
KATO-NAKAYAMA SPACES VS INFINITE ROOT STACKS

MATTIA TALPO

Abstract. I will talk about a comparison result between two objects that one can associate
to a fine saturated log scheme over the complex numbers, namely the Kato-Nakayama space
and the infinite root stack (joint work with D. Carchedi, S. Scherotzke and N. Sibilla). I will
start by giving an introduction to log geometry through motivations and examples, then I
will briefly introduce these two objects, that are different incarnations of the “log part” of
the geometry of a log scheme. Towards the end I will state our result, and (time permitting)
give an idea of what it boils down to.

Contents

1. Introduction 1
2. Log geometry 1
3. Kato-Nakayama space and infinite root stack 3
4. The comparison 4

1. Introduction

I want to talk about a comparison result (joint work with D. Carchedi, S. Scherotzke and
N. Sibilla) between two objects that you can associate to a log scheme, so I will start by
talking about log schemes. Towards the second half I will introduce these two objects, the
Kato-Nakayama space and the infinite root stack, and talk about the comparison.

Here is the plan of the talk.

§1. Log geometry
§2. Kato-Nakayama space and infinite root stack
§3. The comparison

2. Log geometry

Log geometry was originally born in arithmetic context in the late 80’s (Fontaine-Illusie,
Deligne-Faltings, K. Kato), and later spread to touch various other areas, in particular
moduli theory. In short, it is an enhanced version of algebraic geometry, where you have
an additional structure to take along for the ride. This extra structure often (not always)
gives a way to keep track of “boundaries” (and in some sense talk about “manifolds with
boundary”) in algebraic geometry.

It can also be seen as a generalization of the theory of (normal) toric varieties. Toric
varieties are in some sense completely combinatorial, in the sense that the combinatorics

1

2 MATTIA TALPO

determines the geometry. A general log scheme is a more flexible blend of combinatorics and
geometry.

Every normal affine toric variety is of the form X = SpecC[P], with P an integral,
saturated, finitely generated monoid, and the combinatorics (the monoid P) completely
controls the geometry. How do you recover P from the toric variety X? You need some
additional datum. Let’s say you are given the torus T ⊆ X and the action on T on X, that
extends the action by multiplication on itself.

Then you can take the group of characters of the torus M = Hom(T,C×) (which is
naturally Zk, once you’ve chosen an isomorphism T ∼= (C×)k), and look at the subset P =
{m ∈ M | tm extends as a regular function to the whole X}. Then X = SpecC[P]. This
shows you how to think of the elements of P , as characters of the torus that extend as regular
functions across the boundary.

For example let’s look at G2
m ⊆ A2. Then a character is a pair (m,n) of integers, and

the regular function xn · ym extends to the boundary exactly if n,m ≥ 0, so we get back
SpecC[N2].

Now let’s generalize this picture. Say that you have a dense open embedding U ⊆ X of
smooth varieties (this will work best if the complement D = X \ U is a normal crossings,
or more generally “toric”, divisor). One example in which this happens is if you have to
do stuff on a non-proper U , but you really wish it were proper. So you compactify it to a
smooth proper X, and you can choose this so that the complement D is a normal crossings
(even SNC) divisor, and then you work on X but you want to remember that you care about
U . Log geometry gives you a systematic way to do that.

Let’s consider again invertible regular functions on U that extend to the boundary. This
time, since we’re not aiming to get something completely combinatorial, we’ll get a sheaf.
Precisely, take

MU = {f ∈ OX | f |U ∈ O×U , i.e. f is invertible outside of D}

where you should think of local sections f doing that. This gives a subsheaf MU ⊆ OX
of monoids, and O×X ⊆ MU . This sheaf remembers the “boundary” D. Its stalks, if you
disregard the units, encode the combinatorics of how the components of D meet.

Note that you can’t pullback the open embedding U ⊆ X via an arbitrary map Y → X,
but by using (a generalization of) the sheaf of monoids above, you get something more
functorial, that can be pulled back along arbitrary morphisms.

Definition 2.1 (K. Kato). A log scheme is a triple (X,M,α) with X a scheme, M a sheaf
of monoids (for the étale topology of X) and α : M → OX a morphism of sheaves of monoids
(where OX is a monoid by multiplication), and α identifies the units, i.e. α|α−1O×X

: α−1O×X →
O×X is an isomorphism.

So in particular O×X ⊆M . The quotient M = M/O×X contains most of the action.

Example 2.2. If U ⊆ X is a dense open embedding, we get a log scheme (X,MU , i).
In particular if SpecC[P] is an affine toric variety, the above construction applied to the
embedding T ⊆ SpecC[P] gives a canonical log structure on SpecC[P].

KATO-NAKAYAMA SPACES VS INFINITE ROOT STACKS 3

Example 2.3. If X is any scheme, (X,O×X , i) is a log scheme (with the trivial) log structure.
This embeds schemes into log schemes.

This suggest that the “non-trivial” part of the log structure is encoded in M , as remarked
above.

Example 2.4. Let’s look at A2 again: the stalks of the sheaf M , that give a crude image
of the log structure, are 0 outside of the coordinate axes, N on each one of the axes but
outside the origin, and N2 on the origin. You can see that the log structure “encodes” the
combinatorics of the intersections of the components of the boundary divisor.

