphism ιn,m : Mss
n →

Mss
m of stacks over (Aff)op, and a corresponding morphism in,m : Mss

n → Mss
m between the good

moduli spaces.

Proof. The functor ιn,m(S) : Mss
n (S)→Mss

m(S) is defined as pullback along the morphism
Xm ×k S → Xn ×k S. It is well-defined because of the preceding proposition and of the
fact that Xm → Xn is flat, so in particular it preserves purity. The morphism in,m is
defined by the universal property of Mss

n as a good moduli space.

Remark 4.2.13. Proposition 4.2.10 shows that the reduced Hilbert polynomial (unlike
the non-reduced one) is preserved by pullback, so that the morphism ιn,m restricts to
Mss

h,n →Mss
h,m for any fixed h ∈ Q[x].

Proposition 4.2.14. The morphism ιn,m is an open immersion.

Proof. Let us consider a morphism f : S→Mss
m from a scheme, and the cartesian diagram

X //

��

S

f
��

Mss
n

ιn,m //Mss
m.

The morphism f corresponds to a family F ∈ Coh(Xm ×k S) of semi-stable sheaves on
Xm, and by construction X(T) is the category of triples (φ : T → S, G, β) with G ∈
Coh(Xn ×k T) a family of semi-stable sheaves and β : ιn,m(G) ∼= φ∗F as coherent sheaves
on Xm ×k T. Note that by adjunction we have a map α : π∗SπS∗F → F of sheaves on
Xm ×k S.

Consider the locus S0 ⊆ S of points where α is an isomorphism. We will prove that
this is an open subscheme of S, and that it represents the fibered product X.

First of all observe that if f : X → Y is a proper morphism and F is a quasi-coherent
sheaf of finite type on X, then the locus of points of Y such that Fy = 0 is an open subset
of Y. This is because the support of F is a closed subset of X, and its image in Y, which
is closed by properness, is the complement of the locus where Fy = 0. In fact: it is clear
that if y is not in f (Supp(F)), then Fy = 0. On the other hand, if y ∈ f (Supp(F)), let us
take a point in the preimage and localize X and Y. We end up with a local morphism of
local rings A → B, a B-module M such that M/mB M 6= 0 (by Nakayama), and we need
to show that M/mA M 6= 0. This is clear from mA M ⊆ mB M ⊆ M.

Let us look at the kernel and cokernel of α,

0 // K // π∗SπS∗F // F // Q // 0.
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Since tensor product is right exact, the locus on S where α is surjective is exactly the
locus where Qs = 0. Let us call this locus S′ ⊆ S, an open subscheme. Once we restrict
to S′ the map α is surjective, so K satisfies base change over points of S, since F is flat
over S. Now the locus in S′ where α is an isomorphism, our S0, is exactly the locus where
Ks = 0, which is therefore open, both in S′ and in S.

From the preceding discussion, on S0 we have an isomorphism α0 : π∗S0(πS0)∗F0 ∼= F0

where F0 is the restriction of F to Xm ×k S0, so the object (S0 → S, (πS0)∗F0, α0) is an
object of X(S0) (recall that ιn,m is pullback along π). This object corresponds to a map
g : S0 → X (which coincides with the one induced by the two maps S0 → S, S0 →Mss

n ).
We claim that g is an equivalence.

Indeed, it is essentially surjective because if (φ : T → S, G, β) is an object of X(T),
then the map φ will factor through S0, since a parabolic sheaf F ∈ Coh(Xm) comes from
Xn if and only if π∗π∗F → F is an isomorphism (by the projection formula), and the
sheaf π∗SπS∗F satisfies base change. This gives us an object of S0(T), whose image is
readily checked to be isomorphic to (φ : T → S, G, β). On the other hand one checks
that for a fixed scheme T over k, objects (φ : T → S, G, β) and (ψ : T → S, H, γ) are
isomorphic if and only if φ = ψ and there are no non-trivial automorphisms, so g is also
fully faithful.

Remark 4.2.15. The locus S0 can also be described as the locus where all the maps that
are identities in the pullback of a parabolic sheaf from Xn are isomorphisms.

Now we turn our attention to the behavior of stable sheaves.

Proposition 4.2.16. Assume that the pullback along π of any stable sheaf is still stable. Then ιn,m

restricts to an open immersion ιon,m : Ms
n → Ms

m, inducing io
n,m : Ms

n → Ms
m (which coincides

with the restriction of in,m).

We will need a couple of lemmas.

Lemma 4.2.17. If G ∈ Coh(Xn) is a sheaf such that π∗G ∈ Coh(Xm) is stable, then G is stable
on Xn.

Proof. Let F ⊆ G be a non-zero proper subsheaf. Then since π is flat and π∗ is fully faith-
ful, π∗F ⊆ π∗G is a non-zero proper subsheaf, and thus pn(F) = pm(π∗F) < pm(π∗G) =

pn(G), since π∗G is stable.

Lemma 4.2.18. The square

Ms
n

ιon,m //

��

Ms
m

��
Mss

n
ιn,m //Mss

m
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is cartesian.

Proof. Denote by X the fibered product Mss
n ×Mss

m
Ms

m. The objects of X(T) for T a
scheme over k are triples (G, H, α), where G ∈ Coh(Xn ×k T) is a family of semi-stable
sheaves, F ∈ Coh(Xm ×k T) is a family of stable sheaves, and α : π∗TG ∼= H is an isomor-
phism in Coh(Xm ×k T). We have a map g : Ms

n → X sending a family of stable sheaves
F ∈ Coh(Xn ×k T) over T to the object (F, π∗T F, id) of X(T), and we will prove that this
is an equivalence.

Now take an object (G, H, α) of X(T). The previous lemma implies that the fibers
of G are stable, since their pullback to Xm is stable. This says that G is an object of
Ms

h,n, and one checks that g(G) = (G, π∗TG, id) is isomorphic to the original (G, H, α),
so g is essentially surjective. For fully faithfullness, it is sufficient to notice that given
a morphism (φ, ψ) : (F, π∗T F, id) → (G, π∗TG, id) the component ψ : π∗T F → π∗TG has to
coincide with π∗Tφ.

Remark 4.2.19. From the proof it is clear that this lemma will also hold if we are consid-
ering variants with fixed reduced Hilbert polynomial h ∈ Q[x] (or with some other fixed
datum, compatible with pullback), i.e. the square

Ms
h,n

ιon,m //

��

Ms
h,m

��
Mss

h,n
ιn,m //Mss

h,m

is cartesian as well.

Proof of Proposition 4.2.16. The fact that pullback preserves stability implies that ιn,m maps
Ms

n to Ms
m, so the map ιon,m is well-defined. Lemma 4.2.18 implies that ιon,m is an open

immersion, since we know that ιn,m is an open immersion, and the statement for io
n,m

follows from the properties of good moduli spaces.

The morphism ιn,m : Mss
n →Mss

m is not always closed.

Example 4.2.20. Consider the case of the standard log point, i.e. X = Spec(k) with the
log structure L : N → k, sending 0 to 1 ∈ k and everything else to zero. Consider the
projection π : X2 → X, and the family of parabolic sheaves {Et}t∈k with weights in 1

2 N,
over A1

k , given by (Et)a = k for any a ∈ 1
2 Z, and maps

(Et)−1 → (Et)−1/2 → (Et)0 = k ·t→ k 0→ k
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This is a flat family of semi-stable sheaves over A1
k , i.e. an object ofMss

2 (A
1
k). Notice

also that the diagram

k ·t // k 0 // k

k k 0 //

·t

OO

k

shows that for t 6= 0, Et is isomorphic to the pullback of the unique invertible sheaf on
Spec(k), but when t = 0 this is clearly not true.

This essentially shows that the following diagram is cartesian

A1
k \ {0} //

��

A1
k

Et

��
Mss

1
ι1,2 //Mss

2

and this implies that ι1,2 is not closed in this case.

In this example the pullback of a stable sheaf need not be stable in general. Let us
examine directly a larger class of examples where this happens.

Example 4.2.21. Assume that X is a log scheme with a chart L : N → Div(X) such that
L(1) = (L1, 0) ∈ Div(X), and let F be a stable sheaf on X1. Then for every 0 ≤ i < n we
have the stable parabolic sheaf

−1 · · · − i
n · · · 0

Fi = 0 // 0 // · · · // 0 // F // 0 // · · · // 0 // 0

on Xn, with one copy of F in place − i
n , and 0 everywhere else (of course when i = 0 we

will have F⊗ L−1
1 in place −1).

