
Chapter 1
Batyrev Mirror Symmetry

Mattia Talpo

Abstract We describe Batyrev’s construction of the mirror to a family of Calabi-
Yau hypersurfaces in a Fano toric variety, based on polar duality for lattice poly-
topes. We revisit the example of the quintic threefold in this language, and briefly
mention connections with later developments, such as the Batyrev-Borisov con-
struction for complete intersections in Fano toric varieties, and the Gross-Siebert
program.

1.1 Introduction

This short note is a survey about an explicit construction for mirror families of
Calabi-Yau varieties, due to Batyrev and later generalized by Batyrev-Borisov, that
uses toric geometry and polar duality for lattice polytopes. The construction is about
Calabi-Yau hypersurfaces in a Fano toric variety.

Historically, after the first example of the quintic threefold [CdlOGP91], many
other examples of Calabi-Yau threefolds and mirror pairs were constructed using
hypersurfaces in weighted projective spaces. For some of these examples though,
the mirror was missing. Batyrev’s construction [Bat94] put these examples in a
more systematic framework and provided the missing mirrors. Moreover it was later
generalized to complete intersections in Fano toric varieties by Batyrev-Borisov
[BB96b], and brought combinatorics and toric geometry into the picture. It also
partly inspired the Gross-Siebert program [GS03, GS06, GS10].

The material for this contribution is mostly taken from Cox’s expository paper
“Mirror Symmetry and Polar Duality of Polytopes” [Cox15], and parts of Cox-Katz,
“Mirror Symmetry and Algebraic Geometry” [CK99] (in particular Sections 4.1 and
4.2).
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1.2 Polar duality of lattice polytopes

Batyrev’s construction relates mirror pairs with a duality for lattice polytopes.

Definition 1. A polytope ∆ is the convex envelope Conv(x1, . . .xm) of a finite num-
ber of points in Rn.

A supporting hyperplane of a polytope ∆ is a hyperplane H in Rn such that
∆ ∩H 6= /0, and ∆ is completely contained in one of the two closed half-spaces that
H determines in Rn. A face of a polytope ∆ is the intersection ∆ ∩H, where H
is a supporting hyperplane. This is again a polytope. The dimension of a polytope
is the dimension of the affine subspace of Rn spanned by ∆ . Every polytope ∆

determines a unique minimal set of points {v1, . . . ,vk}, called its vertices, such that
∆ = Conv(v1, . . . ,vk). These points also coincide with the faces of ∆ of dimension
0.

Recall also that a lattice M is a free abelian group of finite rank, i.e. an abelian
group isomorphic to Zn for some n. Sometimes it is better not to choose a basis
(i.e. the subset corresponding to the standard basis of Zn via some isomorphism
M ∼= Zn), but we will always assume to have chosen one.

Definition 2. A lattice polytope is a polytope in some affine space Rn whose vertices
have coordinates in Zn.

From now on we will assume that our lattice polytopes are full dimensional (i.e.
they are not contained in any proper affine hyperplane of the ambient space) and that
0 ∈ Int(∆). Here Int(∆) denotes the topological interior of ∆ , which also coincides
with the complement of all proper faces.

The dual or polar ∆ ◦ of ∆ is another polytope, defined by

∆
◦ = {a ∈ Rn | 〈a,b〉 ≥ −1 for all b ∈ ∆}
= {a ∈ Rn | 〈a,v〉 ≥ −1 for all vertices v of ∆} (by convexity)

where we denote by 〈·, ·〉 the standard scalar product of Rn. Note that if one does not
want to choose a basis of the lattice M, then the same formulas define the dual of a
polytope ∆ ⊆MR := M⊗R as a polytope in the dual vector space ∆ ◦ ⊆M∨R = M∨⊗
R, and in this case 〈·, ·〉 : MR×M∨R→ R denotes the natural pairing (v, f ) 7→ f (v).

It is not hard to check that the set ∆ ◦ is indeed a polytope (by the second descrip-
tion it follows that it is a finite intersection of half-spaces, so it is enough to show
that it is bounded).
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Example 1. If ∆ is the square [−1,1]× [−1,1] then ∆ ◦ is the polygon with vertices
(±1,0),(0,±1), as in the following picture.

