The motivic class of BG_2 and $BSpin_n$

Roberto Pirisi, Mattia Talpo

University of British Columbia, department of Mathematics

rpirisi@ubc.math.ca, mtalpo@sfu.ca

THE UNIVERSITY **OF BRITISH COLUMBIA**

Department of Mathematics

Abstract

In the late 2000s, Ekedahl introduced a variation of the standard Grothendieck ring of algebraic varieties which contains the classes of all (reasonable) algebraic stacks. This ring $K_0(\text{Stk}/k)$ turns out to be a localization of the usual ring $K_0(\text{Var}/k)$. There are many important open questions on this ring, one being whether a for a connected algebraic group G the class {BG} of its classifying stack satisfies the "expected class formul" $\{BG\} = \{G\}^{-1}$.

Counterexamples are believed to exist, but none has been found yet. We investigate the question for the algebraic groups G_2 and $Spin_n$, showing that G_2 and $Spin_n$ for n lower than nine satisfy the formula. We reduce the question for general n to a question on the class of $B\Delta_n$ for a particular finite group $\Delta_n \subset Spin_n$ which is tied to many unexpected behaviors of the groups Spin_n for $n \ge 15$, such as the exponential growth of their essential dimension.

The Grothendieck ring of varieties

notation: k is a field with $char(k) \neq 2$, containing $\sqrt{-1}$. All schemes and algebraic stacks will be over k. Given an algebraic group G acting on a scheme X we denote by [X/G] the corresponding quotient stack.

Grothendieck: ring $K_0(Var/k)$ of isomorphism classes $\{X\}$ of algebraic varieties over k. Two relations:

The expected class formula

It's a theorem by Ekedahl that in general if G is special, we have $\{\mathscr{E}\} = \{G\}^{-1}\{\mathscr{X}\}$ for a G-torsor $\mathscr{E}\mathscr{X}$. For a general connected G it's not true that any torsor has the same class as a trivial torsor, so we expect this not to hold for $\text{Spec}(k) \rightarrow \text{BG}$, which is the "most complicated" torsor.

The extended Euler characteristic, which is a morphism from $K_0(Var/k)$ to a certain Grothendieck ring of Galois representations $K_0(Coh_k)$, gives us an *expected class* for BG, which in particular is

• 1 if G is a finite group, and

• $\{G\}^{-1}$ if G is connected.

Question: are there algebraic groups which do not satisfy the formula in the two cases?

Finite groups: positive answers are known. The unramified Brauer group is an obstruction. Note that the unramified Brauer group is also an obstruction to the much more famous Noether's problem³, showing that the two problems might be related. The "simplest" positive answer, surprisingly, is for $G = \mathbb{Z}/47\mathbb{Z}$, when the field k does not contain a 47th rooth of $1.^4$

1. Given an open subset U of X whose complement is V, we have $\{X\} = \{U\} + \{V\}$ (scissor relation). 2. Given varieties X, Y we have $\{X \times Y\} = \{X\}\{Y\}$ (product relation).

 $K_0(\text{Var}/k)$ is a unital ring, with $\{\text{Spec}(k)\} = 1$. Using the two relations one can see that

• If $E \to X$ is a vector (or affine) bundle of rank d, we have $\{E\} = \{\mathbb{A}^d\}\{X\}$.

• If $T \to X$ is a G-torsor for a special¹ algebraic group G, we have $\{T\} = \{G\}\{X\}$.

The second result *does not* hold for a general algebraic group G, and in fact Ekedahl proves:

Theorem (Ekedahl). Let G be a connected and reductive non-special affine algebraic group. Then there is a *G*-torsor $T \to X$ such that $\{T\} \neq \{G\}\{X\}$.

An important element of $K_0(Var/k)$ is the *Lefschetz motive* \mathbb{L} , which is the class of \mathbb{A}^1 . Two interesting results involving it:

Theorem (Larsen, Lunts). The quotient $K_0(Var/k)/\{\mathbb{L}\}$ is in 1:1 correspondence with the set of projective varieties up to stable birationality.

