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1 Tame and wild extensions

Let L/K be a finite extension of number field or local fields.

Recall: p char of OK/P . If ∀Q|POL, gcd(p, eQ/P ) = 1 then L/K is tame
at P . Otherwise wilde.

Let us assume L/K is local and Galois with Gal(L/K) = G. Then

Gi = {σ ∈ G : σ(x) ≡ x (mod Qi+1) ∀x ∈ OL}.

Note that G−1 = G and G0 is the usual inertia group, which is of order
e.

Clearly enough to check for an x which generates OL as an OK-algebra.

Equivalently: G acts on OL/Qi+1 and Gi is the kernel of the action.
So Gi are a decreasing filtration of normal groups and Gi = {1} for i big
enough.

Proposition 1.1. Let i ∈ N, σ ∈ G0, let π be a uniformizer in L. Then

σ ∈ Gi ⇔ σ(π)/π ≡ 1 (mod Qi)

Proof. Since σ ∈ G0 it is enough to check σ(x) ≡ x (mod Qi+1) for a
generator x of OL over OK0 , where K0 = LG0 .

Since L/K0 is totally ramified we can take x = π.

Then divide σ(π) ≡ π (mod Qi+1) by π.

We also have a filtration of the group of units UL, by U iL = 1 +Qi.

Proposition 1.2. There is an injective map

θi : Gi/Gi+1 → U iL/U
i+1
L

induced by

s 7→ s(π)/π.

It is independent of the choice of π.
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Proof. Let π′ = πu with u ∈ UL, then

s(π′)/π′ = s(π)/πs(u)/u

and s(u)/u ∈ U i+1
L .

Homomorphism:

st(π)/π = s(t(π))/t(π) · t(π)/π.

Injectivity is clear.

Corollary 1.3. G0/G1 is cyclic of order co-prime to p and G1 is a p-group.

Proof. G0/G1 is isomorphic to a subgroup of κ×L ; for i > 1, Gi/Gi+1 is
isomorphic to U iL/U

i+1
L
∼= κL.

Corollary 1.4. L/K is tame iff G1 = 0.

Proof. L/K is tame iff the order of G0 is co-prime to p iff G1 = 0.

Definition 1.5. An extension is weakly ramified if G2 = 0.

[See Serre]

2 Orders

Let R be a noetherian domain with field of fractions K.

Definition 2.1. An R-lattice M in a K-vector space V is a finitely generated
R-submodule in V such that V = KM .

Definition 2.2. An R-order in a K-algebra A is a subring Λ of A (with the
same 1) and such that Λ is an R-lattice.

Examples:

� OL is an OK-order in L;

� Matn×n(R) is an R-order in Matn×n(K);

� Let G be a finite group. R[G] is an R-order in K[G].

� Let L/K be a finite G-Galois extension of number fields or p-adic
fields. The associated order is

AL/K = {x ∈ K[G]|xOL ⊆ OL}.

To prove that it is an order note that it is a subring of K[G] and an
OK-module.
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Let y ∈ K[G], then there exists r ∈ OK such that ry ∈ OK [G] ⊆ AL/K .
Hence KAL/K = K[G].

Let α ∈ OL be such that K[G] · α = L; let M ⊆ K[G] be such that
M ·α = OL. Then M is an OK-lattice in K[G] and AL/K ⊆M . Since
OK is noetherian and M is finitely generated, so is AL/K .

Proposition 2.3. Let L/K and G be as above, let Γ be an OK-order in
K[G]. If OL is free over Γ, then Γ = AL/K .

Proof. If OL = Γ · α then L = K[G] · α is also free. Let x ∈ AL/K , then
xα ∈ OL = Γ · α, hence ∃y ∈ Γ with xα = yα and x = y. Hence AL/K ⊆ Γ.

Let γ ∈ Γ, then γ · OL = γ · (Γ · α) = (γΓ) · α ⊆ Γ · α = OL and so
γ ∈ AL/K . Hence Γ ⊆ AL/K .

Example: α = 1 + i ∈ Z[i], e1 = 1+σ
2 , e−1 = 1−σ

2 , Γ = Z[e1, e2]. Then
Γ · α = Z[i]. Hence AK[i]/K = Γ.

Corollary 2.4. Let L/K be p-adic fields. Then AL/K = OK [G] iff L/K is
tame.

Proof. Ilaria: If tame then NIB, then use the above proposition.
Conversely. Ilaria: If L/K is wild then TrL/K(OL) ( OK , i.e. TrL/K(OL) ⊆

πKOK . Then 1
πK

TrL/K ∈ AL/K .

[See Johnston, Section 3]

3 Locally free class groups

Let OK be a Dedekind domain with field of fractions K, let Λ be an O-order
in a finite dimensional separable K-algebra (example: K[G]).

Definition 3.1. A Λ-lattice is a Λ-module which is an OK-lattice.

Definition 3.2. Two Λ-lattices M and N are locally isomorphic if Mp
∼= Np

for each p. Notation: M ∨N . M is locally free if M ∨ Λ(n).

Theorem 3.3. Let L/K be a finite tame extension of number fields with
Galois group G. Then OL is a locally free OK [G]-module of rank 1.

Proof. Main ideas: OLP
is a free OKp [GP ]-module and OL,p =

⊕
P |pOLP

.

We introduce an equivalence relation on the set of locally free Λ-lattices,
writing M ∼ N if ∃r, s ∈ N such that M ⊕ Λ(r) ∼= N ⊕ Λ(s). Lattices in [Λ]
are called stably free.

