Hopf Orders as Associated Orders

Nigel Byott

University of Exeter

Pisa, 15 July 2021

Outline

- §1: The set-up
- **2** §2: Hopf orders in $K[C_p]$
- §3: A weak congruence for the ramification breaks
- §4: A strong congruence for the ramification breaks
- S: Formal groups and Hopf orders
- §6: Lubin-Tate formal groups

§1: The set-up:

Recall from Daniel's talk last week:

Theorem 1

Let K be a finite extension of \mathbb{Q}_p and let L/K be a finite extension which is H-Galois for some cocommutative K-Hopf algebra H. [Motivating case: H = K[G] with L/K Galois and G = Gal(L/K).]

Let

$$\mathcal{A}_H := \{h \in H : h \cdot O_L \subseteq O_L\}$$

be the associated order of O_L in H.

If A_H is a Hopf order, then O_L is A_H -tame and is therefore A_H -free.

Moreover, if A_H is a local ring (not necessarily commutative), then O_L is A_H -Galois.

In this talk, we investigate the consequences of A_H being a Hopf order and give construct some examples.

§2: Hopf orders in $K[C_p]$

Fix notation: K is a finite extension of \mathbb{Q}_p with valuation v_K , valuation ring O_K , and \mathfrak{p}_K is the maximal ideal of O_K .

Let $\pi = \pi_K$ be a uniformiser of K, so $v_K(\pi) = 1$ and $pO_K = \pi^e O_K$ where $e = e_{K/\mathbb{Q}_p}$ is the ramification index.

Now let $G = \langle \sigma \rangle = C_p$ and write $X = \sigma - 1 \in O_K[G]$.

Expanding $(X + 1)^p = \sigma^p = 1$, we find

$$X^{p} + pX^{p-1} + {p \choose 2}X^{p-2} + \dots + pX = 0.$$

Also

$$\Delta(X) = \sigma \otimes \sigma - 1 \otimes 1 = X \otimes 1 + 1 \otimes X + X \otimes X.$$

So $O_{\mathcal{K}}[X]$ is a Hopf order in $\mathcal{K}[G]$.

This is not surprising since $O_{\mathcal{K}}[X] = O_{\mathcal{K}}[G]!$

Now let $i \in \mathbb{Z}$ and write

$$X_i = \pi^{-i} X, \qquad H_i = O_K[X_i].$$

For which *i* is H_i a Hopf order?

For H_i to be a finitely generated O_K -module, we need X_i to satisfy a monic equation over O_K . Now

$$X_{i}^{p} + p\pi^{-i}X_{i}^{p-1} + {p \choose 2}\pi^{-2i}X_{i}^{p-2} + \dots + p\pi^{-(p-1)i}X_{i} = 0.$$

So H_i is an order in $K[G] \Leftrightarrow p^{-(p-1)i} \in O_K \Leftrightarrow i \leq e/(p-1)$. For H_i to be a Hopf order, we also need $\Delta(X_i) \in H_i \otimes_{O_K} H_i$. But

$$\Delta(X_i) = X_i \otimes 1 + 1 \otimes X_i + \pi^i X_i \otimes X_i.$$

So
$$\Delta(H_i) \subset H_i \otimes_{\mathcal{O}_K} H_i \Leftrightarrow i \geq 0$$
.

Thus we get a family of Hopf orders $H_i \subset K[G]$ for $0 \le i \le \lfloor e/(p-1) \rfloor$. Then H_i is a local ring unless i = e/(p-1). In fact, these are the only Hopf orders in $K[C_p]$ (proof omitted). We now investigate when these Hopf orders H_i occur as associated orders. Let L/K be a Galois extension of degree p, with ramification break t:

$$t = \mathsf{max}\{j: (\sigma-1) \cdot \mathcal{O}_L \subseteq \mathfrak{p}_L^{j+1}\}$$

Then $-1 \le t \le ep/(p-1)$, and $p \nmid t$ unless $(p-1) \mid e$ and t = ep/(p-1).

If t > 0 then L/K is totally (and wildly) ramified. If t = -1 then L/K is unramified.