Theorem (Borisov). The class \mathbb{L} is a zero divisor in $K_0(\text{Var}/k)$.

The Grothendieck ring of algebraic stacks

Ekedahl, 2009: ring $K_0(\text{Stk}/k)$ of isomorphism classes of algebraic stacks over k of finite type and with affine stabilizers. Had already appeared in various forms in works of Behrend, Dhillon and Toën.

Idea: formally add to $K_0(Var/k)$ all isomorphism classes of algebraic stacks, and impose the usual scissor and product relations.

Problems: The classifying stack BG of G-torsors is topologically a point, so the scissor relation is useless. Vector bundles do not in general have the same class as the trivial one, as they may not be Zariski-locally $trivial^2$.

Solution: force the vector bundle formula as an additional relation, so that our new relations are 1. Given an open subset \mathscr{U} of \mathscr{X} whose complement is \mathscr{V} , we have $\{\mathscr{X}\} = \{\mathscr{U}\} + \{\mathscr{V}\}$ (scissor relation). 2. Given algebraic stacks \mathscr{X}, \mathscr{Y} we have $\{\mathscr{X} \times \mathscr{Y}\} = \{\mathscr{X}\}\{\mathscr{Y}\}$ (product relation).

Connected groups: no positive answer is known. The groups PGL_2 and PGL_3 are known to satisfy the formula due to Bergh, and the groups O_n and SO_n are known to satisfy the formula for all n due to Dhillon, Young, Talpo and Vistoli.

The Spin_n family and \mathbf{G}_2

Let V be an n-dimensional vector space and let q be the split quadratic form defined by

 $\begin{cases} q(x) = x_1 x_{m+1} + x_2 x_{m+2} + \dots + x_m x_{2m} \\ q(x) = x_1 x_{m+1} + \dots + x_m x_{2m} + x_{2m+1}^2 \end{cases}$ when n = 2mwhen n = 2m + 1.

and let $O(q) := O_n$ be the subgroup of \mathbb{GL}_n fixing it. It has two connected components, and we denote by SO_n the connected component of the identity.

The algebraic group Spin_n maps 2:1 to SO_n . The map is a group homomorphism. If $k = \mathbb{C}$ the map is the universal covering of SO_n. The Spin_n family exhibits unusual behavior regarding essential dimension⁵ **Theorem** (Brosnan, Reichstein, Vistoli). For $n \ge 15$ the essential dimension of Spin_n increases exponentially.

Making it a natural candidate to give a negative answer to Noether's problem

Conjecture (Merkurjev). The group $Spin_n$ should provide a negative answer to Noether's problem for connected groups when $n \ge 15$.

The authors conjecture that the same should happen for the expected class formula

Conjecture (P-T). The group $Spin_n$ should provide a negative answer to the expected class formula for connected groups when $n \ge 15$.

Many of the unusual behaviors of the $Spin_n$ family seem to depend on a particular finite subgroup of order 2^n

$\Delta_n \subset \operatorname{Spin}_n$

which is the inverse image of diagonal matrices in SO_n. Essential dimension of Δ_n provides an exponential lower bound to that of Spin_n and Noether's problem for Spin_n is equivalent to Noether's problem for Δ_n .

3. Given a vector bundle $\mathscr{E} \to \mathscr{X}$, we have $\{\mathscr{E}\} = \{\mathbb{A}^d\}\{\mathscr{X}\} = \mathbb{L}^d\{\mathscr{X}\}$ (vector bundle relation).

With these relations it turns out that $K_0(\text{Stk}/k)$ is a localization of $K_0(\text{Var}/k)$:

Theorem (Ekedahl). Let $\Phi_{\mathbb{L}}$ be the submonoid of $\mathbb{Z}[\mathbb{L}]$ generated by \mathbb{L} and all cyclotomic polynomials in \mathbb{L} . Then

 $K_0(\operatorname{Stk}/k) = \Phi_{\mathbb{T}}^{-1} K_0(\operatorname{Var}/k).$

We will try to explain why the theorem works and give an idea how to do computations on $K_0(\text{Stk}/k)$. Our main source of vector bundles to apply the relations comes from the following fact:

Lemma. Let V be a representation of an algebraic group G. Then the projection $[V/G] \rightarrow BG$ is a vector bundle.

