More tame Galois module structure and an introduction to wild Galois module structure

Alessandro Cobbe

1 Tame and wild extensions

Let L / K be a finite extension of number field or local fields.
Recall: p char of \mathcal{O}_{K} / P. If $\forall Q \mid P \mathcal{O}_{L}, \operatorname{gcd}\left(p, e_{Q / P}\right)=1$ then L / K is tame at P. Otherwise wilde.

Let us assume L / K is local and Galois with $\operatorname{Gal}(L / K)=G$. Then

$$
G_{i}=\left\{\sigma \in G: \sigma(x) \equiv x \quad\left(\bmod Q^{i+1}\right) \forall x \in \mathcal{O}_{L}\right\}
$$

Note that $G_{-1}=G$ and G_{0} is the usual inertia group, which is of order e.

Clearly enough to check for an x which generates \mathcal{O}_{L} as an \mathcal{O}_{K}-algebra. Equivalently: G acts on $\mathcal{O}_{L} / Q^{i+1}$ and G_{i} is the kernel of the action. So G_{i} are a decreasing filtration of normal groups and $G_{i}=\{1\}$ for i big enough.

Proposition 1.1. Let $i \in \mathbb{N}, \sigma \in G_{0}$, let π be a uniformizer in L. Then

$$
\sigma \in G_{i} \Leftrightarrow \sigma(\pi) / \pi \equiv 1 \quad\left(\bmod Q^{i}\right)
$$

Proof. Since $\sigma \in G_{0}$ it is enough to check $\sigma(x) \equiv x\left(\bmod Q^{i+1}\right)$ for a generator x of \mathcal{O}_{L} over $\mathcal{O}_{K_{0}}$, where $K_{0}=L^{G_{0}}$.

Since L / K_{0} is totally ramified we can take $x=\pi$.
Then divide $\sigma(\pi) \equiv \pi\left(\bmod Q^{i+1}\right)$ by π.
We also have a filtration of the group of units U_{L}, by $U_{L}^{i}=1+Q^{i}$.
Proposition 1.2. There is an injective map

$$
\theta_{i}: G_{i} / G_{i+1} \rightarrow U_{L}^{i} / U_{L}^{i+1}
$$

induced by

$$
s \mapsto s(\pi) / \pi
$$

It is independent of the choice of π.

Proof. Let $\pi^{\prime}=\pi u$ with $u \in U_{L}$, then

$$
s\left(\pi^{\prime}\right) / \pi^{\prime}=s(\pi) / \pi s(u) / u
$$

and $s(u) / u \in U_{L}^{i+1}$.
Homomorphism:

$$
s t(\pi) / \pi=s(t(\pi)) / t(\pi) \cdot t(\pi) / \pi .
$$

Injectivity is clear.
Corollary 1.3. G_{0} / G_{1} is cyclic of order co-prime to p and G_{1} is a p-group.
Proof. G_{0} / G_{1} is isomorphic to a subgroup of κ_{L}^{\times}; for $i>1, G_{i} / G_{i+1}$ is isomorphic to $U_{L}^{i} / U_{L}^{i+1} \cong \kappa_{L}$.

Corollary 1.4. L / K is tame iff $G_{1}=0$.
Proof. L / K is tame iff the order of G_{0} is co-prime to p iff $G_{1}=0$.
Definition 1.5. An extension is weakly ramified if $G_{2}=0$.
[See Serre]

2 Orders

Let R be a noetherian domain with field of fractions K.
Definition 2.1. An R-lattice M in a K-vector space V is a finitely generated R-submodule in V such that $V=K M$.

Definition 2.2. An R-order in a K-algebra A is a subring Λ of A (with the same 1) and such that Λ is an R-lattice.

Examples:

- \mathcal{O}_{L} is an \mathcal{O}_{K}-order in L;
- $\operatorname{Mat}_{n \times n}(R)$ is an R-order in $\operatorname{Mat}_{n \times n}(K)$;
- Let G be a finite group. $R[G]$ is an R-order in $K[G]$.
- Let L / K be a finite G-Galois extension of number fields or p-adic fields. The associated order is

$$
\mathcal{A}_{L / K}=\left\{x \in K[G] \mid x \mathcal{O}_{L} \subseteq \mathcal{O}_{L}\right\} .
$$

To prove that it is an order note that it is a subring of $K[G]$ and an \mathcal{O}_{K}-module.