Given m = nk, the pullback along π : Xm → Xn of Fi is given by

−1 · · · − ki
m · · · − ki−k+1

m · · · 0

π∗Fi = 0 // · · · // F F · · · F F // · · · // 0,

or, in other words

(π∗Fi)a =

{
F for − ki

m ≤ a ≤ − ki−k+1
m

0 otherwise
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with the obvious maps (so there are k copies of F). The sheaves π∗Fi are semi-stable, but
not stable anymore: for example we have a subsheaf G ⊆ π∗F given by

−1 · · · − ki
m · · · − ki−k+2

m − ki−k+1
m − k(i−1)

m · · · 0

π∗Fi = 0 // · · · // F · · · F F // 0 // · · · // 0

G = 0
?�

OO

// · · · // 0
?�

OO

// · · · // 0
?�

OO

// F
?�

OO

// 0
?�

OO

// · · · // 0,
?�

OO

that is

Ga =

{
F for a = − ki−k+1

m
0 otherwise,

and clearly pm(G) = pm(π∗Fi) = p1(F).
Moreover it is easy to describe the stable factors of π∗Fi: they are precisely the sheaves

Gj with one copy of F in place − ki−j
m for 0 ≤ j ≤ k − 1, and all zeros otherwise. Note

that all of the sheaves on Xn described in Remark 4.2.9 (obtained starting from one of the
stable factors Gj) coincide with the original Fi or are zero, in this case.

Note also that π∗Fi is not even polystable: of the sheaves Gj just described, only
G = Gk−1 is a subsheaf of π∗Fi. The polystable sheaf

⊕
Gj which is S-equivalent to π∗Fi

is

−1 · · · − ki
m · · · − ki−k+1

m · · · 0

⊕
Gj = 0 // · · · // F 0 // F 0 // · · · 0 // F 0 // F // · · · // 0

where all the maps are zero.

This example can be generalized in arbitrary rank. For example if X has a chart
L : N2 → Div(X) with both (1, 0) and (0, 1) going to (L1,0, 0) and (L0,1, 0), this example
carries through verbatim (so that again there will be stable sheaves that become strictly
semi-stable after pullback), but we can also do something different.

Let us introduce some notation first.

Notation 4.2.22. We need to draw parabolic sheaves on Xn, where X is a log stack with
a free log structure Nr → Div(X).



156 CHAPTER 4. MODULI OF PARABOLIC SHEAVES WITH VARYING WEIGHTS

When r = 1, we can draw parabolic sheaves easily as a the segment in [−1, 0]

· · · −1 − n−1
n · · · − 1

n 0 · · ·

· · · // F0 // F1 // · · · // Fn−1 // F0 ⊗ L // · · ·

of a “sequence” of sheaves arranged on the real line.
If r = 2 we can draw the sheaf as the square [−1, 0]2 (for example if we are taking

square roots)

−1 − 1
2 0

F−1,−1 ⊗ L0,1 // F− 1
2 ,−1 ⊗ L0,1 // F−1,−1 ⊗ L1,1 0

F−1,− 1
2

//

OO

F− 1
2 ,− 1

2
//

OO

F−1,− 1
2
⊗ L1,0

OO

− 1
2

F−1,−1

OO

// F− 1
2 ,−1

//

OO

F−1,−1 ⊗ L1,0

OO

−1

inside a “diagram” on the plane with a sheaf on every point with integral coordinates
and maps going up and to the right.

If the rank is bigger this becomes less feasible, but we have an “inductive” way of
drawing parabolic sheaves in higher rank. For example, the sheaf with r = 2 above can
be drawn in the following way: say that the DF structure is given by L : N2 → Div(X),
and consider the new DF structure given by the composition N ⊆N2 → Div(X), where
N ⊆N2 is the inclusion of the first or second component. Call the resulting log schemes
X̃1 and X̃2 respectively.

Then a parabolic sheaf on the root stack X2 can be drawn as a diagram

· · · −1 − 1
2 0 · · ·

· · · // F0 // F1 // F0 ⊗ L(1,0)
// · · ·

with the formal properties of a parabolic sheaf on X̃1, but where the sheaves F0 and F1

are parabolic sheaves on X̃2. In other words we are “collapsing” the vertical direction,
and the price is to use parabolic sheaves in place of quasi-coherent sheaves.
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In general if X is a log scheme with a chart L : Nr → DivX, let us consider the
DF structure given by the inclusion Nr−1 ⊆ Nr → DivX that omits the i-th standard
generator ei. Call X̃ the resulting log scheme. Then a parabolic sheaf on Xn can be seen
as a diagram

−1 · · · − j
n · · · 0

◦

other directions
��

i-th directionoo

F0 // F1 // · · · // Fn−j−1 // Fn−j // Fn−j+1 // · · · // Fn−1 // F0 ⊗ Lei

where each of the Fi’s is a parabolic sheaf on the root stack X̃n.
We will use this notation several times in the following arguments.

Example 4.2.23. Take a log scheme X with a global chart L : N2 → Div(X), and now
assume only that L((0, 1)) = (L0,1, 0) ∈ Div(X), and the section of L1,0 can be non-zero,
and let us fix n = 2 for simplicity. Consider as in the preceding discussion the log
scheme X̃, which has the same underlying scheme as X, but the log structure is given
by N ⊆ N2 → Div(X), where the map is the immersion as the first component, so the
image of 1 is (L1,0, s1,0).

Take a stable sheaf F ∈ Coh(X̃2), say

−1 −1/2 0

F = F0 // F1 // F0 ⊗ L1,0

and form the following parabolic sheaf, call it F′, on X2

−1 − 1
2 0

0 // 0 // 0 0

F′ = F0 //

OO

F1 //

OO

F0 ⊗ L1,0

OO

− 1
2

0

OO

// 0 //

OO

0

OO

−1
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or, with the notation of 4.2.22,

−1 − 1
2 0

◦

horizontal direction
��

vertical directionoo

F′ = 0 // F // 0.

Note that this is well defined because the given section of L0,1 is zero. It is clear that F′ is
also stable on X2, since its subsheaves correspond exactly to subsheaves of F on X̃2, and
the slopes are the same. Assume also that π̃∗F is stable on X̃4, where π̃ : X̃4 → X̃2 is the
projection.

Now consider the pullback of F′ along π : X4 → X2

−1 − 3
4 − 1

2 − 1
4 0

0 // 0 // 0 // 0 // 0 0

F0

OO

F0

OO

// F1

OO

F1

OO

// F0 ⊗ L1,0

OO

− 1
4

π∗F′ = F0 F0 // F1 F1 // F0 ⊗ L1,0 − 1
2

0 //

OO

0 //

OO

0 //

OO

0 //

OO

0

OO

− 3
4

0

OO

// 0 //

OO

0 //

OO

0 //

OO

0

OO

−1
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and notice that this is not stable, because the following sheaf G ∈ Coh(X4)

−1 − 3
4 − 1

2 − 1
4 0

0 // 0 // 0 // 0 // 0 0

F0

OO

F0

OO

// F1

OO

F1

OO

// F0 ⊗ L1,0

OO

− 1
4

G = 0 //

OO

0 //

OO

0 //

OO

0 //

OO

0

OO

− 1
2

0 //

OO

0 //

OO

0 //

OO

0 //

OO

0

OO

− 3
4

0

OO

// 0 //

OO

0 //

OO

0 //

OO

0

OO

−1

is a subsheaf of π∗F′, and clearly has p4(G) = p4(π
∗F′) = p2(F′).

Once again we can easily describe the stable factors: they are the sheaf G, and the
analogous one with the rows corresponding to − 1

4 and − 1
2 switched (note that this is not

a subsheaf of π∗F′), so that the polystable sheaf S-equivalent to π∗F′ is

−1 − 3
4 − 1

2 − 1
4 0

0 // 0 // 0 // 0 // 0 0

F0

OO

F0

OO

// F1

OO

F1

OO

// F0 ⊗ L1,0

OO

− 1
4

F0

0

OO

F0 //

0

OO

F1

0

OO

F1 //

0

OO

F0 ⊗ L1,0

0

OO

− 1
2

0 //

OO

0 //

OO

0 //

OO

0 //

OO

0

OO

− 3
4

0

OO

// 0 //

OO

0 //

OO

0 //

OO

0

OO

−1.
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As in the previous example, we can completely reconstruct F′ from any of its stable
factors, for example from G, as π∗(G ⊗ L(di)

4 ) for some (di) (for example (1, 1) works).
Finally note that π∗(G⊗ L(di)

4 ) is either isomorphic to F′, or is zero.

We will see now that the behavior in the previous example is in fact typical for stable
sheaves with non-stable pullback.

Notation 4.2.24. We denote by Xi (for i = 1, . . . , r) the log stack given by X1, together with
the log structure induced by the composition Nr−1 ⊆Nr → Div(X1), where Nr−1 ⊆Nr

is the inclusion that omits the i-th basis element.

Let Coh((Xi)n)si denote the subcategory of Coh((Xi)n) of sheaves annihilated by
the section si of Li coming from the log structure (meaning that every component of the
parabolic sheaf is annihilated by si). We define fully faithful functors Ii

n,j : Coh((Xi)n)si →
Coh(Xn) for i = 1, . . . , r, and j = 1, . . . , n as follows: for F ∈ Coh((Xi)n)si , we set

Ii
n,j(F)a1,...,ar =

{
Fa1,...,âi ,...,ar for ai = − j

n
0 otherwise.

with maps
Ii
n,j(F)a1,...,ar → Ii

n,j(F)a1,...,ak+
1
n ,...,ar

defined to be zero, except if ai = − j
n and k 6= i, in which case it is defined as the

corresponding map
Fa1,...,âi ,...,ar → Fa1,...,ak+

1
n ,...,âi ,...,ar

of the sheaf F.
In other words, Ii

n,j(F) is obtained by placing F in the “slice” ai = − j
n , and filling the

rest with zeros. Note that this is well defined only if the components of F are annihilated
by si.