∆

(-1,1) (1,1)

(-1,-1) (1,-1)

∆
◦

(0,1)

(1,0)

(0,-1)

(-1,0)

One can also check that (∆ ◦)◦ = ∆ , so that this operation is indeed a “duality”.
Moreover, there is an inclusion-reversing combinatorial correspondence between
i-dimensional faces of ∆ and (n−1− i)-dimensional faces of ∆ ◦.

The polytope ∆ ◦ is not always a lattice polytope. For example, it is easily verified
that (2∆)◦ = 1

2 ∆ ◦, and the latter might not be a lattice polytope. This applies to the
previous example, as 1

2 ∆ ◦ = Conv((± 1
2 ,0),(0,±

1
2 )) is not a lattice polytope in that

case.

Definition 3. A lattice polytope ∆ is reflexive if (0 ∈ Int(∆) and) ∆ ◦ is a lattice
polytope.

There are a few equivalent characterizations of this property. We will mention a
couple of these; for details, see for example [CLS11, Chapter 2].

One can prove that every facet (i.e. codimension 1 face) F of a polytope ∆ has a
unique inward-pointing normal vector uF such that

F = {a ∈ ∆ | 〈a,uF〉=−1}.

In Example 1, if F is the segment [−1,1]×{1}, then uF = (0,−1), and for the other
facets we get the other vertices of the dual ∆ ◦.

In fact we always have ∆ ◦ = Conv(uF | F a facet of ∆), so that

Proposition 1. A lattice polytope ∆ is reflexive if and only if every uF ∈ Rn is a
lattice point (i.e. is in Zn ⊆ Rn).

Another characterization is the following (which is given as the definition of a
reflexive polytope in [Bat94]):

Proposition 2. A lattice polytope ∆ is reflexive if and only if for every facet F of ∆

there is no lattice point between the affine hyperplane spanned by F and its translate
passing through the origin.



4 Mattia Talpo

As a consequence, the origin is the only lattice point in the interior of a reflexive
polytope ∆ .

Remark 1. From the last observation, via the results of [LZ91], it follows that in
every dimension n there is only a finite number of reflexive lattice polytopes up to
integral change of coordinates (i.e. transformation by an element of GL(n,Z)). For
n = 2 there are 16 equivalence classes, for n = 3 they are 4319 and for n = 4 (which
is the important case for Mirror Symmetry, since it corresponds to 3-folds) there are
473800776 (!) equivalence classes (this was proven in [KS00]).

The idea for Batyrev Mirror Symmetry is that this duality among lattice polytopes
realizes Mirror Symmetry for Calabi-Yau hypersurfaces in Fano toric varieties, as
we will explain in the next sections.

1.3 Varieties from lattice polytopes

A lattice polytope in Rn gives rise to a projective variety. This process is part of a
long story, the theory of toric varieties (see [Cox03, CLS11]).

Definition 4. A toric variety is a normal algebraic variety X with an open embed-
ding T ⊆ X of a torus T = (C×)n and an action T ×X → X that extends the multi-
plication action of T on itself.

It turns out that this set of data is completely encoded by a combinatorial poly-
hedral object in a lattice (the co-character lattice of the torus Hom(C×,T ), usually
denoted by N in the literature), called a fan: this is a collection of cones, intersecting
nicely (i.e. along common faces). The geometry of the toric variety is completely
controlled by the combinatorics of this object: geometric properties of the variety
can be translated in combinatorial or convex-geometric properties of the fan, and
some algebraic invariants (for example sheaf cohomology of divisors) are explicitly
computable. Because of this, toric varieties are usually a useful testing ground for
new conjectures and theories about varieties in general.

A lattice polytope is an alternative incarnation of the underlying combinatorics
of a certain class of toric varieties. Strictly speaking, the polytope also records the
information of a torus invariant ample divisor on X , that gives in particular embed-
dings in projective space.

