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1 K-groups

Here I follow the PhD thesis of Manuel Breuning.

Let A be a ring and P(A) the category of f.g. projective A-modules.

Ky(A) is the Groethendieck group of P(A).

Generators: VP € P(A), its isomorphism class (P).

Relations: (P) — (P') — (P") for each exact sequence 0 — P' — P —
P" — 0.

Notation: [P].

K1 (A). Let us consider the category of pairs (P, f) with P € P(A) and
f automorphism of P. (Morphisms are defined in the obvious way.) The
isomorphism classes are denoted by ((P, f)).

Generators: ((P, f)).

Relations: (P, )) — (P, /') — (P", ")) it 0 = (P, ') = (P, f) =
(P", f") — 0 exact and ((P, fg)) — (P, f)) — (P, g)) for all P € P(A) and
automorphisms f, g of P.

Notation: [P, f]. Alternative description: Whitehead group. Define
GL,(A) = GLoj1(A) by M — <J‘04 ?) Let GL(A) = limy GL,(A) and
let GL(A)" = [GL(A), GL(A)] be the commutator subgroup. Then K;(A) &
GL(A)/GL(A)’. The isomorphism is obtained as follows: let [P, f] € K1(A),
let @@ be such that P & Q = F is free, then f & id is represented by a
matrix M € GL(A). For the proof that this is a well-defined map and an
isomorphism, see [CR, Thm. 40.6].

Ky(A, ), where ¢ : A — B is a ring homomorphism. Category of triples
(P, f,Q), where P,Q € P(A)and f : B P — B®4Q is an isomorphism of
B-modules. A morphism is a pair of morphisms v : P — P and v : Q — Q’
such that f'o (idp ® u) = (idp ® v) o f.

Generators: ((P, f,Q)).

Relations: ((P, f,Q))—((P', f,Q"))—((P", f”,Q")) for each short exact
sequence 0 — (P, f,Q") — (P, f,Q)) — ((P", f",Q")) — 0 (ie. 0 —
PPP—P'—-0and 0= Q — Q — Q" — 0 both exact); (P,gf,R)) —
(P, f,Q)) — ((Q,g9,R)) with P,Q,R € P(A) and f : B® P - B®Q,
g:B® Q@ — B® R isomorphisms.



Notation: [P, f,Q].
For any ring homomorphism ¢ : A — B there is an exact sequence

K1(A) 25 K (B) 25 Ko(A, ) 25 Ko(A) 25 Ko(B).

Here o, ([P, f]) = [BoaP.idp@ f], 0} ,([M]) = [A", M, A"] for M € GL(B),
N (P, f,Q)) = [P] = [Q], ¢«([P]) = [B®a P].

2 Realizable classes

Let K be a number field and G a finite group. Denote by R(Ox[G]) the set
of those classes in Cl(Og[G]) which are realizable as Galois-module classes
of rings of integers Oy, in tame G-Galois extensions L/K.

Conjecture 2.1 (McCulloh). R(Ok|[G]) is always a subgroup of Cl(Ok[G]).

Let G be a direct product of n cyclic groups of order [ and let C' be a
cyclic group of order {™ — 1. Then G is isomorphic to the additive group of
the finite field Fj», C' to its multiplicative group. Via these isomorphisms
there is an action of C' on G via multiplication.

For 0 € C, let t(0) denote the least non-negative residue (mod l) of
Tr(d), where Tr : Fjn — Fj is the trace. Let

0=> t(8)d" €z[C],
6eC

and
Z=7[C](8/l)NZ[C]

be the Stickelberger ideal of Z[C].

Theorem 2.2 (McCulloh). If G is elementary abelian,
R(Ok[G]) = CI(Ok[G)),

where C1°(Ok[G]) is the kernel of the map Cl(Ok[G]) — Cl(Ok) induced
by the augmentation map Ok [G] — Of.

In 1987 McCulloh extended this result to abelian groups G, but we do
not give a pricise formulation here.

Theorem 2.3 (Agboola-McCulloh). Suppose that G is of odd order, that
|G| is coprime to the class number of K and that K contains no non-trivial
|G|-th roots of unity. Then R(Ok[G]) is a subgroup of Cl(Ok[G]).