If we use the notation of 4.2.22, we can draw Ii
n,j(F) as

−1 · · · − j
n · · · 0

◦

other directions
��

i-th directionoo

Ii
n,j(F) = 0 // 0 // · · · // 0 // F // 0 // · · · // 0 // 0

and from this description, it is clear that:
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• we have pn(Ii
n,j(F)) = pn(F),

• subsheaves of Ii
n,j(F) correspond bijectively to subsheaves of F via Ii

n,j,

• so Ii
n,j(F) is (semi-)stable on Xn if and only if F is (semi-)stable on (Xi)n.

Now let us set m = nk and assume that F is stable, so that Ii
n,j(F) is also stable.

Consider the pullback of Ii
n,j(F) along π : Xm → Xn, and consider also the projection

πi : (Xi)m → (Xi)n. We can write the pullback as

−1 · · · − kj
m · · · − kj−k+1

m · · · 0

◦

other directions
��

i-th directionoo

π∗ Ii
n,j(F) = 0 // · · · // π∗i F π∗i F · · · π∗i F π∗i F // · · · // 0,

and, as in example 4.2.21, we see that π∗ Ii
n,j(F) is not stable: the sheaf Ii

m,kj−k+1(π
∗
i F) ∈

Coh(Xm) having one copy of π∗i F in the “slice” ai = − kj−k+1
m is a proper subsheaf of the

pullback π∗ Ii
n,j(F)

−1 · · · − kj
m · · · − kj−k+1

m · · · 0

◦

other directions

��

i-th directionoo

π∗ Ii
n,j(F) = 0 // · · · // π∗i F · · · π∗i F π∗i F // · · · // 0

Ii
m,kj−k+1(π

∗
i F) = 0

?�

OO

// · · · // 0
?�

OO

// · · · // 0
?�

OO

// π∗i F
?�

OO

// · · · // 0
?�

OO

and has pm(Ii
m,kj−k+1(π

∗
i F)) = pm(π∗ Ii

n,j(F)), as they are both equal to pn(F) on (Xi)n.

We can describe the stable factors of π∗ Ii
n,j(F) if π∗i F if stable on (Xi)m (which is not
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always the case): the quotient π∗ Ii
n,j(F)/Ii

m,kj−k+1(π
∗
i F) is the sheaf

−1 · · · − kj
m · · · − kj−k+1

m · · · 0

◦

other directions
��

i-th directionoo

0 // · · · // π∗i F π∗i F · · · π∗i F // 0 // · · · // 0

with one less copy of π∗i F at the end, and it has Ii
m,kj−k+2(π

∗
i F) as a subsheaf with

the same slope. Inductively, we see that the stable factors of π∗ Ii
n,j(F) are the sheaves

Ii
m,kj−h(π

∗
i F) for h = 0, . . . , k− 1, and the semi-stable sheaf S-equivalent to π∗ Ii

n,j(F) is

−1 · · · − kj
m · · · − kj−k+1

m · · · 0

◦

other directions
��

i-th directionoo

0 // · · · // π∗i F 0 // π∗i F 0 // · · · 0 // π∗i F 0 // π∗i F // · · · // 0

with zeros instead of identity maps.
The next proposition says that every stable sheaf F ∈ Coh(Xn) such that π∗F ∈

Coh(Xm) is not stable is of this form.

Proposition 4.2.25. Let F ∈ Coh(Xn) be a stable sheaf. Then π∗F ∈ Coh(Xm) is not stable if
and only if F is in the image of one of the functors Ii

n,j, for some i, j.

Proof. The “if” part is contained in the previous discussion.
For the other direction, let us consider a subsheaf G ⊆ π∗F, along with the subsheaves

π∗(G ⊗ L(di)
m ) ⊆ F for 0 ≤ di < k. Recall that by proposition 4.2.8, the slope pm(G) is a

weighted mean of the polynomials pn(π∗(G⊗ L(di)
m )), with π∗(G⊗ L(di)

m ) non-zero.
The only possibility for G to be destabilizing is that pn(π∗(G ⊗ L(di)

m )) = pn(F) for
all non-zero π∗(G⊗ L(di)

m ), and by stability of F this implies π∗(G⊗ L(di)
m ) = F for those

values of (di).
Nota also that if π∗(G ⊗ L(di)

m ) = F for all values of (di), then we must have G =

π∗F: this can be seen directly from the description of the sheaves π∗(G⊗ L(di)
m ) given in

Remark 4.2.9, or from the fact that the direct sum E =
⊕

0≤di<0 L(di)
m is a generating sheaf
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for the relative root stack π : Xm → Xn, and the cokernel of G ⊆ π∗F would be sent to
zero by π∗(−⊗ E) ([Nir, Lemma 3.4]).

This implies that if π∗F is not stable, then there is a subsheaf G with

• π∗(G⊗ L(di)
m ) = 0 or π∗(G⊗ L(di)

m ) = F for all 0 ≤ di < k, and

• each of the two cases occur for at least one (di).

Now we will see that this implies that F is in the image of one of the functors Ii
n,j. From

now on for brevity we will write G(di) = π∗(G⊗ L(di)
m ) ∈ Coh(Xn).

Observe first that if G(di) = F for some (di), then G(ei) = F also for any (ei) ≥ (di) in
the componentwise order. This is because, since G is a subsheaf of π∗F, the diagram

F = (π∗F)(di) (π∗F)(ei) = F

F = G(di) //
?�

OO

G(ei)
?�

OO

commutes, and this forces G(ei) = F. This implies that if G(di) = 0, then G(ei) = 0 for
any (ei) ≤ (di). In particular we necessarily have G(0,...,0) = 0 and G(k−1,...,k−1) = F. Now
we justify the fact that there is a direction i0 ∈ {1, . . . , r} such that G(di) = 0 and F both
occur for di with i 6= i0 fixed, and di0 ranging from 0 to k− 1.

Look first at the sheaves G(a,0,...,0) for 0 ≤ a < k: if G(k−1,0...,0) = F, we are done.
Otherwise, all the sheaves of this form are 0, and we look at G(k−1,a,0,...,0) for 0 ≤ a < k,
and so on. If we are unlucky, at the (r − 1)-th step we will find G(k−1,...,k−1,0) = 0, and
so the sheaves G(k−1,...,k−1,a) satisfy the requirement, since for a = 0 we have 0 and for
a = k− 1 we have F.

Now we claim that all the maps of the parabolic sheaf F in the direction i0 are neces-
sarily zero: in fact take (a1, . . . , ar) ∈ ([−1, 0) ∩ 1

n Z)r, and consider the map

f : F(a1,...,ar) → F(a1,...,ai0+
1
n ,...,ar)

.

By looking at the hypercubes corresponding to these two sheaves in the pullback π∗F,
along with the subsheaf G and its property that in the direction i0 it has both F and 0,
we see that the following diagram commutes (the top row is in π∗F, the bottom in the
subsheaf G)

F(a1,...,ar)

f // F(a1,...,ai0+
1
n ,...,ar)

F(a1,...,ai0+
1
n ,...,ar)

F(a1,...,ar)
// 0 //?�

OO

F(a1,...,ai0+
1
n ,...,ar)

from which we deduce that f is zero.
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Example 4.2.26. Let us examine a simple example more closely. Assume that r = 2, set
L((1, 0)) = (L1,0, s1,0) and L((0, 1)) = (L0,1, s0,1) and take a parabolic sheaf

−1 − 1
2 0

F−1,−1 ⊗ L0,1 // F− 1
2 ,−1 ⊗ L0,1 // F−1,−1 ⊗ L1,1 0

F = F−1,− 1
2

//

OO

F− 1
2 ,− 1

2
//

OO

F−1,− 1
2
⊗ L1,0

OO

− 1
2

F−1,−1

OO

// F− 1
2 ,−1

//

OO

F−1,−1 ⊗ L1,0

OO

−1

on X2, and its pullback π∗F along π : X4 → X2,

−1 − 3
4 − 1

2 − 1
4 0

F−1,−1 ⊗ L0,1 F−1,−1 ⊗ L0,1 // F− 1
2 ,−1 ⊗ L0,1 F− 1

2 ,−1 ⊗ L0,1 // F−1,−1 ⊗ L1,1 0

F−1,− 1
2

OO

F−1,− 1
2

//

OO

F− 1
2 ,− 1

2

OO

F− 1
2 ,− 1

2

OO

// F−1,− 1
2
⊗ L1,0

OO

− 1
4

F−1,− 1
2

F−1,− 1
2

// F− 1
2 ,− 1

2
F− 1

2 ,− 1
2

// F−1,− 1
2
⊗ L1,0 − 1

2

F−1,−1

OO

F−1,−1

OO

// F− 1
2 ,−1

OO

F− 1
2 ,−1

//

OO

F−1,−1 ⊗ L1,0

OO

− 3
4

F−1,−1 F−1,−1 // F− 1
2 ,−1 F− 1

2 ,−1
// F−1,−1 ⊗ L1,0 −1.