Here is a quick way to define the toric variety X∆ associated to a lattice polytope
∆ . First note that any lattice point m= (a1, . . . ,an)∈Zn gives a “Laurent monomial”

tm = ta1
1 · · · t

an
n

which is a regular function on the torus (C×)n (so that negative exponents make
perfect sense).

Now we need to assume that ∆ has “enough lattice points”, or else modify it a
bit. This is a technical condition, called normality of the polytope: a lattice polytope
∆ ⊆ Rn is normal if for all n,m ∈ N we have
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(n∆)∩Zn +(m∆)∩Zn = ((n+m)∆)∩Zn.

Here n∆ denotes the dilated polytope {a ∈ Rn | a = nb for some b ∈ ∆}, and +
denotes the Minkowski sum of polytopes, defined as

∆ +∆
′ = {a+b ∈ Rn | a ∈ ∆ ,b ∈ ∆

′}

for polytopes ∆ ,∆ ′ ⊆ Rn. For example, one can show that the standard simplex
Conv(0,e1, . . . ,en)⊆Rn is a normal polytope, while the polytope Conv(0,e1,e2,e1+
e2 +3e3)⊆R3 is not normal. Here and in what follows, as customary, ei denote the
elements of the standard basis of Rn.

If ∆ is not normal, one uses instead the polytope k∆ (which will be normal for
k ≥ n− 1, see [CLS11, Theorem 2.2.12]) in the construction that follows. This is
related to ampleness versus very ampleness of the toric divisor encoded by the given
polytope ∆ . There is also a property of polytopes called very ampleness, implied by
normality, and relevant for this construction. See [CLS11, §2.2] for details.

Assuming that ∆ is normal, consider ∆ ∩Zn = {m0, . . . ,mk}, which is a finite set,
and the map

(C×)n→ Pk given by (t1, . . . , tn) 7→ [tm0 : · · · : tmk ]

where tmi is the Laurent monomial described above. This map turns out to be injec-
tive, and one defines the toric variety X∆ as the closure of its image.

Reflexive lattice polytopes give rise, in this manner, to projective Fano toric va-
rieties. Recall that “Fano” means that the anticanonical divisor −KX∆

is ample, for
a smooth variety. We will allow some singularities and say that a variety X is Fano
if it is Gorenstein and the dual of the dualizing sheaf ω∨X (which is a line bundle) is
ample.

Proposition 3 ([CK99, Proposition 3.5.5]). The toric variety X∆ is Fano if and only
if ∆ is a reflexive polytope.

Lattice points on ∆ also give interesting hypersurfaces in X∆ : keeping the nota-
tion as before, the equation

a0tm0 + · · ·+aktmk = 0 (1.1)

defines a hypersurface in (C×)n (for any given coefficients a0, . . . ,ak ∈ C), and the
closure of this in X∆ is then a hypersurface V ⊆ X∆ . Moreover, if ∆ is reflexive
every such hypersurface is a divisor in the same divisor class, the anticanonical
class |−KX∆

|.

Example 2. The quintic threefold in P4 can be recovered using this construction. Let
∆n denote the standard simplex Conv(0,e1, . . . ,en) in Rn.

Let us take ∆ ⊆ Z4 to be

5∆4− (1,1,1,1) = {a ∈ R4 | a = 5b− (1,1,1,1) for some b ∈ ∆4}.
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In other words, ∆ is the convex envelope of the vectors

(−1,−1,−1,−1),(4,−1,−1,−1),(−1,4,−1,−1),(−1,−1,4,−1),(−1,−1,−1,4)

obtained from the vertices 0,5e1,5e2,5e3,5e4 of 5∆4 by subtracting the vector
(1,1,1,1).

This is a reflexive polytope in R4, and by applying the construction described
above, one can check that X∆ = P4, and that (after homogenizing the corresponding
equation (1.1)) the hypersurface V is an arbitrary quintic threefold in P4 (the expo-
nent vectors that show up in the lattice points of ∆ give all homogeneous monomials
of degree 5 after homogenizing).

1.4 Batyrev’s construction

We can now talk about Batyrev’s construction. Given a reflexive n-dimensional
polytope ∆ , one can consider the projective toric variety X∆ (of dimension n), which
will be a Fano toric variety, and a general divisor in the anticanonical linear system
V ∈ |−KX∆

|. For example one can take V to be determined by a Laurent polyno-
mial as in equation (1.1). For the moment let us pretend that everything is smooth
(typically this is false).