If t > 0 then, for any $\rho \in L^{\times}$, we have

$$v_L((\sigma-1)\cdot\rho) \quad \begin{cases} = v_L(\rho) + t & \text{if } p \nmid v_L(\rho), \\ > v_L(\rho) + t & \text{if } p \mid v_L(\rho). \end{cases}$$

We consider 4 cases:

(i)
$$t > 0$$
 and $t \equiv -1 \pmod{p}$, say $t = pi - 1$ with $1 \le i \le e/(p - 1)$.
Pick any $\rho \in L$ with $v_L(\rho) = p - 1$.
Recall that $X_i = \pi_K^{-i}(\sigma - 1)$. So

$$v_L(X_i^s \cdot \rho) = p - 1 - s \text{ for } 0 \leq s \leq p - 1, \text{ and } v_L(X_i^p \cdot \rho) \geq 0.$$

Thus the elements $X_i^s \cdot \rho$ form an O_K -basis for O_L .

So O_L is a free module over the Hopf order $H_i = O_K[X_i]$ on the generator ρ .

Also, O_L is a Galois H_i -extension.

(ii) For t = -1, L/K is unramified and O_L is free over $H_0 = O_K[G]$, and is a Galois H_0 -extension.

[So all our Hopf orders H_i occur as associated orders of valuation rings O_L .]

(iii) If t = pi - a for $2 \le a \le p - 1$ then

$$H_{i-1} \subsetneq \mathcal{A}_{L/K} \subsetneq H_i$$

so $\mathcal{A}_{L/K}$ is not a Hopf order.

Then O_L is free over $\mathcal{A}_{L/K}$ if and only if (p-a) divides p-1, unless $t+1 \ge ep/(p-1)$.

(iv) If t = pe/(p-1), we have $\zeta_p \in K$ and $L = K(\alpha)$ with $\alpha = \sqrt[p]{\pi}$ for some choice of π .

Then O_L is free over H_i for i = e/(p-1) on the generator

$$1 + \alpha + \alpha^2 + \dots + \alpha^{p-1}.$$

 H_i is the maximal order, and it is not a local ring.

 O_L is H_i -tame but not H_i -Galois.

Summary: O_L is *H*-Galois for some Hopf order $H \Leftrightarrow t \equiv -1 \pmod{p}$.

The only other case where the associated order is a Hopf order is when t = ep/(p-1).

§3: A weak congruence for the ramification breaks From now on, L/K is a totally ramified Galois extension of degree p^n . Then G = Gal(L/K) has ramification filtration

$$\mathcal{G}_j = \{ \sigma \in \mathcal{G} : (\sigma - 1) \cdot x \in \mathfrak{p}_L^{j+1} ext{ for all } x \in \mathcal{O}_L \}.$$

The ramification breaks (in the lower numbering) are the t with $G_{t+1} \neq G_t$.

We will list these "with multiplicity": $t_1 \leq t_2 \leq \cdots \leq t_n$ where

$$t_i = \max\{j : |G_j| > p^{n-i}\}.$$

Then the inverse different

$$\mathcal{D}_{L/K}^{-1} = \{ x \in L : \operatorname{Tr}_{L/K}(xO_L) \subseteq O_K \}$$

is determined by the ramification breaks: $\mathcal{D}_{L/K}^{-1}=\mathfrak{p}_{L}^{-w}$ where

$$w = (p^n - 1)(t_1 + 1) + \sum_{i=1}^{n-1} (t_{i+1} - t_i)(p^{n-i} - 1) \equiv -(t_n + 1) \pmod{p}.$$

Theorem 2

Suppose that $A_{L/K} = H$ is a local Hopf order in K[G]. Then

$$t_i \equiv -1 \pmod{p^i}$$
 for $1 \le i \le n$.

Proof.

Use induction on *n*. We have just seen this for n = 1.

Let $N \lhd G$ with |N| = p and $N \leq G_{t_n}$. Let $F = L^N$.