Now assume that π∗F is not stable, so that we have a subsheaf G ⊆ π∗F with p4(G) =

p4(π
∗F) = p2(F). As we discussed, this means that the four sheaves

π∗(G⊗ L(0,0)
4 ), π∗(G⊗ L(1,0)

4 ), π∗(G⊗ L(0,1)
4 ), π∗(G⊗ L(1,1)

4 ) ⊆ F

on X2 are either F or 0, and both cases occur.
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Let us look at the square [−1,− 3
4 ]

2 of G. We have the following cases:

−1 − 3
4

F−1,−1 F−1,−1 − 3
4

0 //

OO

F−1,−1 −1

or

−1 − 3
4

0 // F−1,−1 − 3
4

0 //

OO

F−1,−1 −1

or

−1 − 3
4

F−1,−1 F−1,−1 − 3
4

0 //

OO

0

OO

−1,

or

−1 − 3
4

0 // F−1,−1 − 3
4

0 //

OO

0

OO

−1,

and, in each of these cases, the pattern will be the same in each of the other three squares
of [−1, 0]2.

Now assume we are in the first case, and look at the segment [−1, 1
4 ]× {−1} of G,
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along with the inclusion in the same line of F

−1 − 3
4 − 1

2 − 1
4 0 1

4

F = F−1,−1 F−1,−1 // F− 1
2 ,−1 F− 1

2 ,−1
// F−1,−1 ⊗ L1,0 F−1,−1 ⊗ L1,0 −1

G =
?�

OO

0 //?�

OO

F−1,−1 // 0 //?�

OO

F− 1
2 ,−1

// 0 //?�

OO

F−1,−1 ⊗ L1,0 −1.

From this diagram we can conclude that the maps F−1,−1 → F− 1
2 ,−1 and F− 1

2 ,−1 →
F−1,−1 ⊗ L1,0 are zero. By looking at the line [−1, 0] × {− 1

2} we see analogously that
also the maps F−1,− 1

2
→ F− 1

2 ,− 1
2

and F− 1
2 ,− 1

2
→ F−1,− 1

2
⊗ L1,0 are zero and so the parabolic

sheaf F

−1 − 1
2 0

F−1,−1 ⊗ L0,1
0 // F− 1

2 ,−1 ⊗ L0,1
0 // F−1,−1 ⊗ L1,1 0

F = F−1,− 1
2

0 //

OO

F− 1
2 ,− 1

2

0 //

OO

F−1,− 1
2
⊗ L1,0

OO

− 1
2

F−1,−1

OO

0 // F− 1
2 ,−1

0 //

OO

F−1,−1 ⊗ L1,0

OO

−1

has zero maps in the horizontal direction.

The other cases are similar.

Note that if the square
[
−1,− 3

4

]2 was the last one in our list (the one with three
zeros), then the conclusion would be that the maps of the sheaf in both the horizontal
and vertical direction are zero. This is a case in which F is of the form Ii

n,j(F′) for a sheaf
F′ ∈ (Xi)n, but F′ will again have non-stable pullback to (Xi)m, and thus we can apply
the whole procedure again to F′.

Returning to the proof, the above discussion implies that, using the notation of 4.2.22,
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the sheaf F can be written as

−1 − n−1
n · · · − 1

n 0

◦

other directions
��

i0-th directionoo

F = F0
0 // F1

0 // · · · 0 // Fn−1
0 // F0 ⊗ Li0

where all the parabolic sheaves Fh ∈ Coh((Xi0)n) are annihilated by the section si0 , so in
fact Fh ∈ Coh((Xi0)n)si0

. Now note that unless only one of the Fh’s is non-zero, a sheaf of
this form cannot be stable, since it is the direct sum of the parabolic sheaves having Fh in
place − n−h

n (in the direction i0) and zero everywhere else, and a semi-stable direct sum
is stable if and only if there is only one factor, which moreover is stable.

In conclusion F is of the form

−1 − n−1
n · · · − n−h+1

n − n−h
n

n−h−1
n · · · 0

◦

other directions
��

i0-th directionoo

F = 0 // 0 // · · · // 0 // Fh // 0 // · · · // 0

or, in other words, F = Ii0
n,n−h(Fh) with Fh ∈ Coh((Xi0)n)si0

a stable sheaf, and this
concludes the proof.

Lemma 4.2.27. Let F ∈ Coh(Xn) be a stable sheaf and let F′ ∈ Coh(Xm) be one of the stable
factors of π∗F. Then for any 0 ≤ di < k the sheaf π∗(F′ ⊗ L(di)

m ) ∈ Coh(Xn) is isomorphic to F
or zero (and both cases occur if π∗F is not stable).

Proof. If π∗F is still stable, this is clear from the description of the pullback and by
remark 4.2.9. In the other case we know that F must be of the form Ii

n,j(G) with G stable
on (Xi)n from the preceding proposition, and we know the stable factors F′ of π∗F from
the discussion preceding the proof of 4.2.25, if the pullback of G along (Xi)m → (Xi)m is
stable. If this pullback is not stable we can apply Proposition 4.2.25 again to G, and after
a finite number of steps we will get down to a stable sheaf.

From the explicit form of the stable factors and the description of the sheaves π∗(F′⊗
L(di)

m ) ∈ Coh(Xn) of Remark 4.2.9, the conclusion follows.
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Lemma 4.2.28. Let F, G ∈ Coh(Xn) be stable sheaves such that π∗F and π∗G are S-equivalent
on Xm. Then F ∼= G on Xn.

Proof. If one of π∗F or π∗G is stable, then π∗F ∼= π∗G (since S-equivalent implies iso-
morphic, if one of the sheaves is stable) and since π∗ is fully faithful we conclude that
F ∼= G.

If both π∗F and π∗G are not stable, denote by Fi and Gj their stable factors. Since
π∗F and π∗G are S-equivalent, they have the same stable factors, so for some i and j
we have Fi

∼= Gj. Now by Lemma 4.2.27, the shaves π∗(Fi ⊗ L(di)
m ) and π∗(Gj ⊗ L(di)

m ) for
0 ≤ di < k are isomorphic to F or G respectively, or zero. Since F and G are not zero,
and the isomorphism Fi

∼= Gj will induce isomorphisms π∗(Fi ⊗ L(di)
m ) ∼= π∗(Gj ⊗ L(di)

m )

for any (di), we get an isomorphism F ∼= G.

Proposition 4.2.29. The morphism in,m : Mss
n → Mss

m between the good moduli spaces is geo-
metrically injective. In particular, being proper, it is also finite.

Proof. Fix an algebraically closed extension k ⊆ K, and let us show that Mss
n (K) →

Mss
m(K) is injective. This means that if F, G ∈ Coh((XK)n) are semi-stable sheaves

such that π∗F, π∗G ∈ Coh((XK)n) are S-equivalent, then F and G are S-equivalent
themselves. We can assume that F and G are polystable, and write F =

⊕
i Fi and

G =
⊕

j Gj as sums of stable sheaves on (XK)n. We will proceed by induction on
N = max{#stable factors of F, #stable factors of G}.

For N = 1, this is the previous lemma, applied to XK.
If N > 1, write Fi,h and Gj,k for the stable factors of π∗Fi and π∗Gj respectively. Since

π∗F =
⊕

i

π∗Fi

and
π∗G =

⊕
j

π∗Gj

are S-equivalent, they will have the same stable factors, so for some i, j, k, h we have
Fi,h
∼= Gj,k.

Now let us look at the sheaves π∗(Fi,h ⊗ L(di)
m ) and π∗(Gj,k ⊗ L(di)

m ) on Xn for all 0 ≤
di < k: by Lemma 4.2.27, they are isomorphic to Fi, and Gj respectively, or zero. But
since neither of Fi or Gj is zero, as in the proof of the previous lemma, we can conclude
that the isomorphism Fi,h

∼= Gj,k induces Fi
∼= Gj.

After erasing these two factors from F and G, we end up with two polystable sheaves
F′ and G′ with max{#stable factors of F′, #stable factors of G′} = N − 1 and such that
π∗F′ and π∗G′ are S-equivalent. By the induction hypothesis F′ and G′ are isomorphic,
and this concludes the proof.
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The part about finiteness follows from Chevalley’s theorem.

Proposition 4.2.30. If the pullback of a stable sheaf is stable, then all the maps ιn,m, ιon,m, in,m, io
n,m

are open and closed immersions.