Note that they actually associate to number field extensions elements of
Ko(Ok|G], K¢), where K¢ is the algebraic closure of K.



3 Mayer-Vietoris sequence

Let
AT 4,

lh J{gl
A 2 A
be a fiber product of ring homomorphisms, which means

A={(a1,a2) € A1 @ Az : gi(a1) = g2(a2)}.

Theorem 3.1 (Milnor). If g1 or go is surjective, then there is a Mayer-
Vietoris sequence:

Ko (A) Y22 1 (Ay) x Ky (Ay) 2209, i (4)
& Ko(A) Lo Ko (Ar) x Ko(Az) 2795 Ko (A).
Proof. See [CR, Thm. 42.13]. O

Our situation. Let K be a number field, G an elementary abelian group

of order I, ¥ = 5.4 9.

Ok[G] —2= Ok[G)/OK% =T

A

Ok Oy = Ok /I"Ok

Let us extract a piece of the Mayer-Vietoris exact sequence

Kl (F) X Kl((’)K

It can be shown that K;(I') = I'*, K;(Ok) = 0% and K1(Og) =

Ok (see [CR, Thm. 40.31]). Main idea: GauB elimination and the fact

that elementary matrices are trivial in K'-groups. It can also be shown

that 9(5) = [(s,X)], where (s,X) = sOk[G] + LOk|[G] is called a Swan-

module and is locally free. All their classes generate the Swan-subgroup
T C Cl(Ok|G]). We get

r* x 0 WO B O g,
le.:

T =0k |Oke(I™) (1)



4 Swan modules and Hilbert-Speiser number fields

Here we follow the paper by [Greither, Replogle, Rubin, Srivastav].

Note that 7" is a Z[C]-submodule of D, the subgroup of the class group
consisting of those classes that become trivial under extension of scalars to
the maximal order. Actually C' acts trivially on T since § € C acts as an
automorphism of G, so it maps sOk[G] and Ox¥ to itself.

Proposition 4.1. Assume G is elementary abelian of order I > 2, then
7" =D/2 ¢ RO D.

Proof.

-1
e) = 1O =1"") a=1"(1-1)/2
a=1

6eC
and Ng(0/1) = e(0/l)Ng =1""1(1 —1)/2Nc € Z. Then

("0 No(0/1) = "M 1= 1)/2- (" (1-1)/2) (" 1) = " (- 1) /2.

Note that D C ClI°(Ok[G]), because the map induced by augmentation
commutes with extension of scalars to the maximal order. Since C acts
trivially on T, TZ = 7@,

Lemma 4.2. Ify € I'* then &(7)" ! € Im(0%) C O /I"Ok.
Proof. Let e be the identity of G, then
0— (Ox%)° = (0k[G))Y = T¢ = HY(C,Okx)

0— O = Oge® O% — T¢ = Hom(C,0x%) =0

Hence ¢ : Oge — I'C is an isomorphism (in the paper they claim that
g induces an isomorphism). Let N : T'* — (I'*)¢ be the norm N(y) =

[Tscc 7’ Then i
("t = e(N(v) € Im(Ok).

Theorem 4.3. There is a natural surjcetive map
T — Vi = ((0g/1"0Ok)* /Im(O%))" .

Proof. By (1), T = Of JOLE(*) = Vin/ (6(I*)/Im(0O%)). To conclude:
raise to the power [ — 1 and use the lemma. ]



Definition 4.4. A number field K is Hilbert-Speiser if each finite tame
abelian extension N/K has a trivial Galois-module structure.

Theorem 4.5 (Hilbert-Speiser). Q is a Hilbert-Speiser field.
Proof. This is the tame case in Leopoldt’s Theorem. O

Theorem 4.6 (Greither-Replogle-Rubin-Srivastav). Q is the only Hilbert-
Speiser field.

Proof. Strategy: for each K # Q one finds a prime [ such that V] is divisible
)?/2

by some prime ¢, which does not divide [ — 1. Then V}(l*l is non-trivial.

By [heorem 4.3
1—1)/2 (1-1)2/2
T( )/ N Vl

is surjective, so also T=1/2 must be non-trivial. But by Proposition 4.1
T=Y/2 C RN D.

Hence R is non-trivial. O



