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1 Tame and wild extensions

Let L/K be a finite extension of number field or local fields.

Recall: p char of O /P. If VQ|POy, ged(p, eq/p) = 1 then L/K is tame
at P. Otherwise wilde.

Let us assume L/K is local and Galois with Gal(L/K) = G. Then

Gi={0eG : o(x)=z (mod Q™) VzecO}.
Note that G_1 = G and Gy is the usual inertia group, which is of order

Clearly enough to check for an x which generates O, as an Og-algebra.

Equivalently: G acts on Or/Q*"! and G; is the kernel of the action.
So G; are a decreasing filtration of normal groups and G; = {1} for i big
enough.

Proposition 1.1. Leti € N, 0 € Gy, let m be a uniformizer in L. Then
ceGieo(r)/mr=1 (mod QY

Proof. Since o € Gy it is enough to check o(z) = x (mod Q') for a
generator x of O, over Of,, where Ky = LGo.
Since L/Kj is totally ramified we can take z = 7.

Then divide o(7) = 7 (mod Q*!) by =. O
We also have a filtration of the group of units Up, by U}; =14+ Q"
Proposition 1.2. There is an injective map
0;: Gi/Giy1 — UL U

induced by
s+ s(m)/m.

It is independent of the choice of .



Proof. Let ©' = wu with u € Uy, then

s(n') /7’ = s(n)/mws(u)/u

and s(u)/u € UL,
Homomorphism:

st(m)/m = s(t(m))/t(mw) - t(m) /7.
Injectivity is clear. O
Corollary 1.3. Go/G1 is cyclic of order co-prime to p and G1 is a p-group.

Proof. Go/G1 is isomorphic to a subgroup of ki; for i > 1, Gi/Giq is
isomorphic to Ul /U = iy, O

Corollary 1.4. L/K is tame iff G1 = 0.
Proof. L/K is tame iff the order of Gy is co-prime to p iff G; = 0. O
Definition 1.5. An extension is weakly ramified if Go = 0.

[See Serre]

2 Orders

Let R be a noetherian domain with field of fractions K.

Definition 2.1. An R-lattice M in a K-vector space V is a finitely generated
R-submodule in V' such that V = KM.

Definition 2.2. An R-order in a K-algebra A is a subring A of A (with the
same 1) and such that A is an R-lattice.

Examples:
o Op is an Og-order in L;

e Mat, «x,(R) is an R-order in Mat,,x, (K);

Let G be a finite group. R[G] is an R-order in K[G].

Let L/K be a finite G-Galois extension of number fields or p-adic
fields. The associated order is

AL/K ={z € K[|G]|zOr, C Or}.

To prove that it is an order note that it is a subring of K[G] and an
Og-module.



Let y € K[G], then there exists 7 € O such that ry € Ok [G] C A k-
Hence KA/ = K[G].

Let « € O, be such that K[G] -« = L; let M C K|[G] be such that
M -a = Op. Then M is an Og-lattice in K[G] and Ay, € M. Since
Of is noetherian and M is finitely generated, so is Az .

Proposition 2.3. Let L/K and G be as above, let T’ be an Og-order in
K[G]. If Oy, is free over T, then T = A /.

Proof. If O, = T'-a then L = K[G] - « is also free. Let z € Ay /g, then
ra € Op =T, hence Jy € T" with za = ya and x = y. Hence Ap ¢ CT.

Let y € T, then yv-Op =~v-(I'-a) = (7)) -a C T'-a = O and so
v € Ap/k- Hence I' C Ay k. O

Example: a = 1+ € Z[i], e = 2, e_y = 52, T = Zle1, e3]. Then
['-a = Z[i]. Hence Agpj/x =T

Corollary 2.4. Let L/K be p-adic fields. Then Ay g = Ok[G] iff L/K is

tame.

Proof. Tlaria: If tame then NIB, then use the above proposition.
Conversely. llaria: If L/K is wild then Try  x(Or) & Ok, i.e. Trp,(OL)
T Ok. Then iTrL/K S AL/K O

[See Johnston, Section 3]

3 Locally free class groups

Let Ok be a Dedekind domain with field of fractions K, let A be an O-order
in a finite dimensional separable K-algebra (example: K[G]).

Definition 3.1. A A-lattice is a A-module which is an Ok -lattice.

Definition 3.2. Two A-lattices M and N are locally isomorphic if M, = N,
for each p. Notation: M N N. M is locally free if MV A,

Theorem 3.3. Let L/K be a finite tame extension of number fields with
Galois group G. Then Op, is a locally free Ok [G]-module of rank 1.

Proof. Main ideas: Of,, is a free O, [Gpl-module and O, = @ p|, Orp-
O

We introduce an equivalence relation on the set of locally free A-lattices,
writing M ~ N if 3r,s € N such that M @& A" = N @ A®). Lattices in [A]
are called stably free.