Proof. We already know that ιn,m is an open immersion. The fact that stable sheaves
go to stable sheaves implies that polystables go to polystables, and this says that ιn,m

sends closed points to closed points (recall that the closed points of Mss
n correspond

to polystable sheaves). Since we know that the induced map in,m on the good moduli
spaces is finite, by Proposition 6.4 of [Alp12] we can conclude that ιn,m is also finite, and
in particular closed. This shows that ιn,m is an open and closed immersion, and this
implies the conclusion also for in,m.

Finally, the same conclusion for ιon,m and io
n,m holds because of Lemma 4.2.18.

It is not clear to us that this should hold in general. Example 4.2.20 showed that ιn,m

need not be closed in general.

Example 4.2.31. As in 4.2.20 consider the standard log point, i.e. X = Spec(k) with the
log structure L : N → k, sending 0 to 1 ∈ k and everything else to zero, and the map
π : X2 → X. We showed that ι1,2 : Mss

1 →Mss
2 is not closed.

Note first of all that in case everything is semi-stable, since the reduced Hilbert poly-
nomial (of a non-zero sheaf) is always 1, and the only stable sheaves are those with-
out proper non-zero subsheaves. Furthermore Mss

1 and Mss
1 are disjoint union of sub-

stacks/schemes parametrized by a natural number r ∈ N (the rank). Let us restrict to
the component (Mss

1 )1 parametrizing semi-stable sheaves of rank 1. This lands in the
component (Mss

2 )2 parametrizing semi-stable sheaves on X2 of parabolic rank 2.
Let us show that i1,2 : (Mss

1 )1 → (Mss
2 )2 is an open and closed immersion. It is clear

that (Mss
1 )1
∼= BGm, since we are just parametrizing invertible sheaves, and so (Mss

1 )1 =

Spec(k). On the other hand (Mss
2 )2 has three connected components, parametrizing

sheaves of the following three kinds:

−1 − 1
2 0

k⊕ k // 0 // k⊕ k

0 // k⊕ k // 0

k // k // k.
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The first two kinds correspond to components of the form B GL2, that have Spec(k) has
moduli space, and the third one parametrizes pairs (L, M) of invertible sheaves with two
maps a : L→ M and b : M→ L such that a ◦ b = 0 and b ◦ a = 0.

From this description we see that this component can be identified with the quotient
[Spec(k[x, y]/(xy))/Gm ×Gm] for the action defined by (α, β) · (x, y) = (αβ−1x, α−1βy).
From this we see that the moduli space of this component is also Spec(k). In con-
clusion the morphism (Mss

1 )1 → (Mss
2 )2 is the inclusion of one component Spec(k) →

Spec(k)ä Spec(k)ä Spec(k).

We have no examples in which in,m is not an open and closed immersion, so one could
conjecture that this is always the case. At the very least, the fact that on each connected
component the inductive limit stabilizes (in the sense that in,m is an isomorphism for n, m
big enough) seems very reasonable.

The following example shows that the fact that the map between spaces is an immer-
sion will not follow from general facts on good moduli spaces.

Example 4.2.32. We will construct an example of an open immersion between Artin
stacks with good moduli spaces, that does not induce an immersion on the moduli
spaces.

Let us consider the action of Gm on the second component of X = A1 × Gm =

Spec(k[x, t±1]), and the natural action on Y = Spec(A) where A ⊆ k[x, t] is the subring
generated by monomials of total degree at least 2, i.e. x2, xt, t2, x3, . . .. We have a Gm

equivariant map X → Y which is an open immersion (since outside the origin A is just
A2 \ 0), and therefore induces an open immersion between the quotient stacks [X/Gm]→
[Y/Gm].

The induced morphism between the good moduli spaces is the normalization map
A1 → C where C is the standard cuspidal curve, and therefore is not an immersion.

The following proposition gives sufficient conditions that ensure that stability is pre-
served under pullback.

Proposition 4.2.33. The pullback of a stable sheaf is stable in each of the following cases:

• we are considering torsion-free sheaves and the log structure on X is generically trivial (as
in 1.2.15);

• we look at components corresponding to a reduced Hilbert polynomial h ∈ Q[x], which is
not the reduced Hilbert polynomial of a stable parabolic sheaf on one of the log stacks Xi.

Proof. This is immediate from the previous discussion: a stable sheaf with non-stable
pullback will have a lot of zeros, but the maps of a torsion-free parabolic sheaf on a log



4.3. LIMIT MODULI THEORY ON X∞ 171

scheme with generically trivial log structure are injective (see 3.2.13), and this is it for the
first part.

As for the second part, a stable sheaf with a non-stable pullback is of the form Ii
n,j(F)

for some F ∈ Coh((Xi)n)si , and recall that pn(Ii
n,j(F)) = pn(F).

Remark 4.2.34. Let us briefly discuss the significance of the second condition. Clearly,
it will only be meaningful if the set of reduced Hilbert polynomials of stable parabolic
sheaves on X is not entirely contained in the set of reduced Hilbert polynomials of stable
sheaves on one of the Xi.

We feel that this should be the case in general: the reduced Hilbert polynomial of a
parabolic sheaf is in particular the reduced Hilbert polynomial of a sheaf on X (the sum
of its fundamental pieces), but this sheaf on X is typically not even semi-stable. Moreover,
adding generators to the log structure should give more freedom for stable sheaves, and
thus for the set of their Hilbert polynomials. For example if the log structure has rank 1,
the pieces of a parabolic stable sheaf need not be stable on X.

Anyways, to completely understand this problem first of all one should understand
the problem of which polynomials in Q[x] can be realized as reduced Hilbert polynomi-
als of some stable sheaf, which is non-trivial even in the classical (non-parabolic) setting.

With that said, let us look at the example of curves, where one can say something.
If X = P1, say with the log structure corresponding to the divisor given by 0, then

the reduced Hilbert polynomial of any coherent sheaf is of the form h(x) = x + q with
q ∈ Q[x], and since the only stable sheaves are the line bundles, their reduced Hilbert
polynomials are exactly those for which q is an integer.

In this case for any fixed q ∈ Q there are stable parabolic sheaves on X that have
x + q as their reduced Hilbert polynomial (it suffices to consider parabolic sheaves whose
pieces are all line bundles), so that the second condition in the last proposition is mean-
ingful in this case.

On the other hand if the genus of X is at least 1, reduced Hilbert polynomials are still
of the form x + q with q ∈ Q, but now any one of these polynomials is a reduced Hilbert
polynomial of a stable sheaf on X. In fact it known that for any fixed degree and rank
(that we may assume coprime) an a curve of genus at least 1 there is a stable sheaf of the
fixed degree and rank. In this case the second condition of the last proposition cannot
be applied in a meaningful way.

4.3 Limit moduli theory on X∞

In this section we will use the notations of the last one, and moreover we will denote
by πn,m : Xm → Xn the natural projection for n | m, and by πn : X∞ → Xn the projection
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from the infinite root stack. Note that, being an inverse limit of flat morphisms, πn is
flat.

The subject of this section is the moduli theory for finitely presented sheaves on
X∞ that we get by taking a limit of the theories at finite levels. In our setting X∞ is
coherent by 2.2.46, so that finitely presented sheaves are the same as coherent sheaves, but
since this does not hold in general we will formulate everything using finitely presented
sheaves.

Recall from 2.2.35 that FP(X∞) = lim−→n
FP(Xn), and this means that

• every finitely presented sheaf F ∈ FP(X∞) is of the form π∗nFn for some n and
Fn ∈ FP(Xn),

• for any n, m and Fn ∈ FP(Xn), Fm ∈ FP(Xm) such that F ∼= π∗nFn ∼= π∗mFm, there
exists k ≥ n, m such that π∗n,kFn ∼= π∗m,kFm on Xk.

Definition 4.3.1. The reduced Hilbert polynomial p(F) of F ∈ FP(X∞) is the reduced Hilbert
polynomial pn(Fn) of any finitely presented sheaf Fn ∈ FP(Xn) such that π∗nFn ∼= F.

Since π∗n is fully faithful and pm(π∗n,m(Fn)) = pn(Fn) by Proposition 4.2.10, the re-
duced Hilbert polynomial of F is well-defined.

Definition 4.3.2. A finitely presented sheaf F ∈ FP(X∞) is pure if it comes from a pure
sheaf on one of the Xn.

A finitely presented pure sheaf F ∈ FP(X∞) is (semi-)stable if for any finitely presented
subsheaf G ⊆ F we have

p(G) (≤) p(F).

Proposition 4.3.3. Let F ∈ FP(X∞), and assume Fn ∈ FP(Xn) is such that π∗nFn ∼= F. Then F
is semi-stable if and only if Fn is semi-stable on Xn. The “only if” part is true with “semi-stable”
replaced by “stable”.

Proof. If π∗nFn is (semi-)stable, then since π∗n is fully faithful and πn is flat, if G ⊆ Fn is a
non-zero proper subsheaf, then π∗nG ⊆ π∗nFn is also a non-zero proper subsheaf, and

pn(G) = p(π∗nG) (≤) p(π∗nFn) = pn(Fn).