Sample computations: \mathbb{G}_m multiplicative group acting on \mathbb{A}^1 . By the lemma $[\mathbb{A}^1/\mathbb{G}_m] \to \mathbb{B}\mathbb{G}_m$ is a vector bundle of rank one. Then

 $\{ \mathbb{A}^1/\mathbb{G}_m \} = \mathbb{L}\{\mathbb{B}\mathbb{G}_m\}$ (vector bundle relation)

 $\{\left[\mathbb{A}^{1}/\mathbb{G}_{m}\right]\} = \{\left[\mathbb{G}_{m}/\mathbb{G}_{m}\right]\} + \{\left[0/\mathbb{G}_{m}\right]\} = 1 + \{\mathbb{B}\mathbb{G}_{m}\} \text{ (scissor relation).}$

Putting the two equations together we get

 $\mathbb{L}\{\mathbb{B}\mathbb{G}_m\} = 1 + \{\mathbb{B}\mathbb{G}_m\} \Rightarrow (\mathbb{L} - 1)\{\mathbb{B}\mathbb{G}_m\} = 1 \Rightarrow \{\mathbb{B}\mathbb{G}_m\} = (\mathbb{L} - 1)^{-1} = \{\mathbb{G}_m\}^{-1}.$

So the class of $\mathbb{B}\mathbb{G}_m$ is equal to the inverse of the class of \mathbb{G}_m . $\mu_q \subset \mathbb{G}_m$ group of q-th roots of unit. Again we have it act on \mathbb{A}^1 through the action of \mathbb{G}_m . Then

{ \mathbb{A}^1/μ_q } = $\mathbb{L}\{B\mu_q\}$ (vector bundle relation)

 $\{ \left| \mathbb{A}^{1} / \mu_{q} \right| \} = \{ \left[\mathbb{G}_{m} / \mu_{q} \right] \} + \{ \left[0 / \mathbb{G}_{m} \right] \} = \{ \mathbb{G}_{m} \} + \{ \mathbb{B} \mu_{q} \} = \mathbb{L} - 1 + \{ \mathbb{B} \mu_{q} \} \text{ (scissor relation).}$ as the quotient \mathbb{G}_m/μ_q is equal to \mathbb{G}_m itself. Putting the two together we get

 $\mathbb{L}\{B\mu_q\} = \mathbb{L} - 1 + \{B\mu_q\} \Rightarrow (\mathbb{L} - 1)\{B\mu_q\} = \mathbb{L} - 1 \Rightarrow \{B\mu_q\} = 1$

The algebraic group G_2 is the automorphism group of the complexified Octonion algebra $\mathbb{O} \otimes \mathbb{C}$. Its Lie counterpart, the automorphism groups of the Octonions, is the smallest exceptional Lie group. When $k = \mathbb{C}$ there is a fibration $\text{Spin}_7 \rightarrow \text{S}^6$ with fiber G_2 , and in general we can see G_2 as a subgroup of Spin_7 by considering the stabilizer of a vector $v \in k^7$ with q(v) = 1.

Results

Our main result is reducing the problem of computing the class $BSpin_n$ to the same problem for the finite group Δ_n :

Theorem (P-T). The formula $\{BSpin_n\} = \{Spin_n\}^{-1}$ holds for all $n \leq N$ if and only if the formula $\{B\Delta_n\} = 1$ holds for all n < N. More precisely, if $\{B\Delta_N\} \neq 1$ and $\{B\Delta_n\} = 1$ for n < N then $\{BSpin_N\} \neq \{Spin_N\}^{-1}$

Moreover we computed the classes for some low dimensional cases, including the algebraic group G_2 , which appears in the computation for Spin₇.

Theorem (P-T). We have $\{BG_2\} = \{G_2\}^{-1}$ and $\{BSpin_n\} = \{Spin_n\}^{-1}$ for $n \leq 8$. In particular, this also shows that $\{B\Delta_n\} = 1$ for $n \leq 8$.

