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1. Brief recall on the tame case

We recall the following.

Theorem 1.1. Let K/F be a finite Galois extension of number fields. Let G = Gal(K/F )
and let p be a prime of F that is tamely ramified in K/F . Then OK,p is free over
AK/F,p = OFp [G].

Recall that ifK/F is a tame Galois extension of number fields with Galois groupG, then
OK defines a class in Cl(OF [G]). In particular if Cl(OF [G]) = 0 and F [G] has locally free
cancellation, then K/F automatically has normal integral basis. If F = Q, Cl(Z[G]) = 0
is only true if G is among certain abelian groups, certain dihedral groups, A4, S4, A5

(see [RU74] and [EH79]). In such cases we automatically have locally free cancellation.
However we have already seen the following consequence of Fröhlich’s conjecture, which
was proved by Taylor [Tay81] and tells us much more without assuming the locally free
class group is trivial.

Theorem 1.2. Let K/Q be a finite tame Galois extension of Q with Galois group G.
Suppose G is abelian, dihedral, of odd order, alternating or symmetric. Then K/Q has a
normal integral basis.

Indeed, in the hypotheses of Theorem 1.2 G has no irreducible symplectic character,
which means that the class of OK in Cl(Z[G]) is trivial, and locally free cancellation,
which implies that OK is free as a Z[G]-module. Note that this in particular generalizes
Hilbert-Speiser theorem, and that it permits us to conclude that a sufficently nice (i.e.
whose Galois group does not have to do with quaternions) tame non-abelian extension
of Q has normal integral basis.

1.1. Clean orders.

Definition 1.3. Let R be a Dedekind domain with field of fractions F , let G be a finite
group and let Λ be an R-order in F [G]. We say that Λ is a clean order if it satisfies the
following property: if M is a projective Λ-lattice which spans a free F [G]-module, then
M is a free Λ-lattice.

Example 1.4. The following are clean:

• R[G] when R is a DVR. This is Swan’s theorem, for instance see [CR81, Theorem
(32.1)].
• Whenever G is abelian and R is a discrete valuation ring with characteristic zero

and finite residue field: due to Hattori [Hat65], also see [Rog70, IX Corollary
1.5].

From Swan’s theorem we have the following.
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Corollary 1.5. Let K/F be a Galois extension of number fields with Galois group G.
Then K/F is tame if and only if OK is a projective OF [G]-module.

Now we will review what we know in the wild case, starting from the framework of
p-adic fields.

2. Freeness results for Galois extensions of p-adic fields

Let p be a rational prime. We start with a consequence of Leopoldt’s theorem.

Theorem 2.1. [Leo59] Let K/Qp be a finite abelian extension. Then OK is free over
AK/Q.

Lettl further generalized the result.

Theorem 2.2. [Let98] Let K/F be an extension of p-adic fields such that K/Qp is a
finite abelian extension. Then OK is free over AK/F .

Now we shall consider the non-abelian setting. In this framework the two first impor-
tant contributions are due to Bergé and Martinet, and later to Jaulent.

Theorem 2.3. [Ber72] Let K/Qp be a Galois extension with Gal(K/Q) ∼= D2p. Then
OK is free over AK/Qp.

Theorem 2.4. [Mar72] Let K/Qp be a Galois extension with Gal(K/Q) ∼= Q8. Then
OK is free over AK/Qp.

Theorem 2.5. [Jau81] Let p, n and r be positive integers such that p is an odd prime, n
divides p− 1 and r is a primitive nth root modulo p. Let G be the metacyclic group with
the following structure:

(2.1) G = 〈x, y : xp = 1, yn = 1, yxy−1 = xr〉 ∼= Cp o Cn.

Let K/Qp be a Galois extension with Gal(K/Q) ∼= G. Then OK is free over AK/Qp.

Remark 2.6. In the special case n = 2, the group G of (2.1) is dihedral of order 2p.

Considering a generic base field, Johnston obtained the following.