Given M, M’ locally free, there exists a locally free ideal M"” and t € N
such that M @ M’ = A") @ M” [see Reiner, Maximal Orders, Theorem

N



(27.4)]; then we define [M] + [M'] = [M"]. Also this shows that every class
is represented by a locally free ideal.

The locally free class group CI(A) is the group of the equivalence classes
with the addition.

Example: Cl(Ok) is the usual class group.

Theorem 3.4 (Jordan-Zassenhaus). If K is a global field, then ClL(A) is
finite. (More precisely: ¥Vt € N there are only finitely many isomorphism
classes of A-lattices of O -rank at most t.)

Proof. See [Reiner, Maximal orders, Theorem (26.4)] O

Example: [Of] € Cl(Ok[G]).

Warning: [Op] trivial means 3r € N such that O ®Ox[G]") = Ok [G] D
as Ok[G]-modules. Actually one can take r = 1. Cougnard gives an ex-
ample of K/Q with Galois group @32 (the generalized quaternion group of
order 32) such that O is stably free but not free over Z[Q32].

We say that A has locally free cancellation if X ® A®) = Y @ A®*) implies
X 2Y. In this case stably free is equivalent to free. This is tha case when
the so-called Eichler condition holds. Concretely if K is totally complex or
G is abelian, dihedral, symmetric or of odd order.

Martin Taylor proved the following:

Theorem 3.5 (Frohlich’s Conjecture - special case). Let L/K be a tame
Galois extension of number fields with Galois group G. Then [Or)? is trivial
in CIZ[G]). If G has no irreducible symplectiv characters then Oy, is free
of rank [K : Q] over Z[G].

The condition on G holds for example when G is abelian, dihedral, sym-

metric or of odd order.
[See Johnston, Sections 10 and 15]

4 Leopoldt’s Theorem

Lemma 4.1.

T‘I‘Q(Cpn+m)/(@(<p")(<pk) - {Op ’Lfn <k<n4+m.

Proposition 4.2. Let p be a rational prime, n € N, G = Gal(Q({»)/Q)
and let o =Y G For 1 <k <n, let e = Iﬁﬂ(@(%n)/@@pk). Then

ZiGn] = A Agmo = ZIGIHerk o]
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Proof.
fo<l<k,
ek<c,,z>={§p’ Ho=l=

0 fk<l<n

and ex(g¢,) = gex((y). Therefore e, € Ag¢,n)/q and B := Z[G {er}izi] €

Agg,n)/Q-
Then B - a C Z[(n].

Also gei(a) = g¢p and g(er, — ex—1)(a) = gQ for 2 < k < n. Hence
B« 2 Z[Cp'n].
By Proposition 2.3, B = Ag¢,n)/0- O

Lemma 4.3. Let Ly and Ly be arithmetically disjoint, finite Galois exten-
sions of K, let L = L1Ly. Then

(i) Apjp, = ALk @0y O, and Ap g = Ap, /k ®0, AL, /K-

(i) If 3oy € Op, with Or, = Ar, ka1, then O = Ay, - ar.
If also 3ag € Of, with O, = Ap, /i - az, then O = A - aras.

It follows that Z((,) is free over Agc,)/q for all n.

Lemma 4.4. Let K C L C L' be a tower of Galois extensions of number
fields, assume L'/L is tame. If Op = Apjg -« for some o € Opr. Then
-AL/K = W(AL’/K> and OL = AL/K : TTL’/L(Oé)~

Proof. Since L'/L is tame, Try,/1(Or/) = Of.
The trace is central in K[Gal(L'/K)]:

Op=Trp/(Or) =Trp(Apk-a) = Ay Trpyp(e) = m(Ap ) Trp (@)
That Ak = n(Ap/k) follows from Proposition 2.3. O

Lemma 4.5. Let K be an abelian extension of Q of conductor n. Then
Q(¢n)/K is tamely ramified at all primes lying above rational odd primes.
If i € K the same is true for primes above 2.

Proof. Let p|n odd, so n = p"m. Note that N = KQ((pm) is intermediate
between Q((prm) and Q((pm); hence N = Q((psm) for some s (because
Gal(Q(Cprm)/Q(Cpm)) is cyclic of order a power of p), but s cannot be smaller
than 7. So N = Q({prm). Now N/K is tamely ramified at primes above p
since Q(Cpm)/Q is.

For primes above 2 the proof is analogous since Gal(Q(Carm)/Q(Cam)) is
cyclic of order 272, O

Theorem 4.6 (Leopoldt). Let K be a finite abelian extension of Q of con-
ductor n. Suppose that n is odd ori € K. Let a = TTQ(Cn)/K(ZT(n)Idln Ca)-
Then Ok = Ag g - .



One can prove Leopoldt’s Theorem for all finite abelian extensions of Q
using an adjusted trace map.

One can recover Hilbert-Speiser Theorem as a special case.

There are several relative versions for absolutely abelian extensions of
Q, i.e. L/K with L/Q abelian.

[See Jonnston, Sections 11 and 12]



