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1 K-groups

Here I follow the PhD thesis of Manuel Breuning.
Let A be a ring and P(A) the category of f.g. projective A-modules.
K0(A) is the Groethendieck group of P(A).
Generators: ∀P ∈ P(A), its isomorphism class (P ).
Relations: (P ) − (P ′) − (P ′′) for each exact sequence 0 → P ′ → P →

P ′′ → 0.
Notation: [P ].
K1(A). Let us consider the category of pairs (P, f) with P ∈ P(A) and

f automorphism of P . (Morphisms are defined in the obvious way.) The
isomorphism classes are denoted by ((P, f)).

Generators: ((P, f)).
Relations: ((P, f)) − ((P ′, f ′)) − ((P ′′, f ′′)) if 0 → (P ′, f ′) → (P, f) →

(P ′′, f ′′)→ 0 exact and ((P, fg))− ((P, f))− ((P, g)) for all P ∈ P(A) and
automorphisms f, g of P .

Notation: [P, f ]. Alternative description: Whitehead group. Define

GLn(A) → GLn+1(A) by M 7→
(
M 0
0 1

)
. Let GL(A) = lim−→GLn(A) and

let GL(A)′ = [GL(A),GL(A)] be the commutator subgroup. Then K1(A) ∼=
GL(A)/GL(A)′. The isomorphism is obtained as follows: let [P, f ] ∈ K1(A),
let Q be such that P ⊕ Q = F is free, then f ⊕ id is represented by a
matrix M ∈ GL(A). For the proof that this is a well-defined map and an
isomorphism, see [CR, Thm. 40.6].

K0(A,ϕ), where ϕ : A→ B is a ring homomorphism. Category of triples
(P, f,Q), where P,Q ∈ P(A) and f : B⊗AP → B⊗AQ is an isomorphism of
B-modules. A morphism is a pair of morphisms u : P → P ′ and v : Q→ Q′

such that f ′ ◦ (idB ⊗ u) = (idB ⊗ v) ◦ f .
Generators: ((P, f,Q)).
Relations: ((P, f,Q))−((P ′, f ′, Q′))−((P ′′, f ′′, Q′′)) for each short exact

sequence 0 → ((P ′, f ′, Q′)) → ((P, f,Q)) → ((P ′′, f ′′, Q′′)) → 0 (i.e. 0 →
P ′ → P → P ′′ → 0 and 0→ Q′ → Q→ Q′′ → 0 both exact); ((P, gf,R))−
((P, f,Q)) − ((Q, g,R)) with P,Q,R ∈ P(A) and f : B ⊗ P → B ⊗ Q,
g : B ⊗Q→ B ⊗R isomorphisms.
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Notation: [P, f,Q].
For any ring homomorphism ϕ : A→ B there is an exact sequence

K1(A)
ϕ∗−→ K1(B)

∂1A,ϕ−→ K0(A,ϕ)
ϕ0
A,ϕ−→ K0(A)

ϕ∗−→ K0(B).

Here ϕ∗([P, f ]) = [B⊗AP, idB⊗f ], ∂1
A,ϕ([M ]) = [An,M,An] forM ∈ GL(B),

∂0
A,ϕ([P, f,Q]) = [P ]− [Q], ϕ∗([P ]) = [B ⊗A P ].

2 Realizable classes

Let K be a number field and G a finite group. Denote by R(OK [G]) the set
of those classes in Cl(OK [G]) which are realizable as Galois-module classes
of rings of integers OL in tame G-Galois extensions L/K.

Conjecture 2.1 (McCulloh). R(OK [G]) is always a subgroup of Cl(OK [G]).

Let G be a direct product of n cyclic groups of order l and let C be a
cyclic group of order ln − 1. Then G is isomorphic to the additive group of
the finite field Fln , C to its multiplicative group. Via these isomorphisms
there is an action of C on G via multiplication.

For δ ∈ C, let t(δ) denote the least non-negative residue (mod l) of
Tr(δ), where Tr : Fln → Fl is the trace. Let

θ =
∑
δ∈C

t(δ)δ−1 ∈ Z[C],

and
I = Z[C](θ/l) ∩ Z[C]

be the Stickelberger ideal of Z[C].

Theorem 2.2 (McCulloh). If G is elementary abelian,

R(OK [G]) = Cl0(OK [G])I ,

where Cl0(OK [G]) is the kernel of the map Cl(OK [G]) → Cl(OK) induced
by the augmentation map OK [G]→ OK .

In 1987 McCulloh extended this result to abelian groups G, but we do
not give a pricise formulation here.

Theorem 2.3 (Agboola-McCulloh). Suppose that G is of odd order, that
|G| is coprime to the class number of K and that K contains no non-trivial
|G|-th roots of unity. Then R(OK [G]) is a subgroup of Cl(OK [G]).

Note that they actually associate to number field extensions elements of
K0(OK [G],Kc), where Kc is the algebraic closure of K.
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3 Mayer-Vietoris sequence

Let

A
f1 //

f2
��

A1

g1
��

A2
g2 // Ā

be a fiber product of ring homomorphisms, which means

A ∼= {(a1, a2) ∈ A1 ⊕A2 : g1(a1) = g2(a2)}.