Theorem 2.7. [Joh15] Let K/F be a weakly ramified finite Galois extension of p-adic
fields and let G = Gal(K/F ). Then OK is free over AK/F . Moreover, if K/F is both
wildly and weakly ramified then AK/F = OF [G][π−1F TrG0 ], where πF is a uniformizer of
OF and TrG0 =

∑
γ∈G0

γ is the sum of the elements of the inertia group G0.

One may suspect that it is always the case that, in a Galois extension of p-adic fields,
the ring of integers is free over the associated order, as happens if we further assume
tame ramification. We will see in a moment that this is not the case. First we define
almost-maximal ramification.

For a subgroup H of G define TrH =
∑

h∈H h ∈ F [G] and eH = 1
|H|TrH ∈ F [G].

Note that eH is an idempotent. We say that K/F has almost-maximal ramification if
eH ∈ AK/F for every subgroup H of G such that Gt+1 ⊆ H ⊆ Gt for some t ≥ 1.

Theorem 2.8. [Ber79, Proposition 7] Let K/F be a finite dihedral extension of p-adic
fields such that F/Qp is unramified. Let G = Gal(K/F ). Then OK is projective over
AK/F if and only if OK is free over AK/F if and only if either

(i) the ramification is almost-maximal, in which case AK/F = OF [G][{eGt}t≥1], or
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(ii) the ramification is not almost-maximal and the inertia subgroup G0 is dihedral of
order 2p, in which case AK/F = OF [G][2eG0 ].

More results concerning cyclic of prime order extensions and extensions with cyclic
inertia group will follow later on.

3. Freeness results for Galois extensions of number fields

We start by recalling Leopoldt’s theorem, which generalizes Hilbert-Speiser theorem
to wildly ramified abelian extensions of Q.

Theorem 3.1. [Leo59] Let K/Q be a finite abelian extension. Then OK is free over
AK/Q.

Leopoldt also specified a generator and the associated order; Lettl [Let90] gave a sim-
plified and more explicit proof of the same result.

In the last talk we have seen a partial proof in the case K has odd conductor or is
imaginary.

We also have the following result of Bergé.

Theorem 3.2. [Ber72] Let p be a prime and let K/Q be a dihedral extension of degree
2p. Then OK is free over AK/Q.

Now let K/Q be a Galois extension with Gal(K/Q) ∼= Q8, the quaternion group of
order 8. Suppose that K/Q is tamely ramified. Martinet [Mar71] gave two examples of
such extensions without and one with a normal integral basis. Moreover, Fröhlich [Frö72]
showed that both possibilities occur infinitely often. By contrast, in the case that K/Q
is wildly ramified, we have the following result of Martinet.

Theorem 3.3. [Mar72] Let K/Q be a wildly ramified Galois extension with Gal(K/Q) ∼=
Q8. Then OK is free over AK/Q.

For other global freeness results we recently obtained the following results.

Theorem 3.4. Let n be a positive integer and let p ≥ 5 be a regular prime number such
that the class number of Q(ζpn)+ is 1. Let K/Q be a dihedral extension of degree 2pn.
Then OK is free over AK/Q if and only if the ramification index of p in K/Q is a power
of p.

Corollary 3.5. Let K/Q be a dihedral extension of degree 2pn where (p, n) is (5, 2),
(5, 3), (7, 2) or (11, 2). Then OK is free over AK/Q if and only if the ramification index
of p in K/Q is a power of p.

Similar but more complicated results hold when p = 2 or 3.

Theorem 3.6. Let K/Q be a Galois extension with Gal(K/Q) ∼= A4. Then OK is free
over AK/Q if and only if 2 is tamely ramified or has full decomposition group.