Given M , M ′ locally free, there exists a locally free ideal M ′′ and t ∈ N
such that M ⊕ M ′ = Λ(r) ⊕ M ′′ [see Reiner, Maximal Orders, Theorem

3



(27.4)]; then we define [M ] + [M ′] = [M ′′]. Also this shows that every class
is represented by a locally free ideal.

The locally free class group Cl(Λ) is the group of the equivalence classes
with the addition.

Example: Cl(OK) is the usual class group.

Theorem 3.4 (Jordan-Zassenhaus). If K is a global field, then Cl(Λ) is
finite. (More precisely: ∀t ∈ N there are only finitely many isomorphism
classes of Λ-lattices of OK-rank at most t.)

Proof. See [Reiner, Maximal orders, Theorem (26.4)]

Example: [OL] ∈ Cl(OK [G]).

Warning: [OL] trivial means ∃r ∈ N such thatOL⊕OK [G](r) ∼= OK [G](r+1)

as OK [G]-modules. Actually one can take r = 1. Cougnard gives an ex-
ample of K/Q with Galois group Q32 (the generalized quaternion group of
order 32) such that OK is stably free but not free over Z[Q32].

We say that Λ has locally free cancellation if X⊕Λ(k) ∼= Y ⊕Λ(k) implies
X ∼= Y . In this case stably free is equivalent to free. This is tha case when
the so-called Eichler condition holds. Concretely if K is totally complex or
G is abelian, dihedral, symmetric or of odd order.

Martin Taylor proved the following:

Theorem 3.5 (Fröhlich’s Conjecture - special case). Let L/K be a tame
Galois extension of number fields with Galois group G. Then [OL]2 is trivial
in Cl(Z[G]). If G has no irreducible symplectiv characters then OL is free
of rank [K : Q] over Z[G].

The condition on G holds for example when G is abelian, dihedral, sym-
metric or of odd order.

[See Johnston, Sections 10 and 15]

4 Leopoldt’s Theorem

Lemma 4.1.

TrQ(ζpn+m )/Q(ζpn )(ζpk) =

{
ζpkp

m if 0 ≤ k ≤ n,
0 if n < k ≤ n+m.

Proposition 4.2. Let p be a rational prime, n ∈ N, G = Gal(Q(ζpn)/Q)
and let α =

∑n
k=1 ζpk . For 1 ≤ k ≤ n, let ek = 1

pn−k TrQ(ζpn )/Q(ζ
pk

). Then

Z[ζpn ] = AQ(ζpn )/Q · α, AQ(ζpn )/Q = Z[G][{ek}n−1k=1 ].
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Proof.

ek(ζpl) =

{
ζpl if 0 ≤ l ≤ k,
0 if k < l ≤ n

and ek(gζpl) = gek(ζpl). Therefore ek ∈ AQ(ζpn )/Q and B := Z[G][{ek}n−1k=1 ] ⊆
AQ(ζpn )/Q.

Then B · α ⊆ Z[ζpn ].
Also ge1(α) = gζp and g(ek − ek−1)(α) = gζpk for 2 ≤ k ≤ n. Hence

B · α ⊇ Z[ζpn ].
By Proposition 2.3, B = AQ(ζpn )/Q.

Lemma 4.3. Let L1 and L2 be arithmetically disjoint, finite Galois exten-
sions of K, let L = L1L2. Then

(i) AL/L2
= AL1/K ⊗OK

OL2 and AL/K = AL1/K ⊗Ok
AL2/K .

(ii) If ∃α1 ∈ OL1 with OL1 = AL1/K · α1, then OL = AL/L2
· α1.

If also ∃α2 ∈ OL2 with OL2 = AL2/K · α2, then OL = AL/K · α1α2.

It follows that Z(ζn) is free over AQ(ζn)/Q for all n.

Lemma 4.4. Let K ⊆ L ⊆ L′ be a tower of Galois extensions of number
fields, assume L′/L is tame. If OL′ = AL′/K · α for some α ∈ OL′. Then
AL/K = π(AL′/K) and OL = AL/K · TrL′/L(α).

Proof. Since L′/L is tame, TrL′/L(OL′) = OL.
The trace is central in K[Gal(L′/K)]:

OL = TrL′/L(OL′) = TrL′/L(AL′/K ·α) = AL′/K ·TrL′/L(α) = π(AL′/K)·TrL′/L(α).

That AL/K = π(AL′/K) follows from Proposition 2.3.

Lemma 4.5. Let K be an abelian extension of Q of conductor n. Then
Q(ζn)/K is tamely ramified at all primes lying above rational odd primes.
If i ∈ K the same is true for primes above 2.

Proof. Let p|n odd, so n = prm. Note that N = KQ(ζpm) is intermediate
between Q(ζprm) and Q(ζpm); hence N = Q(ζpsm) for some s (because
Gal(Q(ζprm)/Q(ζpm)) is cyclic of order a power of p), but s cannot be smaller
than r. So N = Q(ζprm). Now N/K is tamely ramified at primes above p
since Q(ζpm)/Q is.

For primes above 2 the proof is analogous since Gal(Q(ζ2rm)/Q(ζ4m)) is
cyclic of order 2r−2.

Theorem 4.6 (Leopoldt). Let K be a finite abelian extension of Q of con-
ductor n. Suppose that n is odd or i ∈ K. Let α = TrQ(ζn)/K(

∑
r(n)|d|n ζd).

Then OK = AK/Q · α.
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One can prove Leopoldt’s Theorem for all finite abelian extensions of Q
using an adjusted trace map.

One can recover Hilbert-Speiser Theorem as a special case.
There are several relative versions for absolutely abelian extensions of

Q, i.e. L/K with L/Q abelian.
[See Jonnston, Sections 11 and 12]
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