Let $y \in K[G]$, then there exists $r \in \mathcal{O}_{K}$ such that $r y \in \mathcal{O}_{K}[G] \subseteq \mathcal{A}_{L / K}$. Hence $K \mathcal{A}_{L / K}=K[G]$.
Let $\alpha \in \mathcal{O}_{L}$ be such that $K[G] \cdot \alpha=L$; let $M \subseteq K[G]$ be such that $M \cdot \alpha=\mathcal{O}_{L}$. Then M is an \mathcal{O}_{K}-lattice in $K[G]$ and $\mathcal{A}_{L / K} \subseteq M$. Since \mathcal{O}_{K} is noetherian and M is finitely generated, so is $\mathcal{A}_{L / K}$.

Proposition 2.3. Let L / K and G be as above, let Γ be an \mathcal{O}_{K}-order in $K[G]$. If \mathcal{O}_{L} is free over Γ, then $\Gamma=\mathcal{A}_{L / K}$.

Proof. If $\mathcal{O}_{L}=\Gamma \cdot \alpha$ then $L=K[G] \cdot \alpha$ is also free. Let $x \in \mathcal{A}_{L / K}$, then $x \alpha \in \mathcal{O}_{L}=\Gamma \cdot \alpha$, hence $\exists y \in \Gamma$ with $x \alpha=y \alpha$ and $x=y$. Hence $\mathcal{A}_{L / K} \subseteq \Gamma$.

Let $\gamma \in \Gamma$, then $\gamma \cdot \mathcal{O}_{L}=\gamma \cdot(\Gamma \cdot \alpha)=(\gamma \Gamma) \cdot \alpha \subseteq \Gamma \cdot \alpha=\mathcal{O}_{L}$ and so $\gamma \in \mathcal{A}_{L / K}$. Hence $\Gamma \subseteq \mathcal{A}_{L / K}$.

Example: $\alpha=1+i \in \mathbb{Z}[i], e_{1}=\frac{1+\sigma}{2}, e_{-1}=\frac{1-\sigma}{2}, \Gamma=\mathbb{Z}\left[e_{1}, e_{2}\right]$. Then $\Gamma \cdot \alpha=\mathbb{Z}[i]$. Hence $\mathcal{A}_{K[i] / K}=\Gamma$.
Corollary 2.4. Let L / K be p-adic fields. Then $\mathcal{A}_{L / K}=\mathcal{O}_{K}[G]$ iff L / K is tame.

Proof. Ilaria: If tame then NIB, then use the above proposition.
Conversely. Ilaria: If L / K is wild then $\operatorname{Tr}_{L / K}\left(\mathcal{O}_{L}\right) \subsetneq \mathcal{O}_{K}$, i.e. $\operatorname{Tr}_{L / K}\left(\mathcal{O}_{L}\right) \subseteq$ $\pi_{K} \mathcal{O}_{K}$. Then $\frac{1}{\pi_{K}} \operatorname{Tr}_{L / K} \in \mathcal{A}_{L / K}$.
[See Johnston, Section 3]

3 Locally free class groups

Let \mathcal{O}_{K} be a Dedekind domain with field of fractions K, let Λ be an \mathcal{O}-order in a finite dimensional separable K-algebra (example: $K[G]$).

Definition 3.1. A Λ-lattice is a Λ-module which is an \mathcal{O}_{K}-lattice.
Definition 3.2. Two Λ-lattices M and N are locally isomorphic if $M_{p} \cong N_{p}$ for each p. Notation: $M \vee N . M$ is locally free if $M \vee \Lambda^{(n)}$.

Theorem 3.3. Let L / K be a finite tame extension of number fields with Galois group G. Then \mathcal{O}_{L} is a locally free $\mathcal{O}_{K}[G]$-module of rank 1 .

Proof. Main ideas: $\mathcal{O}_{L_{P}}$ is a free $\mathcal{O}_{K_{p}}\left[G_{P}\right]$-module and $\mathcal{O}_{L, p}=\bigoplus_{P \mid p} \mathcal{O}_{L_{P}}$.
We introduce an equivalence relation on the set of locally free Λ-lattices, writing $M \sim N$ if $\exists r, s \in \mathbb{N}$ such that $M \oplus \Lambda^{(r)} \cong N \oplus \Lambda^{(s)}$. Lattices in [$\left.\Lambda\right]$ are called stably free.

Given M, M^{\prime} locally free, there exists a locally free ideal $M^{\prime \prime}$ and $t \in \mathbb{N}$ such that $M \oplus M^{\prime}=\Lambda^{(r)} \oplus M^{\prime \prime}$ [see Reiner, Maximal Orders, Theorem
(27.4)]; then we define $[M]+\left[M^{\prime}\right]=\left[M^{\prime \prime}\right]$. Also this shows that every class is represented by a locally free ideal.

The locally free class group $\mathrm{Cl}(\Lambda)$ is the group of the equivalence classes with the addition.