Theorem 3.7. Let K/Q be a Galois extension with G := Gal(K/Q) ∼= S4. Then OK is
free over AK/Q if and only if one of the following conditions on K/Q holds:

(i) 2 is tamely ramified;
(ii) 2 is weakly ramified and has full decomposition group;

(iii) 2 has decomposition group equal to the unique subgroup of G of order 12; or
(iv) 2 is weakly ramified, has decomposition group of order 8 in G, and has inertia

subgroup equal to the unique normal subgroup of order 4 in G.
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Theorem 3.8. Let K/Q be a Galois extension with Gal(K/Q) ∼= A5. Then OK is free
over AK/Q if and only if all three of the following conditions on K/Q hold:

(i) 2 is tamely ramified;
(ii) 3 is tamely ramified or not almost-maximally ramified; and

(iii) 5 is tamely ramified or not almost-maximally ramified.

4. Local freeness results for Galois extensions of number fields

Let K/F be a finite Galois extension of number fields and let p be a prime of F .
We recall that OK is locally free at p over AK/F if OK,p := OFp ⊗OF

OK is free over
AK/F,p := OFp ⊗OF

AK/F .

Theorem 4.1. [Let98] Let K/F be an extension of number fields such that K/Q is a
finite abelian extension. Then OK is locally free over AK/F .

Theorem 4.2. [Jau81] Let K/Q be a Galois extension such that Gal(K/Q) is metacyclic
of type (2.1). Then OK is locally free over AK/Q.

Theorem 4.3. [Ber79, Théorème] Let K/Q be a finite dihedral extension and let G =
Gal(K/Q). Let p be an odd rational prime that is wildly ramified in K/Q and let N be
the unique cyclic subgroup of G of index 2. Then OK,p is projective over AK/Q,p if and
only if OK,p is free over AK/Q,p if and only if one of the following conditions holds:

(i) p is almost-maximally ramified in K/Q and G1 ⊆ N , in which case

AK/Q,p = Zp[G][{eGt}t≥1], or
(ii) p is not almost-maximally ramified, |G0| = 2p and [G : G0] | 2, in which case

AK/Q,p = Zp[G][eG0 ].

Remark 4.4. In fact, Theorem 4.3 is [Ber79, Théorème] specialised to the case that p is
odd and the base field is Q; the more general statement is somewhat more complicated.

5. More on local freeness

We start by mentioning a slightly more general definition of associated order. Let R
be a Dedekind domain with field of fractions F . Let G be a finite group. Let M be a full
R-lattice in F [G]. The associated order of M in F [G] is defined to be

A(F [G],M) = {λ ∈ F [G] : λM ⊆M}.
So with the previous notation we have AK/F = A(F [G],OK). Also in this general case we
have that A(F [G],M) is an R-order. In particular, it is the largest order Λ over which
M has a structure of Λ-module, and with the same proof it is the only order over which
M can possibly be free.

Now let K/F be a finite Galois extension of number fields and let G = Gal(K/F ). Let
p be a prime of F . Then we have decompositions

Kp = Fp ⊗F K ∼=
∏
P′|p

KP′ and OK,p = OFp ⊗OF
OK ∼=

∏
P′|p

OK′
P
,

where {P′ | p} consists of the primes of OK above p (see [FT93, p. 109]). Fix a prime
P above p and let D be its decomposition group in G. Then as G acts transitively on
{P′ | p} we have

Kp
∼=
∏

s∈G/D

sKP and OK,p ∼=
∏

s∈G/D

sOKP
,
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where the products run over a complete system of representatives of the left cosets G/D.
Hence

OK,p ∼= IndGDOKP
:= OFp [G]⊗OFp [D] OKP

,

and

AK/F,p = A(F [G],OK)p ∼= A(Fp[G], IndGDOKP
).

Thus in the context of number fields local freeness of OK over AK/F at a prime p is equiv-
alent to saying that the induction from D to G of the ring of integers of any completion
above p is free over its associated order.

Now we will consider the relationship between A(F [G], IndGDOKP
) and IndGDAKP/Fp , as

well as conditions under which the implication ‘if OKP
is free over AKP/Fp then OK is

locally free over AK/F at p’ holds.
Let G be a finite group and let H be a subgroup of G. Let N be an R[H]-lattice.