Since N is chosen to be compatible with the ramification filtration, L/F has ramification break t_n and F/K has ramification breaks t_1, \ldots, t_{n-1} .

Corresponding to the exact sequence of groups

$$1 \rightarrow N \rightarrow G \rightarrow G/N \rightarrow 1$$
,

we have an exact sequence of Hopf orders over O_K :

$$O_{\mathcal{K}} o H_1 o H o \overline{H} o O_{\mathcal{K}}$$

where $H_1 = H \cap K[N]$ and \overline{H} is the image of H in K[G/N].

Then H_1 and \overline{H} are still local, and O_L , O_F are respectively tame for the Hopf orders $H_1 \otimes_{O_K} O_F = \mathcal{A}_{L/F}$ and $\overline{H} = \mathcal{A}_{F/K}$.

Applying the induction hypothesis to F/K, we get $t_i \equiv -1 \pmod{p^i}$ for $1 \leq i \leq n-1$.

Applying the induction hypothesis to L/F, we get $t_n \equiv -1 \pmod{p}$, say $t_n = pm - 1$. We need to strengthen this to a congruence mod p^n .

Now the ideal of integrals in H_1 is

$$I(H_1) = \mathfrak{a}^{-1} \sum_{\sigma \in N} \sigma$$

for some (integral) O_K -ideal \mathfrak{a} .

Hence the ideal of integrals in $H_1 \otimes O_F$ is

$$I(H_1 \otimes O_F) = \mathfrak{a}^{-1}O_F \sum_{\sigma \in N} \sigma$$

and $\operatorname{Tr}_{L/F}(O_L) = \mathfrak{a}O_F$. Now $\mathcal{D}_{L/F}^{-1} = \mathfrak{P}_L^{-w}$ where $w = (p-1)(t_n+1) = (p-1)pm$, so $\mathfrak{p}_F^{(p-1)m} = \operatorname{Tr}_{L/F}(O_F) = \mathfrak{a}O_F$.

But F/K is totally ramified of degree p^{n-1} , so $(p-1)m \equiv 0 \pmod{p^{n-1}}$. Then $p^{n-1} \mid m$ and

$$t_n = pm - 1 \equiv -1 \pmod{p^n}.$$

Corollary

If $\mathcal{A}_{L/K}$ is a local Hopf order, then $\mathcal{D}_{L/K}^{-1} = \mathfrak{a}^{-1}O_L$ for some O_K -ideal \mathfrak{a} .

Proof.

We have
$$\mathcal{D}_{L/K}^{-1} = \mathfrak{p}_L^{-w}$$
 where

$$w = (t_1+1)(p^n-1) + \sum_{i=1}^{n-1} (t_{i+1}-t_i)(p^{n-i}-1) \equiv -(t_n+1) \equiv 0 \pmod{p^n},$$

since
$$t_i \equiv -1 \pmod{p^i}$$
 for each *i*. So $\mathcal{D}_{L/K}^{-1} = \mathfrak{p}_K^{-w/p^n} \mathcal{O}_L$

Remark

In particular this means that $\mathcal{D}_{L/K}^{-1}$ and O_L are isomorphic as $O_K[G]$ -modules, so they both have associated order $\mathcal{A}_{L/K}$ and (by Theorem 1) both are free over $\mathcal{A}_{L/K}$.

Nigel Byott (University of Exeter)

Hopf Orders as Associated Orders

§4: A strong congruence for the ramification breaks

Theorem 3

Let L/K be a totally ramified abelian extension of degree p^n with $\mathcal{D}_{L/K}^{-1} = \mathfrak{a}^{-1}O_L$ for some O_K -ideal \mathfrak{a} .

Suppose that $\mathcal{D}_{L/K}^{-1}$ (or, equivalently, O_L) is free over its associated order \mathcal{A} in K[G], and that \mathcal{A} is a local ring. (\mathcal{A} does not have to be a Hopf order.)

Then the ramification numbers t_i of L/K satisfy

$$t_i \equiv -1 \pmod{p^n}$$
 for $1 \leq i \leq n$.

Note the modulus is now p^n , not just p^i as before!