Example: $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ is the usual class group.
Theorem 3.4 (Jordan-Zassenhaus). If K is a global field, then $\mathrm{Cl}(\Lambda)$ is finite. (More precisely: $\forall t \in \mathbb{N}$ there are only finitely many isomorphism classes of Λ-lattices of $\mathcal{O}_{K^{-}}$-rank at most t.)

Proof. See [Reiner, Maximal orders, Theorem (26.4)]

Example: $\left[\mathcal{O}_{L}\right] \in \mathrm{Cl}\left(\mathcal{O}_{K}[G]\right)$.
Warning: $\left[\mathcal{O}_{L}\right]$ trivial means $\exists r \in \mathbb{N}$ such that $\mathcal{O}_{L} \oplus \mathcal{O}_{K}[G]^{(r)} \cong \mathcal{O}_{K}[G]^{(r+1)}$ as $\mathcal{O}_{K}[G]$-modules. Actually one can take $r=1$. Cougnard gives an example of K / \mathbb{Q} with Galois group Q_{32} (the generalized quaternion group of order 32) such that \mathcal{O}_{K} is stably free but not free over $\mathbb{Z}\left[Q_{32}\right]$.

We say that Λ has locally free cancellation if $X \oplus \Lambda^{(k)} \cong Y \oplus \Lambda^{(k)}$ implies $X \cong Y$. In this case stably free is equivalent to free. This is tha case when the so-called Eichler condition holds. Concretely if K is totally complex or G is abelian, dihedral, symmetric or of odd order.

Martin Taylor proved the following:
Theorem 3.5 (Fröhlich's Conjecture - special case). Let L / K be a tame Galois extension of number fields with Galois group G. Then $\left[\mathcal{O}_{L}\right]^{2}$ is trivial in $\mathrm{Cl}(\mathbb{Z}[G])$. If G has no irreducible symplectiv characters then \mathcal{O}_{L} is free of $\operatorname{rank}[K: \mathbb{Q}]$ over $\mathbb{Z}[G]$.

The condition on G holds for example when G is abelian, dihedral, symmetric or of odd order.
[See Johnston, Sections 10 and 15]

4 Leopoldt's Theorem

Lemma 4.1.

$$
\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p^{n+m}}\right) / \mathbb{Q}\left(\zeta_{p^{n}}\right)}\left(\zeta_{p^{k}}\right)= \begin{cases}\zeta_{p^{k}} p^{m} & \text { if } 0 \leq k \leq n \\ 0 & \text { if } n<k \leq n+m\end{cases}
$$

Proposition 4.2. Let p be a rational prime, $n \in \mathbb{N}, G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}\right)$ and let $\alpha=\sum_{k=1}^{n} \zeta_{p^{k}}$. For $1 \leq k \leq n$, let $e_{k}=\frac{1}{p^{n-k}} \operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}\left(\zeta_{p^{k}}\right)}$. Then

$$
\mathbb{Z}\left[\zeta_{p^{n}}\right]=\mathcal{A}_{\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}} \cdot \alpha, \quad \mathcal{A}_{\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}}=\mathbb{Z}[G]\left[\left\{e_{k}\right\}_{k=1}^{n-1}\right]
$$

Proof.

$$
e_{k}\left(\zeta_{p^{l}}\right)= \begin{cases}\zeta_{p^{l}} & \text { if } 0 \leq l \leq k, \\ 0 & \text { if } k<l \leq n\end{cases}
$$

and $e_{k}\left(g \zeta_{p^{l}}\right)=g e_{k}\left(\zeta_{p^{l}}\right)$. Therefore $e_{k} \in \mathcal{A}_{\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}}$ and $\mathcal{B}:=\mathbb{Z}[G]\left[\left\{e_{k}\right\}_{k=1}^{n-1}\right] \subseteq$ $\mathcal{A}_{\mathbb{Q}\left(\zeta_{\left.p^{n}\right)} / \mathbb{Q}\right.}$.

Then $\mathcal{B} \cdot \alpha \subseteq \mathbb{Z}\left[\zeta_{p^{n}}\right]$.
Also $g e_{1}(\alpha)=g \zeta_{p}$ and $g\left(e_{k}-e_{k-1}\right)(\alpha)=g \zeta_{p^{k}}$ for $2 \leq k \leq n$. Hence $\mathcal{B} \cdot \alpha \supseteq \mathbb{Z}\left[\zeta_{p^{n}}\right]$.