Forthcoming Research

Ekedahl: invariants $H^i: K_0(Stk/k) \to L_0(Ab)$, where the RHS is generated by classes of finitely generated abelian groups modulo $\{A \oplus B\} = \{A\} + \{B\}$. Applied to the class of BG for a finite group G they provide obstructions to the expected class formula. When i = 2 they recover the unramified Brauer group. We plan to try and understand the invariants $H^{i}(\{B\Delta_{n}\})$ for $i \geq 3$ (for i = 1, 2 we know them to be zero). Finding a non-zero invariant would give a counterexample to the expected class formula for connected algebraic groups⁶.

References

[1] Lev A. Borisov. Class of the affine line is a zero divisor in the grothendieck ring. arXiv:1412.6194.

so the class of $B\mu_q$ is equal to the class of a point. With similar methods one can compute the class of any \mathbb{GL}_n -torsor:

Theorem (Ekedahl). Let $\mathscr{E} \to \mathscr{X}$ be a \mathbb{GL}_n -torsor. We have

$\{\mathscr{E}\} = \{\mathbb{GL}_n\}^{-1}\{\mathscr{X}\} = ((\mathbb{L}^n - 1)(\mathbb{L}^n - \mathbb{L})\dots(\mathbb{L}^n - \mathbb{L}^{n-1}))^{-1}\{\mathscr{X}\}.$

In particular $\{\mathbb{BGL}_n\} = \{\mathbb{GL}_n\}^{-1}$.

Let G be an affine algebraic group, consider a representation $G \to \mathbb{GL}_n$. The quotient $X = \mathbb{GL}_n/G$ is a variety. We have an isomorphism $BG = [X/\mathbb{GL}_n]$. The map $X \to [X/\mathbb{GL}_n]$ is a \mathbb{GL}_n torsor, so

 $\{BG\} = \{\mathbb{GL}_n\}^{-1}\{X\} = (\mathbb{L}^n - 1)^{-1} \dots (\mathbb{L}^n - \mathbb{L}^{n-1})^{-1}\{X\}$

that is, we can express the class of BG as an element in $K_0(\text{Var}/k)$ divided by a power of \mathbb{L} and some cyclotomic polynomials in \mathbb{L} . Extending this method the same is shown for all (reasonable) algebraic stacks.

[2] Kai Behrend and Ajneet Dhillon. On the motivic class of the stack of bundles. Adv. Math., 212(2):617–644, 2007.

[3] Daniel Bergh. Motivic classes of some classifying stacks. J. Lond. Math. Soc. (2), 93(1):219–243, 2016.

- [4] Patrick Brosnan, Zinovy Reichstein, and Angelo Vistoli. Essential dimension, spinor groups, and quadratic forms. Ann. of Math. (2), 171(1):533–544, 2010.
- [5] Ajneet Dhillon and Matthew B. Young. The motive of the classifying stack of the orthogonal group. *Michigan Math. J.*, 65(1):189–197, 2016.
- [6] Torsten Ekedahl. Approximating classifying spaces by smooth projective varieties. arXiv:0905.1538. [7] Torsten Ekedahl. The Grothendieck group of algebraic stacks. arXiv:0903.3143.
- [8] Mattia Talpo and Angelo Vistoli. The motivic class of the classifying stack of the special orthogonal group. To appear in Bull. Lon. Math. Soc., arXiv:1609.07864.

[9] Bertrand Toën. Grothendieck rings of Artin *n*-stacks. arXiv:math/0509098, 2005.

¹That is, every G-torsor is Zariski-locally trivial.

²In general a vector bundle over an algebraic stack will be smooth-locally trivial.

³Given G algebraic group, is there a faithful representation V of G such that V/G is rational? Finding a connected counterexample is a big open problem in the theory of algebraic groups.

⁴Otherwise we would have $\mathbb{Z}/47\mathbb{Z} = \mu_{47}$ and the class would be trivial by the computation above

⁵The minimum number of independent parameters needed to define a G-torsor.

⁶For technical reasons, a direct computation on the class of $B\Delta_n$ has no chance to successfully discover a counterexample.