A (nice) anticanonical hypersurface in a Fano variety is going to have trivial
canonical bundle (by the adjunction formula KD = (KX + D)|D), so, taking for
granted that also the other conditions about vanishing of cohomologies will be sat-
isfied, it is going to be a Calabi-Yau variety, of complex dimension n−1. The basic
idea is that by considering the dual ∆ ◦ and a general divisor in the anticanonical
linear system of X∆◦ , we get a different Calabi-Yau variety V ◦ which should be mir-
ror to V (or rather, the family of hypersurfaces V should be mirror to the family of
hypersurfaces V ◦ - we will make this abuse of terminology from now on).

In reality things are more technical, because often X∆ is too singular, and needs
to be resolved via blowups in order for the divisor V to be a “nice” Calabi-Yau
variety (i.e. with nice singularities). One also wants the resolution to be crepant, i.e.
to preserve the canonical bundle, and for n≥ 3 the projective toric variety given by
an n-dimensional lattice polytope does not need to admit a full crepant resolution
(i.e. producing a smooth variety as its outcome), so the best one can do is partially
resolve it.

Blowing up along a torus-invariant subvariety is quite convenient using toric lan-
guage, because it corresponds to combinatorial operations on the fan and polytope
associated to the toric variety. We will not go into details here, we will only mention
that Batyrev introduces the notion of a “maximal projective crepant partial (MPCP)
desingularization” for X∆ , corresponding to certain triangulations of the polytope
∆ . This is a birational map X ′→ X∆ which partially resolves the singularities of X∆

and preserves the canonical divisor. By taking a general anticanonical divisor on X ′

we get a nice Calabi-Yau variety V (see [CK99, Proposition 4.1.3]). These MPCP
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desingularizations always exist in this context, and usually there is more than one
choice.

By choosing a MPCP for X∆ and one for X∆◦ , we get Calabi-Yau varieties V and
V ◦ as general anticanonical sections of the partial resolutions, and these should form
mirror pairs. In the case of threefolds (so when ∆ lives in R4), V and V ◦ actually
turn out to be smooth. Some of the expected consequences of Mirror Symmetry
have indeed been proven for Batyrev mirrors V and V ◦.

Recall that, for a smooth projective complex variety X , the Hodge number
hp,q(X) is the dimension dim Hq(X ,Ω p

X ) as a complex vector space, where Ω
p
X =

ΩX ∧ ·· ·∧ΩX is the wedge product of p copies of the sheaf of Kähler differentials
ΩX of X . The Hodge numbers are usually arranged in a diagram called the Hodge
diamond, depicted below for dim X = 3.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

These numbers have two important symmetries: Hodge theory implies that hp,q =
hq,p, and Serre duality implies that hn−p,n−q = hp,q. If in addition X is a Calabi-Yau
threefold, we also have h0,0 = h3,0 = 1 and h1,0 = h2,0 = 0, so that the above diagram
can be simplified to the following one

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

whose only relevant numbers are h1,1 and h2,1. Recall also that these Hodge numbers
h1,1 = dim H1(X ,ΩX ) and h2,1 = dim H1(X ,Ω 2

X )= dim H1(X ,TX ) (where TX ∼=Ω∨X
is the tangent bundle of X , and we used the fact that Ω 3

X
∼= OX ) give the number of
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parameters of deformations of a complexified Kähler class on X , and of the complex
structure of X respectively. Mirror symmetry predicts that h1,1(X) = h2,1(X∨) and
h2,1(X) = h1,1(X∨), where X∨ denotes the mirror of X ; in other words, the Hodge
diamonds of X and X∨ should be related by a reflection with respect to a diagonal
line through the center.

More generally, if X is a Calabi-Yau manifold of dimension bigger than 3, Mirror
symmetry predicts (among other facts) that hp,q(X) = hn−p,q(X∨) and hn−p,q(X) =
hp,q(X∨). For Batyrev’s construction, indeed this is known to be the case for p =
q = 1 (see below for some discussion about the general statement).