Theorem 3.1 (Milnor). If g1 or g2 is surjective, then there is a Mayer-
Vietoris sequence:

K1(A)
(f1,f2)−−−−→ K1(A1)×K1(A2)

g1×(1/g2)−−−−−−→ K1(Ā)

∂−→ K0(A)
(f1,f2)−−−−→ K0(A1)×K0(A2)

g1−g2−−−−→ K0(Ā).

Proof. See [CR, Thm. 42.13].

Our situation. Let K be a number field, G an elementary abelian group
of order ln, Σ =

∑
δ∈G δ.

OK [G]
φ //

ε

��

OK [G]/OKΣ = Γ

ε̄
��

OK
φ̄ // Ok = OK/lnOK

Let us extract a piece of the Mayer-Vietoris exact sequence

K1(Γ)×K1(OK)
ε̄×(1/φ̄)−−−−−→ K1(OK)

∂−→ K0(OK [G])

It can be shown that K1(Γ) ∼= Γ∗, K1(OK) ∼= O∗K and K1(OK) ∼=
OK
∗

(see [CR, Thm. 40.31]). Main idea: Gauß elimination and the fact
that elementary matrices are trivial in K1-groups. It can also be shown
that ∂(s̄) = [(s,Σ)], where (s,Σ) = sOK [G] + ΣOK [G] is called a Swan-
module and is locally free. All their classes generate the Swan-subgroup
T ⊆ Cl(OK [G]). We get

Γ∗ ×O∗K
ε̄×(1/φ̄)−−−−−→ OK

∗ ∂−→ T → 0,

i.e.:

T ∼= OK
∗
/O∗Kε̄(Γ∗) (1)
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4 Swan modules and Hilbert-Speiser number fields

Here we follow the paper by [Greither, Replogle, Rubin, Srivastav].
Note that T is a Z[C]-submodule of D, the subgroup of the class group

consisting of those classes that become trivial under extension of scalars to
the maximal order. Actually C acts trivially on T since δ ∈ C acts as an
automorphism of G, so it maps sOK [G] and OKΣ to itself.

Proposition 4.1. Assume G is elementary abelian of order ln > 2, then
T l

n−1(l−1)/2 ⊆ R ∩D.

Proof.

ε(θ) =
∑
δ∈C

t(δ) = ln−1
l−1∑
a=1

a = ln(l − 1)/2

and NC(θ/l) = ε(θ/l)NC = ln−1(l − 1)/2NC ∈ I. Then

ε(ln−1θ−NC(θ/l)) = lnln−1(l−1)/2−(ln−1(l−1)/2)(ln−1) = ln−1(l−1)/2.

Note that D ⊆ Cl0(OK [G]), because the map induced by augmentation
commutes with extension of scalars to the maximal order. Since C acts
trivially on T , T I = T ε(I),

T l
n−1(l−1)/2 ⊆ T I ⊆ DI ⊆ Cl0(OK [G])I ∩D = R ∩D.

Lemma 4.2. If γ ∈ Γ∗ then ε̄(γ)l
n−1 ∈ Im(O∗K) ⊆ OK/lnOK .

Proof. Let e be the identity of G, then

0→ (OKΣ)C → (OK [G])C → ΓC → H1(C,OKΣ)

0→ OKΣ→ OKe⊕OKΣ→ ΓC → Hom(C,OKΣ) = 0

Hence φ : OKe → ΓC is an isomorphism (in the paper they claim that
ε̄ induces an isomorphism). Let N : Γ∗ → (Γ∗)C be the norm N(γ) =∏
δ∈C γ

δ. Then

ε̄(γ)l
n−1 = ε̄(N(γ)) ⊆ Im(O∗K).

Theorem 4.3. There is a natural surjcetive map

T → V ln−1
ln = ((OK/lnOK)∗/Im(O∗K))l

n−1.

Proof. By (1), T ∼= OK
∗
/O∗Kε̄(Γ∗) ∼= Vln/ (ε̄(Γ∗)/Im(O∗K)). To conclude:

raise to the power ln − 1 and use the lemma.
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Definition 4.4. A number field K is Hilbert-Speiser if each finite tame
abelian extension N/K has a trivial Galois-module structure.

Theorem 4.5 (Hilbert-Speiser). Q is a Hilbert-Speiser field.

Proof. This is the tame case in Leopoldt’s Theorem.

Theorem 4.6 (Greither-Replogle-Rubin-Srivastav). Q is the only Hilbert-
Speiser field.

Proof. Strategy: for each K 6= Q one finds a prime l such that Vl is divisible

by some prime q, which does not divide l− 1. Then V
(l−1)2/2
l is non-trivial.

By Theorem 4.3

T (l−1)/2 → V
(l−1)2/2
l

is surjective, so also T (l−1)/2 must be non-trivial. But by Proposition 4.1

T (l−1)/2 ⊆ R ∩D.

Hence R is non-trivial.
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