On the other hand, if Fn is semi-stable, consider a finitely presented subsheaf G ⊆
π∗Fn. Since it is finitely presented, G will come from some Gm ∈ FP(Xm). By pushing
forward the inclusion

π∗mGm ⊆ π∗nFn

to Xk where k = lcm(m, n) and using the projection formula for πk, we see that G comes
from π∗m,kGm ⊆ π∗n,kFn. Since by Proposition 4.2.10 π∗n,kFn is semi-stable on Xk, we see
that

p(G) = pk(π
∗
m,kGk) ≤ pk(π

∗
n,kFn) = p(π∗nFn)
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so π∗nFn is semi-stable.

Example 4.3.4. The previous statement is false for stable sheaves in general, and there
are stable sheaves Fn ∈ FP(Xn) such that π∗nFn is not stable. Indeed, this will happen if
π∗n,mFn is not stable for some m = kn, and we saw examples where this happens in the
last section.

We consider the stack FPX∞ over (Aff)op of finitely presented sheaves on X∞, defined
as follows: an object over A ∈ (Aff)op is a finitely presented sheaf on (X∞)A = X∞ ×k
Spec(A), flat over A, and arrows are defined using pullback along (X∞)B → (X∞)A for
a homomorphism A→ B.

Inside FPX∞ there is a subcategory parametrizing families of semi-stable sheaves:
define Mss (resp. Ms) as the stack over (Aff)op with objects over A ∈ (Aff)op finitely
presented sheaves F on (X∞)A, flat over Spec(A), and such that for every geometric point
p→ Spec(A), the pullback of F to (X∞)p is semi-stable (resp. stable).

In the rest of this chapter we will prove the following theorem.

Theorem 4.3.5. Let X be a projective simplicial log scheme over k with a global simplicial chart
P → Div(X). The stackMss is an Artin stack, locally of finite presentation, and it has an open
substackMs ⊆Mss parametrizing stable sheaves.

If in addition stability is preserved by pullback along the projections Xm → Xn between the
root stacks of X (for example if the log structure of X is generically trivial, and we are considering
pure sheaves of maximal dimension), thenMss has a good moduli space Mss, which is a disjoint
union of projective schemes. Moreover there is an open subscheme Ms ⊆ Mss that is a coarse
moduli space for the substackMs, andMs → Ms is a Gm-gerbe.

Let us start by relating the stack of parabolic sheaves on X∞ with the ones at finite
level.

Proposition 4.3.6.

• We have a natural isomorphism of stacks over (Aff)op

lim−→
n
Mss

n →Mss.

• If pullbacks preserve stability, then we also have an isomorphism

lim−→
n
Ms

n →Ms

which is compatible with the previous one. Moreover, in this last case the transition maps
are open and closed immersions, so Mss and Ms are in fact a union of connected compo-
nents of the stacks at finite level.
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Proof. Let us recall first of all how to define the direct limit lim−→n
Mss

n .
Given in general a filtered directed system {Ci}i∈I of fibered categories over some

category D, we can define the direct limit C = lim−→i∈I
Ci as a fibered category over D

as follows: objects are pairs (d, c), where d ∈ D and c ∈ Ci(d) for some i ∈ I, and a
morphism (d, c) → (d′, c′) is a pair ( f , g) where f : d → d′ is a morphism in D, and g is
an element of the direct limit lim−→i≥i0

Hom(φi0,i( f ∗c′), φi0,i(c)), where i0 is an index where
both c and c′ are defined. In other words we are taking the disjoint union of the objects
and the direct limit for morphisms, fiberwise. If D is a site and Ci are stacks, we can
stackify C to get the direct limit as a stack.

In our particular case note that the direct limit is already a stack: this is because,
since we’re working on (Aff)op, every covering has a finite refinement, so we can reduce
effectivity of descent data and the fact that Hom is a sheaf to some finite level. Moreover,
since all the maps ιn,m are fully faithful, in the direct limit we have Hom(Fn, Fm) =

HomMss
h
(π∗n,hFn, π∗m,hFm), where h = lcm(n, m).

Now for every n ∈N the pullback along πn : X∞ → Xn induces ιn : Mss
n →Mss, and

moreover these maps are compatible with the transition maps of the system ιn,m. Thus
we have a morphism

ι : lim−→
n
Mss

n →Mss.

We will check that this is fully faithful and essentially surjective.
Take a k-algebra A, and consider the map (lim−→n

Mss
n )(A) → Mss(A). If F is an

object of Mss(A), i.e. a finitely presented sheaf on (X∞)A = X∞ ×k Spec(A), then since
(X∞)A = lim←−n

(Xn)A, we have FP((X∞)A) = lim−→ FP((Xn)A), and F comes from some
Fn ∈ FP((Xn)A). Moreover by possibly increasing n we can assume that Fn is flat over
A, and its fibers over (Xn)p for geometric points p → Spec(A) will be semi-stable by
Proposition 4.3.3, since their pullback to (X∞)p is. In other words Fn is an object of
Mss

n (A), and its image in (lim−→n
Mss

n )(A) via ι will be isomorphic to F.
For full faithfulness, if Fn and Fm are two objects of (lim−→n

Mss
n )(A), as noted above

we have Hom(Fn, Fm) = HomMss
h
(π∗n,hFn, π∗m,hFm) with h = lcm(n, m), and since pullback

along (X∞)A → (Xh)A is fully faithful, the conclusion follows.
The same line of reasoning works for the statement about stable sheaves, and com-

patibility of the maps is immediate from the compatibility at finite level.

Remark 4.3.7. What perhaps is not clear enough, is that j : Ms ⊆ Mss is an open sub-
stack. This holds even if stability is not preserved by pullback.

In fact, take a morphism f : T → Mss, and note that we can assume that T is affine,
say T = Spec(A). The map f corresponds to a sheaf F ∈ Mss(A), and by the preceding
proposition F will come from some Fn ∈ Mss

n (A).
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From this, and the observation that j−1Mss
n
∼= Ms

n, we see that the fibered product
Ms ×Mss T coincides withMs ×Mss

n
T = j−1Mss

n ×Mss
n

T =Ms
n ×Mss

n
T, and this is open

in T becauseMs
n →Mss

n is an open immersion.

Proposition 4.3.8. The stackMss is an Artin stack, locally of finite presentation over k. Being
an open substack,Ms has the same properties.

Lemma 4.3.9. For any n ∈ N the morphism ιn : Mss
n → Mss induced by pullback is an open

immersion.

Proof. This goes exactly as the proof of Lemma 4.2.14. The main point is that, by the
projection formula for πn : X∞ → Xn, a finitely presented sheaf F ∈ FP(X∞) comes from
Xn if and only if the adjunction morphism π∗nπn∗F → F is an isomorphism.

Proof of Proposition 4.3.8. Let us fix a smooth presentation An → Mss
n for every n ∈ N.

We have a natural induced map A =
⊔

n An → lim−→n
Mss

n = Mss, and this is a smooth
presentation forMss.

Indeed, the map is an epimorphism sinceMss is a union of the open substacksMss
n ,

and An → Mss
n is an epimorphism, and for a morphism f : T → Mss from a scheme

T we have A ×Mss T =
⊔

n(An ×Mss T), so we can consider a single piece An ×Mss T.
Now it suffices to note that the map An →Mss

n ⊆ Mss is a composition of two smooth
representable morphisms.

Let us now show that the diagonal ∆ : Mss → Mss ×kMss is representable. Let us
take a morphism f : T →Mss ×kMss from a scheme, and consider the fibered product
over ∆. SinceMss×kMss is the union of its open substacks {Mss

n ×kMss
n }n∈N, we have a

Zariski cover {Tn = f−1(Mss
n ×kMss

n )}n∈N of T, and the question is Zariski-local, so we
can replace T with one Tn. Consequently, f factors as T →Mss

n ×kMss
n ⊆ Mss ×kMss,

and since the diagram
Mss

n
//

��

Mss
n ×kMss

n

��
Mss //Mss ×kMss

is cartesian, the fibered product Mss ×Mss×kMss T = Mss
n ×Mss

n ×kMss
n

T is representable
by an algebraic space.

4.3.1 What invariants can we fix?

Before we go further, let us briefly consider the following problem: can we fix some
invariants for finitely presented sheaves on X∞, in order to cut out a finite-type moduli
stack inside Mss? Ideally, since we are taking a limit of the theories at finite level, we
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would like to fix some invariant of coherent sheaves on the Xn’s, that is preserved by
pullback along the maps πn,m : Xm → Xn.

The stacksMss
n we considered up to this point are not of finite type themselves, and

the standard solution when one studies moduli of coherent sheaves is to fix the Hilbert
polynomial H ∈ Q[x]. This gives finite-type components, both of the corresponding
moduli stack and of its good moduli space (the components of the moduli space are
actually even projective). There are other things one can fix, for example Chern classes,
but here we will focus mainly on Hilbert polynomials.