Theorem 1 ([CK99, Theorem 4.1.5], [Bat94, Theorem 4.4.3]). The “Hodge num-
bers Mirror Symmetry” for p = q = 1 holds for Batyrev mirrors, i.e. we have the
equality of Hodge numbers h1,1(V ) = hdim V−1,1(V ◦) and hdim V−1,1(V ) = h1,1(V ◦).

If we perform the construction starting from a reflexive lattice polytope ∆ ⊆ R4,
so that dim V = dim V ◦ = 3, then this is all that is needed to get the full symmetry
relation between the Hodge diamonds of V and V ◦. The proof of the theorem is
a computation of the Hodge numbers by using the dictionary of toric geometry to
reduce to combinatorics.

There are also other (partial) results about correspondence of complex/Kähler
moduli spaces and correlation functions of the A-model and B-model, that we will
not get into. See [CK99, Section 4.1.2] for a thorough discussion.

On the other hand, there are still also some open questions: it is not known

1. whether using this construction with a 4-dimensional reflexive polytope, V and
V ◦ give isomorphic SCFTs (this is known for some cases, like the quintic three-
fold);

2. whether for a reflexive n-dimensional polytope with n≥ 5, the relations hp,q(V )=
hdim V−p,q(V ◦) and hdim V−p,q(V ) = hp,q(V ◦) hold or not.

Question (2) has been partially answered in later work of Batyrev and Borisov
[BB96a]. Namely, they prove that for the string-theoretic Hodge numbers hp,q

st (de-
fined in [BD96]), one has the equalities hp,q

st (V )= hdim V−p,q
st (V ◦) and hdim V−p,q

st (V )=
hp,q

st (V ◦) where V and V ◦ are Batyrev mirrors. Their result [BB96a, Theorem 4.15]
actually also covers the more general case of complete intersections in Fano toric
varieties of [BB96b]. Moreover, if V is smooth or q = 1, then hp,q

st (V ) = hp,q(V ), so
with these assumptions the answer to question (2) is known to be positive.

1.5 The quintic threefold

The original example of Mirror Symmetry for the quintic threefold falls into this
general framework. We already saw how to obtain the quintic as a Calabi-Yau hy-
persurface in the Fano toric variety P4, using a polytope ∆ in Example 2.

The dual of that polytope ∆ is
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∆
◦ = Conv(e1,e2,e3,e4,(−1,−1,−1,−1)).

In fact, ∆ has 5 facets F1,F2,F3,F4,F5, with supporting hyperplanes with equa-
tions xi = −1 for 0 ≤ i ≤ 4 and x1 + x2 + x3 + x4 = 1. The corresponding inner
normal vectors (i.e. the vector uF such that the facet F is described as the inter-
section of ∆ with the hyperplane 〈a,uF〉 = −1) are then given by e1,e2,e3,e4 and
(−1,−1,−1,−1) respectively. The claim now follows by the description of ∆ ◦ as
∆ ◦ = Conv(uF | F a facet of ∆). Note that both ∆ and ∆ ◦ are combinatorially stan-
dard simplices (in the sense that there is a bijection between their faces and the
faces of a standard simplex, compatible with inclusion and intersections), but the
way they are positioned in the lattice is important. For example ∆ has 125 lattice
points, whereas ∆ ◦ has only 6.

Using ∆ ◦ as lattice polytope, one can check that X∆◦ can be identified with the
quotient P4/G, where G is the group

G = {(a1,a2,a3,a4,a5) ∈ (Z/5)5 | a1 +a2 +a3 +a4 +a5 = 0}/(Z/5).

Here the quotient is by the diagonal subgroup, and G acts on P4 by multiplication
by roots of unity in the obvious way.