By Proposition 2.3, $\mathcal{B}=\mathcal{A}_{\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}}$.
Lemma 4.3. Let L_{1} and L_{2} be arithmetically disjoint, finite Galois extensions of K, let $L=L_{1} L_{2}$. Then
(i) $\mathcal{A}_{L / L_{2}}=\mathcal{A}_{L_{1} / K} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L_{2}}$ and $\mathcal{A}_{L / K}=\mathcal{A}_{L_{1} / K} \otimes_{\mathcal{O}_{k}} \mathcal{A}_{L_{2} / K}$.
(ii) If $\exists \alpha_{1} \in \mathcal{O}_{L_{1}}$ with $\mathcal{O}_{L_{1}}=\mathcal{A}_{L_{1} / K} \cdot \alpha_{1}$, then $\mathcal{O}_{L}=\mathcal{A}_{L / L_{2}} \cdot \alpha_{1}$. If also $\exists \alpha_{2} \in \mathcal{O}_{L_{2}}$ with $\mathcal{O}_{L_{2}}=\mathcal{A}_{L_{2} / K} \cdot \alpha_{2}$, then $\mathcal{O}_{L}=\mathcal{A}_{L / K} \cdot \alpha_{1} \alpha_{2}$.

It follows that $\mathbb{Z}\left(\zeta_{n}\right)$ is free over $\mathcal{A}_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}$ for all n.
Lemma 4.4. Let $K \subseteq L \subseteq L^{\prime}$ be a tower of Galois extensions of number fields, assume L^{\prime} / L is tame. If $\mathcal{O}_{L^{\prime}}=\mathcal{A}_{L^{\prime} / K} \cdot \alpha$ for some $\alpha \in \mathcal{O}_{L^{\prime}}$. Then $\mathcal{A}_{L / K}=\pi\left(\mathcal{A}_{L^{\prime} / K}\right)$ and $\mathcal{O}_{L}=\mathcal{A}_{L / K} \cdot \operatorname{Tr}_{L^{\prime} / L}(\alpha)$.

Proof. Since L^{\prime} / L is tame, $\operatorname{Tr}_{L^{\prime} / L}\left(\mathcal{O}_{L^{\prime}}\right)=\mathcal{O}_{L}$.
The trace is central in $K\left[\operatorname{Gal}\left(L^{\prime} / K\right)\right]$:
$\mathcal{O}_{L}=\operatorname{Tr}_{L^{\prime} / L}\left(\mathcal{O}_{L^{\prime}}\right)=\operatorname{Tr}_{L^{\prime} / L}\left(\mathcal{A}_{L^{\prime} / K} \cdot \alpha\right)=\mathcal{A}_{L^{\prime} / K} \cdot \operatorname{Tr}_{L^{\prime} / L}(\alpha)=\pi\left(\mathcal{A}_{L^{\prime} / K}\right) \cdot \operatorname{Tr}_{L^{\prime} / L}(\alpha)$.
That $\mathcal{A}_{L / K}=\pi\left(\mathcal{A}_{L^{\prime} / K}\right)$ follows from Proposition 2.3.
Lemma 4.5. Let K be an abelian extension of \mathbb{Q} of conductor n. Then $\mathbb{Q}\left(\zeta_{n}\right) / K$ is tamely ramified at all primes lying above rational odd primes. If $i \in K$ the same is true for primes above 2 .

Proof. Let $p \mid n$ odd, so $n=p^{r} m$. Note that $N=K \mathbb{Q}\left(\zeta_{p m}\right)$ is intermediate between $\mathbb{Q}\left(\zeta_{p^{r} m}\right)$ and $\mathbb{Q}\left(\zeta_{p m}\right)$; hence $N=\mathbb{Q}\left(\zeta_{p^{s} m}\right)$ for some s (because $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p^{r} m}\right) / \mathbb{Q}\left(\zeta_{p m}\right)\right)$ is cyclic of order a power of $\left.p\right)$, but s cannot be smaller than r. So $N=\mathbb{Q}\left(\zeta_{p^{r} m}\right)$. Now N / K is tamely ramified at primes above p since $\mathbb{Q}\left(\zeta_{p m}\right) / \mathbb{Q}$ is.

For primes above 2 the proof is analogous since $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{2^{r} m}\right) / \mathbb{Q}\left(\zeta_{4 m}\right)\right)$ is cyclic of order 2^{r-2}.

Theorem 4.6 (Leopoldt). Let K be a finite abelian extension of \mathbb{Q} of conductor n. Suppose that n is odd or $i \in K$. Let $\alpha=\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{n}\right) / K}\left(\sum_{r(n)|d| n} \zeta_{d}\right)$. Then $\mathcal{O}_{K}=\mathcal{A}_{K / \mathbb{Q}} \cdot \alpha$.

One can prove Leopoldt's Theorem for all finite abelian extensions of \mathbb{Q} using an adjusted trace map.

One can recover Hilbert-Speiser Theorem as a special case.
There are several relative versions for absolutely abelian extensions of \mathbb{Q}, i.e. L / K with L / \mathbb{Q} abelian.
[See Jonnston, Sections 11 and 12]