It is clear that we cannot fix the Hilbert polynomial at the limit, since it is not pre-
served by pullback. Rather, we have Pm(π∗n,m(F)) = k · Pn(F), where k is such that m = nk.
On the other hand, we saw in Proposition 4.2.10 that the reduced Hilbert polynomial h
is preserved by pullback, i.e. pm(π∗n,mF) = pn(F) for any F ∈ FP(Xn). This also follows
immediately from the formula for the Hilbert polynomial, which implies that we have
αm(π∗n,m(F)) = k · αn(F), where αn(F) denotes the multiplicity of the sheaf F on Xn, and
so

pm(π
∗
n,mF) =

Pm(π∗n,mF)
αm(π∗n,mF)

=
k · Pn(F)
k · αn(F)

= pn(F).

Notation 4.3.10. We denote by Mss
h,n and Ms

h,n the stacks that parametrize families of
(semi-)stable parabolic sheaves on Xn with reduced Hilbert polynomial h ∈ Q[x]. They
will have good moduli spaces Mss

h,n and Ms
h,n, and since the reduced Hilbert polynomial

is preserved by pullback, the morphisms ιn,m : Mss
n → Mss

m will restrict to morphisms
Mss

h,n →Mss
h,m, which we will still denote by ιn,m. The same goes for the morphism in,m,

and also for ιon,m, io
n,m when they are defined.

Exactly as in Proposition 4.3.6, we have an isomorphism

lim−→
n
Mss

h,n
∼=Mss

h

and the analogous one for stable sheaves if stability is preserved by pullback.
This all works well with the direct limit, but there is an issue: Mss

h,m is not necessarily
of finite type. In fact, fixing the reduced Hilbert polynomial h does not fix the rank
(say we are considering torsion-free sheaves), like it happens with the ordinary Hilbert
polynomial, and the rank can become arbitrarily large, without changing h. In other
words, we have Mss

h,n =
⊔

HMss
H,n where the union ranges over H ∈ Q[x] of degree d

such that H/α = h, where α is d! times the leading coefficient of H.

Example 4.3.11. In the case of X = Spec(k), the standard log point, the Hilbert polyno-
mial coincides with the rank, the reduced Hilbert polynomial is always 1 (and everything
is semi-stable), so Mss

1,n is the only non-empty stack at level n, and it decomposes as a
disjoint union

⊔
HMss

H,n, where H is an integer.
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Moreover all of the piecesMss
H,n are non-empty, as it is easy to write a parabolic sheaf

on Xn of arbitrary rank, and even in the limitMss
1 = lim−→n

Mss
1,n there are infinitely many

connected components: for any n, the parabolic sheaf

−1 − n−1
n − n−2

n · · · 0

0 // k // 0 // · · · // 0

in Mss
1,n(k), having one copy of k in position − n−1

n and all zeros elsewhere, is not in
the closure of any point of the stacks Mss

1,h with h ≤ n, so it will belong to a connected
component which is outside of the image of those stacks.

In the case where the logarithmic structure of X is generically trivial, X is integral
and we are considering torsion-free sheaves, there is another thing that we can fix and
that gives intermediate components of finite type, namely the rank of the pushforward
of the sheaf to X. In fact, since π : Xn → X is generically an isomorphism, if F ∈ FP(Xn)

has rank r, the pushforward π∗F will still have rank r. Moreover the “parabolic” rank of
π∗n,m(F) is easily seen to be m · r, so fixing h and r is equivalent to fixing H, and thus will
give a finite-type union of componentsMss

h,r,n ofMss
n .

With these assumptions, the moduli stacks Mss
h,r,n and Ms

h,r,n are of finite type, and
the good moduli space Mss

h,r,n (resp. Ms
h,r,n) is projective (resp. quasi-projective).

We remark that even in this case, the “limit” moduli stack Mss
h,r is not necessarily of

finite type, and it can have infinitely many connected components.

Example 4.3.12. Take X = P1, with the log structure induced by the divisor 0 + ∞, and
let us fix the reduced Hilbert polynomial h(x) = x + n for n ∈ Z, and rank r = 1.

For any m ∈N, the parabolic sheaf

−1 −m−1
m −m−2

m · · · − 2
m − 1

m 0

F = O(n− 2) // O(n− 1) O(n− 1) · · · O(n− 1) // O(n) O(n)

on Xm has reduced Hilbert polynomial

pm(Fm)(x) =
x + n− 1 + (m− 2)(x + n) + x + n + 1

m
= x + n = h(x)

and rank 1, so it gives is a point ofMss
h,1, and it sits in the substackMss

h,1,m. Moreover, it
is not in any of the Mss

h,1,j with j | m (otherwise the only two non-identity maps would
need to be the identity), and so it not in a connected component coming from lower
levels, since in this case the immersions are open and closed. This shows that there are
infinitely many components inMss

h,1, and so it is not of finite type.
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4.3.2 Taking the limit

Motivated by the previous discussion on how to see the stackMss of semi-stable sheaves
on X∞ as a direct limit of the stacksMss

n of semi-stable sheaves on the finite root stacks,
we want to justify the fact that the direct limit of the moduli spaces at finite levels is a
good candidate for a moduli space for the stack Mss. There is no reason for this direct
limit to be a scheme in general, but rather only an ind-scheme. For this reason we have
to consider ind-moduli spaces as well.

Ind-schemes in the literature are usually required to have closed embeddings as tran-
sition maps of their defining filtered system, and this is not necessarily the case in our
situation, as far as we know. We will use the following definition.

Definition 4.3.13. An ind-algebraic space over k is a presheaf on (Aff)op that can be written
as a filtered direct limit lim−→i∈I

Xi of a directed filtered system of sheaves, which are
moreover algebraic spaces.

A morphism of ind-algebraic spaces is a morphisms of sheaves over (Aff)op, and
there is a category of ind-algebraic spaces over k, which we denote (Ind-algsp). There
is a fully faithful functor (Algsp) → (Ind-algsp) that takes an algebraic space to the
functor it represents on (Aff)op. In particular, an ind-algebraic space X gives a presheaf
on (Algsp)op defined as X(T) = Hom(T, X), where the Hom is taken as presheaves on
(Aff)op.

The point that we want to make is that if Mss admits a good moduli space (which
is usually the case for stacks parametrizing (semi-)stable sheaves, so it seems the right
object to look for), than it has to be isomorphic to the direct limit lim−→n

Mss
n .

First of all let us show that if lim−→n
Mss

n is an algebraic space, then it has the factoriza-
tion property that good moduli spaces possess.

Proposition 4.3.14. Let {Mi}i∈I be a directed system of locally noetherian Artin stacks with
good moduli spaces {Mi}i∈I , and assume that lim−→i

Mi is an algebraic space. Then it has the
following universal property: for every morphism lim−→i

Mi → N to an algebraic space there exist
a unique morphism lim−→i

Mi → N that completes the diagram

lim−→i
Mi

�� ""
lim−→i

Mi // N.

In particular if lim−→i
Mi is locally noetherian and has a good moduli space, then this is canonically

isomorphic to lim−→i
Mi.
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Proof. This follows directly from

Hom(lim−→
i
Mi, N) = lim←−

i
Hom(Mi, N) = lim←−

i
Hom(Mi, N) = Hom(lim−→

i
Mi, N)

where the second equality is by the factorization property of the good moduli spaces.

This implies that if lim−→n
Mss

n is an algebraic space andMss has a good moduli space,
then this has to be isomorphic to lim−→n

Mss
n .

Let us show now that if stability is preserved, then lim−→n
Mss

n is indeed a good moduli
space for Mss. In fact, after a lemma about direct limits, we will complete the proof of
4.3.5.

Lemma 4.3.15. Let {Mi}i∈I be a filtered directed system of schemes, where every transition map
is an open and closed immersion. Then the ind-scheme lim−→i∈I

Mi is isomorphic as an ind-scheme
to a disjoint union of components of the Mi’s, and in particular it is a scheme.

Proof. Let us write Ai for the set of connected components of the scheme Mi. The open
and closed immersion Mi → Mj for i ≤ j induces a function of sets Ai → Aj, and these
functions for varying i and j form a filtered directed system of sets. Let A be the direct
limit of this directed system, and for every a ∈ A fix a component Xa of some Mi that
goes to a in the limit. We claim that the scheme

M =
⊔

a∈A

Xa

is the direct limit of the system.
In fact we have natural maps Mi → M that induce a map of presheaves lim−→i

Mi → M
on (Aff)op. We have to verify that this is a natural isomorphism: injectivity is clear, since
every Mi is an open and closed subscheme of M, and surjectivity follows from the fact
that the image of a morphism Spec(A) → M is contained in finitely many Ma’s, by
quasi-compactness of Spec(A).

Proof of 4.3.5. The fact thatMss is an Artin stack locally of finite presentation is in Propo-
sition 4.3.8, and the fact that stable sheaves form an open substack is explained in Remark
4.3.7.