Indeed, the primitive lattice generators of the rays of the normal fan of ∆ ◦ (which
is the fan corresponding to the toric variety X∆◦ ) are precisely the vertices

(−1,−1,−1,−1),(4,−1,−1,−1),(−1,4,−1,−1),(−1,−1,4,−1),(−1,−1,−1,4)

of ∆ . if we denote by M ⊆ Z4 the sublattice generated by these vectors, then by
[CLS11, Proposition 3.3.7] there is an isomorphism X∆◦

∼= X∆◦,M/(Z4/M), where
X∆◦,M denotes the toric variety corresponding to the polytope ∆ ◦ with respect to
the lattice M, and the quotient is for the natural action of the finite group (Z4/M)
on X∆◦,M . The quotient (Z4/M) is isomorphic to the group G described above, and
X∆◦,M is isomorphic to P4, as can be verified by checking that the normal fan of ∆ ◦

in M is isomorphic to the fan for P4. See [CLS11, Example 5.4.10] for more details.
As mentioned above the polytope ∆ ◦ has 6 lattice points (the five vertices and

the origin), so equation (1.1) in this case becomes

c0 + c1t1 + c2t2 + c3t3 + c4t4 + c5t−1
1 t−1

2 t−1
3 t−1

4 = 0

which by using the coordinates of P4 and homogenizing (in a “toric” sense - see
[CLS11, Section 5.4]) becomes

c0x5
0 + c1x5

1 + c2x5
2 + c3x5

3 + c4x5
4 + c5x0x1x2x3x4 = 0.

By rescaling the coordinates one can assume c0 = c1 = c2 = c3 = c4 = 1. This
recovers the equation

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 +ψx0x1x2x3x4 = 0

that gives the mirror pencil of hypersurfaces (after resolving the singularities).
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1.6 Further developments

Batyrev-Borisov [Bor, BB96b] generalize the above to Calabi-Yau complete inter-
sections in Fano toric varieties. The combinatorics becomes more complicated, but
the basic idea is similar.

This time, the starting data is an (r + d)-dimensional reflexive polytope ∆ , to-
gether with a decomposition as a Minkowski sum

∆ = ∆1 + · · ·+∆r

where ∆i are lattice polytopes containing the origin (possibly on their boundary).
This is called a nef-partition. The lattice points of each ∆i determine a family of
hypersurfaces of the Fano toric variety X∆ , and choosing for each i a generic hyper-
surface Vi among these, the intersection V1∩ ·· ·∩Vr is a a d-dimensional complete
intersection Calabi-Yau variety, that needs to be partially resolved, as in the case of
hypersurfaces.

To produce the mirror family the idea is to use polar duality again, but with a
variation with respect to the hypersurface case, because the origin might not be an
interior lattice point of ∆i. Instead, one defines polytopes ∇i by the formula

∇i = {a ∈ Rd | 〈a,b〉 ≥ −1 for all b ∈ ∆i and 〈a,b〉 ≥ 0 for all b ∈ ∆ j, j 6= i}.

One can prove that ∇i are lattice polytopes containing the origin, and the Minkowski
sum ∇ = ∇1 + · · ·∇r is a reflexive polytope of dimension r+d. This gives the dual
nef-partition, and by applying the same procedure outlined above, one obtains the
mirror of the subvariety corresponding to the original nef-partition. See [Cox15,
Section 6] or the original papers for more details.

The Gross-Siebert program [GS03, GS06, GS10] mixes SYZ Mirror Symmetry
with the Batyrev-Borisov construction. The idea of that is the following: given a
Calabi-Yau manifold X , in order to find a mirror X∨, degenerate it (in a nice way)
to a union of toric varieties glued along toric strata (i.e. orbits for the action of the
torus on the respective toric variety). Note that this “degenerate” variety will not be
smooth.

From the degeneration one can extract combinatorial gadget (which actually has
more structure...), called the dual intersection complex, that one can dualize via a
discrete Legendre transform, in a way that is similar to the polar polyhedron con-
struction. From the dual of the dual intersection complex we can construct a central
fiber, again union of toric varieties glued along toric strata, and (with a lot of work!)
construct a smoothing. The idea is that the smoothing should be mirror to the X that
we started with.

In [Gro05] Gross compares this construction to the one of Batyrev-Borisov. He
shows that indeed nef-partitions give rise to toric degenerations, and that the al-
gorithm that we crudely outlined above produces the same result as the Batyrev-
Borisov construction.
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