We recall that IndGHN is the induced module R[G] ⊗R[H] N ∼=
⊕

s∈G/H sN ; in the latter

expression we choose a system of representatives of the left cosets in G/H and the left
R[G]-module structure is given by the relation gs = th for some coset representative t
and h ∈ H. Keep in mind that before we had N = OKP

and H = D.
Our goal is to understand when we can deduce, assuming N is free over A(F [H], N) ⊇

R[H], that IndGHN is free over A(F [G], IndGHN), and more generally the relation between
A(F [G], IndGHN) and IndGHA(F [H], N). First of all, if N is free over A(F [H], N), then
the rank of course must be 1, since this is true after we tensor with F . In particular, N
and A(F [H], N) are isomorphic as R[H]-modules, and one can easily verify that IndGHN
and IndGHA(F [H], N) are isomorphic as R[G]-modules. However, IndGHA(F [H], N) is not
a ring in general and so it does not always make sense to conclude that IndGHN is free
over IndGHA(F [H], N). We start by giving an explicit description of A(F [H], N) in terms
of IndGHA(F [H], N).

Lemma 5.1. [Ber79, § 1.3] We have

(5.1) A(F [G], IndGHN) =
⋂
g∈G

gIndGHA(F [H], N)g−1.

In particular, IndGHA(F [H], N) is a ring if and only if it is equal to A(F [G], IndGHN).

As a consequence one can prove what follows.

Proposition 5.2. Suppose that N is free over A(F [H], N). If IndGHA(F [H], N) is a ring,
then IndGHN is a free A(F [G], IndGHN)-module of rank 1.

Remark 5.3. By the relation (5.1), in particular IndGHA(F [H], N) is a ring if

(i) there exists a subgroup K ≤ G such that G ∼= H ×K, or
(ii) H is contained in the center of G, or

(iii) A(F [H], N) = R[H].

Thus in any of these cases Proposition 5.2 permits us to conclude that IndGHN is a free
A(F [G], IndGHN)-module if N is a free A(F [H], N)-module.

If we wish to give a converse to Proposition 5.2, we only have the following general
results.

Proposition 5.4. Suppose that N is a free A(F [H], N)-module. Then the two left
A(F [G], IndGHN)-modules IndGHN and IndGHA(F [H], N) are isomorphic, where the latter
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structure is given by the inclusion

A(F [G], IndGHN) ⊆ IndGHA(F [H], N),

which follows for example from Lemma 5.1.

Proof. Since N is a free A(F [H], N)-module, then in particular N is isomorphic to
A(F [H], N) as R[H]-modules. Then from the isomorphism we can easily construct a
map

f : IndGHN → IndGHA(F [H], N),

of R[G]-modules, which continues to be an isomorphism. Note that both sides also have
a structure of A(F [G], IndGHN)-modules. If we prove that the bijection f is also a map of
A(F [G], IndGHN)-modules, then we are done. The following type of argument has been
widely used in the theory of lattices. Let x ∈ IndGHN and a ∈ A(F [G], IndGHN). Note
that there exists r ∈ R such that ra = a′ ∈ R[G]; then

rf(ax) = f(rax) = f(a′x) = a′f(x) = raf(x)

and we conclude by R-torsion-freeness that f(ax) = af(x). �

Remark 5.5. Proposition 5.4, or more direct considerations, tells us that in fact, just
assuming that N is a free A(F [H], N)-module, we have the compatibility

A(F [G], IndGHA(F [H], N)) = A(F [G], IndGHN).

Corollary 5.6. Suppose that N is a free A(F [H], N)-module. Then IndGHN is a free
A(F [G], IndGHN)-module if and only if IndGHA(F [H], N) is free as a (left) A(F [G], IndGHN)-
module.

Remark 5.7. It is not necessarily true that, if N is a free A(F [H], N)-module and IndGHN
a free A(F [G], IndGHN)-module, then IndGHA(F [H], N) is a ring, or equivalently, that
IndGHA(F [H], N) = A(F [G], IndGHN).