As for the second part, assume that stability is preserved by pullback, so that all
the maps between the stacks and moduli spaces are open and closed immersions. In
particularMss andMs will be ascending unions of (open and closed) substacks, where
at each step we might add some new connected components. Let Mss be the direct limit
of the system {Mss

n }n∈N of good moduli spaces at finite level. By the preceding lemma,
this will be a disjoint union Mss =

⊔
i Mi, where each Mi is a connected component of

some Mss
n .
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We have a natural map Mss → Mss, and since being a good moduli space is a local
property, we can restrict to a single component Mi, say it comes from Mss

n . Now the
fibered product Mss ×Mss Mi will clearly be the connected component of Mss (coming
fromMss

n and) corresponding to Mi, and so the projectionMss ×Mss Mi → Mi is a good
moduli space, because it is a good moduli space at level n.

The remaining statements about the substack of stable sheaves follow in the same
way from the corresponding statement for the stacksMs

n at finite level.

In the remaining few pages we will show that, even without the assumption that
lim−→n

Mn is an algebraic space, if Mss has a good moduli space M then there is an iso-
morphism M ∼= lim−→n

Mn. This hints at the fact that the direct limit of the moduli spaces
at finite level gives the correct moduli space at the limit, even though it might not be an
algebraic space.

Definition 4.3.16. LetM be an Artin stack over (Aff)op. A naive ind-moduli space forM is
an ind-algebraic space M with a morphism M→ M such that for any other morphism
M→ N to an ind-algebraic space, there is a unique factorizationM→ M→ N.

Remark 4.3.17. The previous definition will only play a role in the heuristics that justify
the fact that we want to look at the direct limit of the moduli spaces at finite level, and is
not meant to be particularly meaningful otherwise.

Remark 4.3.18. As usual with objects defined by a universal property, if an Artin stack
M admits a naive ind-moduli space, then this is unique up to isomorphism.

Now we need a couple of facts about ind-algebraic spaces. Note that by definition if
Y = Spec(A) is affine, then we have

Hom(Y, lim−→
i∈I

Xi) = lim−→
i∈I

Hom(Y, Xi).

Lemma 4.3.19. If Y is a qcqs (quasi-compact and quasi-separated) scheme over k and lim−→i∈I
Xi

is an ind-algebraic space, we have

Hom(Y, lim−→
i∈I

Xi) = lim−→
i∈I

Hom(Y, Xi).

Proof. The proof is by gluing along affines. Write Y as a union of finitely many affine
open subsets Y1, . . . , Yn.

We have a natural function

lim−→
i∈I

Hom(Y, Xi)→ Hom(Y, lim−→
i∈I

Xi)
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defined by [Y → Xi] 7→ (Y → Xi → lim−→i
Xi). Let us show that it is bijective.

If [Y → Xi] and [Y → Xj] have the same image Y → lim−→i
Xi, then for any h ∈

{1, . . . , n} the restrictions of the two maps to the open subset Yh ⊆ Y will be equal after
composition with the map to lim−→i

Xi, and so they will be also equal after composition
with the map to some finite Xk, because in this case we know that Hom(Yh, lim−→i

Xi) =

lim−→i
Hom(Yh, Xi). Since the Yh’s are finitely many, we can find an index that works for

all of them, and this shows that [Y → Xi] = [Y → Xj].
As for surjectivity, take a morphism f : Y → lim−→i

Xi, and restrict it to fh : Yh → lim−→i
Xi.

Every fh will come from some finite level, and since they are finitely many there will be a
k such that fh comes from gh : Yh → Xk. Now we examine the intersections Yhk = Yh ∩Yk:
since Y is quasi-separated, we can cover each Yhk with finitely many affines, and since
the restrictions of gh and gk to any of these affines will give the same map to lim−→i

Xi, we
can find a bigger index k that renders them equal as maps to Xk. In finitely many steps,
the maps gh will agree on the double intersections Yhk, and will yield a map g : Y → Xk
that is in the preimage of f .

Lemma 4.3.20. LetM be a qcqs Artin stack over k and lim−→i
Xi be an ind-algebraic space. Then

we have a bijection Hom(M, lim−→i
Xi) = lim−→i

Hom(M, Xi).

Proof. The proof mimics the one of the preceding lemma, with respect to a smooth pre-
sentation U →M which is a disjoint union of finitely many affines.

Lemma 4.3.21. Any ind-algebraic space X = lim−→i
Xi is a sheaf in the étale topology of (Aff)op.

Proof. Let A be a k-algebra, and A → Aj morphisms that give a covering of Spec(A)

in the étale topology. Note that since Spec(A) is quasi-compact we can extract a finite
subcovering {A1, . . . , An}, and it is sufficient to show that the sheaf condition holds for
it. Now it suffices to note that the diagrams

Xi(A)→
n

∏
j=1

Xi(Aj) ⇒ ∏
j,k=1,...,n

Xi(Aj ⊗A Ak)

are equalizers for all i, since the Xi’s are sheaves for the étale topology, and filtered
directed limits are exact and commute with finite products, so that also the diagram

X(A)→
n

∏
j=1

X(Aj) ⇒ ∏
j,k=1,...,n

X(Aj ⊗A Ak)

is an equalizer.

Lemma 4.3.22. Let X be an ind-algebraic space. Then the functor Hom(−, X) : (Algsp)op →
(Set) is a sheaf for the étale topology.
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Proof. Let T be an algebraic space and {Ti → T}i∈I an étale covering. We have to show
that a compatible collection of morphisms φ : Ti → X of presheaves on (Aff)op yields a
unique morphism T → X.

Let us consider a k-algebra A together with a morphism Spec(A) → T. By base
change, from the covering {Ti → T}i∈I we obtain an étale covering {Yi → Spec(A)}i∈I ,
that we can refine to a covering {Spec(Bj)→ Spec(A)}j∈J by affines. Now the morphisms
Ti → X restrict to the Bj to give elements ξ j ∈ X(Bj), and the compatibility on the
fibered products Ti ×T Ti′ gives equality of the restrictions of ξ j and ξ j′ to X(Bj ⊗A Bj′).
From Lemma 4.3.21 we obtain a unique element of X(A), and this construction gives a
morphism of presheaves T → X. It is immediate to check that this morphism restricts to
the given ones over the Ti’s, and is unique.

Proposition 4.3.23. A good moduli space M for a locally noetherian Artin stack M is also a
naive ind-moduli space.

Proof. Let us fix an affine étale covering {Ui → M}i∈I of the algebraic space M. By the
properties of good moduli spaces, the restriction M×M Ui → Ui is still a good moduli
space, so it enjoys the universal property for maps to algebraic spaces, sinceM is locally
noetherian.

Now fix an ind-algebraic space N = lim−→j
Nj. We have to show that the natural map

Hom(M, N) → Hom(M, N) is a bijection. Since Hom(−, N) is a sheaf on (Sch)op with
the étale topology by Lemma 4.3.22, to verify this we can pass to the étale cover Ui. Now
since Ui and M×M Ui are qcqs, by 4.3.20 and the universal property of good moduli
spaces we have

Hom(Ui, N) = Hom(Ui, lim−→Nj) = lim−→Hom(Ui, Ni) =

= lim−→Hom(M×M Ui, Ni) = Hom(M×M Ui, N).

and this concludes the proof.

Proposition 4.3.24. Let {Mi}i∈I be a filtered directed system of locally noetherian Artin stacks
with good moduli spacesMi → Mi. Assume moreover that eachMi and Mi is a disjoint union
of qcqs stacks (resp. spaces), in a compatible way. Then lim−→i

Mi → lim−→i
Mi is a naive ind-moduli

space.

Proof. Since the stacks Mi are locally noetherian, their good moduli spaces will be uni-
versal with respect to maps to algebraic spaces. Let us writeMi,k for the (qcqs) compo-
nents ofMi and Mi,k for the ones of Mi, so that the mapsMi,k → Mi,k are good moduli
spaces.

Let us consider an ind-algebraic space N = lim−→j
Nj, and let us calculate
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Hom(lim−→
i
Mi, N) = lim←−

i
Hom(Mi, lim−→

j
Nj) =

= lim←−
i

⊔
Hom(Mi,k, lim−→

j
Nj) = lim←−

i

⊔
lim−→

j
Hom(Mi,k, Nj)

where we used in the last equality that that Mi,k are qcqs. Now by the universality
property of the good moduli spaces we have Hom(Mi,k, Nj) = Hom(Mi,k, Nj), and then
we can repack everything together

lim←−
i

⊔
lim−→

j
Hom(Mi,k, Nj) = lim←−

i

⊔
Hom(Mi,k, lim−→

j
Nj) =

= lim←−
i

Hom(Mi, lim−→
j

Nj) = Hom(lim−→
i

Mi, N)

where we used the fact that Mi,k is also qcqs, and the preceding lemmas.

This discussion applies to the moduli stack of parabolic sheaves with rational weights,
since the stacksMss

n , together with their good moduli spaces, are disjoint unions of qcqs
stacks (resp. spaces) and locally noetherian.

Corollary 4.3.25. If the moduli stack of parabolic sheaves with rational weights Mss admits a
good moduli space M, then there is an isomorphism M ∼= lim−→n

Mss
n .
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