I want to give an alternative definition, that is more useful in some situations. In the map
α : M → OX , the units don’t give anything non-trivial, so we might as well mod out by
them. By doing that (in the stacky sense) we get L = α : M → [OX/O×X]. I am assuming
that the action of O×X on M is without stabilizers, something that is usually true.

The quotient [OX/O×X] can be seen as [A1/Gm]X , and denoted also by DivX , the stack of
“generalized” Cartier divisors on X, consisting of pairs (L, s), where L is a line bundle and
s is a global section, over some étale open U → X.

The map L is still a map of monoids, i.e. there are given isomorphisms (La+b, sa+b) ∼=
(La, sa)⊗(Lb, sb) that satisfy various compatibility conditions. The name for L is “symmetric
monoidal functor”, and it has “trivial kernel”, in the sense that if a local section a maps to
something isomorphic to (OX , 1), then a = 0.

This alternative definition is completely equivalent to Kato’s.

3. Kato-Nakayama space and infinite root stack

The geometry of the “monoid” part in a log scheme (X,M,α) is quite mysterious. There
have been some attempts to capture it via different incarnations. I’m going to talk about
two of them, and about the relationship between them.

The Kato-Nakayama space is a topological space Xlog attached to a log analytic space X
(that for example can arise as Yan for some log scheme Y of finite type over C). There is
a surjective map τ : Xlog → X, and the fiber τ−1(x) ∼= Hom(M

gp

x , S
1) ∼= (S1)k, where k is

the rank of the free abelian group M
gp

x . This complicated fiber is somehow a “topological
avatar” of the log structure.

Example 3.1. Take A1 = C with the divisorial log structure coming from the origin. Then
Xlog = R≥0×S1, and the projection is R≥0×S1 → C given by (r, a) 7→ r ·a. This is bijective
(and a homeomorphism) outside of the origin, and the fiber over the origin is {0} × S1.

In good cases (like this one) Xlog is a manifold with boundary. This explains how, in
those cases, log structures can be though of as giving a notion of manifold with boundary in
algebraic geometry.

For each n ∈ N, any log scheme has an n-th root stack n
√
X → X that parametrizes n-th

roots of the log structure L : M → DivX , i.e. extensions of L to a symmetric monoidal
functor 1

n
M → DivX .

If the log structure of X is determined by a single smooth divisor D ⊆ X, i.e. by the map
N→ Div(X) that sends 1 to (OX(D), 1D), then the root stack n

√
X universally parametrizes

4 MATTIA TALPO

pairs (L, s) with an isomorphism (L, s)⊗n ∼= (OX(D), 1D), which are “n-th roots” of D (in

fact, the universal (L, s) ∼= (O(D), 1D) for a divisor D on n
√
X). In this case n

√
X → X is an

isomorphism outside of D, and basically a µn-gerbe over D.

Example 3.2. If X = SpecA is affine and f ∈ A is a local equation for D, the root stack
is the quotient [Spec (A[x]/(xn − f))/µn].

By increasing n we get an inverse system (for n | m there is a projection m
√
X → n

√
X).

Take this root process to the extreme: the infinite root stack is the inverse limit ∞
√
X =

lim←−n
n
√
X. It parametrizes compatible systems of roots of every possible order.

The reduced fiber of π : ∞
√
X → X over x is π−1(x)red ∼= BẐk = (BẐ)k.

4. The comparison

There is a clear similarity between the Kato-Nakayama space and the infinite root stack,

in the fact that S1 = BZ, and Ŝ1 ∼= BẐ. This led us to prove:

Theorem 4.1 (CSS-). There is a canonical morphism of topological stacks Xlog → ∞
√
Xtop,

that induces an equivalence on profinite completions.

I’m just going to show you what happens in two examples.

Example 4.2. If X is the standard log point, then Xlog
∼= S1 and ∞

√
Xtop = BẐ. The map

S1 → BẐ is given by the sequence of BZ/n-torsors {S1 → S1, z 7→ zn}n∈N.

Example 4.3. Assume now X = A1 = C with the log structure coming from the origin.
Then Xlog

∼= R≥0 × S1, and n
√
Xtop = [C/(Z/n)], where the projection [C/(Z/n)] → C is

induced by z 7→ zn. For any n we have a map R≥0 × S1 → [C/(Z/n)] that corresponds to
a Z/n-(topological)torsor φ : P → R≥0 × S1, with an equivariant map P → C. There’s a
very natural one: P = R≥0 × S1 itself, and φ : R≥0 × S1 → R≥0 × S1 is given in coordinates
by (r, a) 7→ (rn, an) (this is induced by z 7→ zn from A1 to A1). The equivariant map

R≥0×S1 → C is the usual (r, a) 7→ r ·a. This system of torsors gives the map Xlog → ∞
√
Xtop

in this case.
Note that φ is a torsor exactly because of the presence of the S1s in the Kato-Nakayama

construction (on the algebraic side the map z 7→ zn from A1 to A1 is ramified!).

	1. Introduction
	2. Log geometry
	3. Kato-Nakayama space and infinite root stack
	4. The comparison