We end the subsection with a proposition concerning projectivity.

Proposition 5.8. [Ber79, Proposition 2] If IndGHN is a projective A(F [G], IndGHN)-
module, then N is a projective A(F [H], N)-module.

5.1. Induction when H is normal in G. Bergé noted that we can restate some con-
ditions if H / G. In this case we can in fact define the order

A∗ =
⋂
g∈G

gA(F [H], N)g−1 ⊆ F [H].

Then, using (5.1), one can verify that IndGHA
∗ = A(F [G], IndGHN) and the following

lemma.

Lemma 5.9. Suppose H/G. Then IndGHA(F [H], N) is a ring if and only if A(F [H], N) =
A∗.

The following result tells us something more specific than Proposition 5.8.

Proposition 5.10. [Ber79, Proposition 3] Suppose H / G. Then IndGHN is projective
over A(F [G], IndGHN) if and only if N is projective over A∗.
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5.2. Induction when H is abelian and normal in G. We continue to assume the
hypotheses and notation of this section. We recall that, if H is abelian and R is a discrete
valuation ring with characteristic zero and finite residue field, every R-order Λ in F [H]
is clean. This implies that in this setting N is projective over A∗ ⊆ F [H] if and only if
it is free. This immediately brings to the following conclusion.

Proposition 5.11. [Ber79, Corollaire to Proposition 3] Suppose that R is a discrete
valuation ring with characteristic zero and finite residue field, H / G and H is abelian.
Then the following are equivalent:

(i) IndGHN is projective over A(F [G], IndGHN);
(ii) IndGHN is free over A(F [G], IndGHN);

(iii) IndGHA(F [H], N) is a ring, and IndGHN is free over it;
(iv) N is free over A(F [H], N) and A∗ = A(F [H], N).

Proof. (i)⇒(iv). From Proposition 5.10, N is projective over A∗. But the latter is a clean
order and so we have freeness. We conclude since A∗ now has to be the associated order.

(iv)⇒(iii). It follows from Lemma 5.9 and Proposition 5.2.
(iii)⇒(ii). It is clear for instance from the last sentence of Lemma 5.1.
(ii)⇒(i). Clear. �

Let us write an application of what we did above. With the notation and results we
introduced, we are now able to have a quite good understanding of local freeness in weakly
ramified extensions.

Proposition 5.12. Let K/F be a finite Galois extension of number fields with Galois
group G and let P|p be two primes of K/F such that KP/Fp is weakly ramified. Assume
that the inertia group G0 = G0(P|p) is normal in G. Then OK,p is free over AK/F,p.

Proof. Let D = D(P|p) be the decomposition group. By Theorem 2.7, we know that

AKP/Fp = OFp [D]

[
1

πFp

TrG0

]
= OFp [D] +

1

πFp

OFp [D]TrG0 .

We can hence show that

IndGDAKP/Fp = OFp [G] +
1

πFp

OFp [G]TrG0 .

If G0 / G it is easy to see that IndGDAKP/Fp is a ring. We conclude with Theorem 2.7 and
Proposition 5.2. �

Proposition 5.13. Let K/F be a finite Galois extension of number fields with Galois
group G and let p be a prime of F such that the completed extension KP/Fp is wildly
and weakly ramified for every prime P above p. Then IndGDAKP/Fp is a ring if and only
if G0 / G.

Suppose furthermore that D/G and D is abelian. Then OK,p is free over AK/F,p if and
only if G0 / G.

Proof. For the first statement we omit the details, but it not difficult to show it given the
already proved description IndGDAKP/Fp = OFp [G] + 1

πFp
OFp [G]TrG0 . For the second one,

simply apply Proposition 5.11. �
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[Frö72] A. Fröhlich, Artin root numbers and normal integral bases for quaternion fields, Invent. Math.
17 (1972), 143–166. MR 323759
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