Proof. Let \mathcal{A} have unique maximal ideal \mathcal{M} , and let $\mathcal{D}^{-1} := \mathcal{D}_{L/K}^{-1}$ be free over \mathcal{A} with generator y.

For any $\alpha \in \mathcal{A}$,

$$\mathcal{A} \cdot (\alpha \cdot \mathbf{y}) = \mathcal{D}^{-1} \Leftrightarrow \alpha \notin \mathcal{M}.$$

Let $y_1, y_2, \ldots y_{p^n}$ be any O_K -basis of \mathcal{D}^{-1} .

Then we can write $y_j = \alpha_j \cdot y$ for $\alpha_j \in \mathcal{A}$, and $\alpha_1, \ldots, \alpha_{p^n}$ is an \mathcal{O}_K -basis of \mathcal{A} .

So there is some j with $\alpha_j \notin \mathcal{M}$ and hence $\mathcal{A} \cdot y_j = \mathcal{D}^{-1}$.

We will assume for a contradiction that some $t_i \not\equiv -1 \pmod{p^n}$, and construct a basis y_1, \ldots, y_{p^n} for \mathcal{D}^{-1} over \mathcal{O}_K so that none of the y_j satisfy $\mathcal{A} \cdot y_j = \mathcal{D}^{-1}$. This will show \mathcal{D}^{-1} cannot be free over \mathcal{A} .

To show that $\mathcal{A} \cdot y_j \neq \mathcal{D}^{-1}$, it is enough to find $\beta_j \in \mathcal{A}$ so that $\beta_j \cdot y_j \in \pi \mathcal{D}^{-1}$ but $\beta_j \notin \pi \mathcal{A}$. We can do this without determining \mathcal{A} .

Write
$$\mathcal{D}^{-1} = \mathfrak{p}_L^{-w}$$
 with $w \equiv 0 \pmod{p^n}$. Then
 $\operatorname{Tr}_{L/K}(\mathcal{D}^{-1}) = O_K$ and $\operatorname{Tr}_{L/K}(\mathfrak{p}_L^{-1}\mathcal{D}^{-1}) = \mathfrak{p}_K^{-1}$.
So
 $\operatorname{Tr}_{L/K}(\pi \mathcal{D}^{-1}) = \mathfrak{p}_K$ and $\operatorname{Tr}_{L/K}(\pi \mathfrak{p}_L^{-1}\mathcal{D}^{-1}) = O_K$.
Choose $z \in \pi \mathfrak{p}_L^{-1}\mathcal{D}^{-1}$ with $\operatorname{Tr}_{L/K}(z) = 1$.
Then $v_L(z) = p^n - w - 1$.
Now choose $z_1 = z, z_2, \dots z_{p^n}$ with $v_L(z_j) = p^n - w - j$. Then the z_j form
an O_K -basis for \mathcal{D}^{-1} .

We adjust this to get a nicer basis:

$$y_1 = z_1,$$
 $y_j = z_j - \operatorname{Tr}_{L/K}(z_j)z_1$ for $j \ge 2$.

Then $\operatorname{Tr}_{L/K}(y_j) = 0$ for $j \ge 2$, and we still have $v_L(y_j) = p^n - w - j$.

For each *j*, we need to find $\beta_i \in \mathcal{A} \setminus \pi \mathcal{A}$ with $\beta_i \cdot y_i \in \pi \mathcal{D}^{-1}$. For i > 2, take

$$\beta_j = \beta := \pi^{-w/p^n} \sum_{\sigma \in G} \sigma.$$

Then $\beta \cdot y_i = \pi^{-w/p^n} \operatorname{Tr}_{L/K}(y_i) = 0.$ But $\beta \cdot v_1 = \pi^{-w/p^n}$. Since $\mathcal{D}^{-1} = \pi^{-w/p^n} \mathcal{O}_I$, we have $\beta \in \mathcal{A}$ but $\beta \notin \pi \mathcal{A}$, as required.

It remains to find a β_1 .

Recall some $t_i \not\equiv -1 \pmod{p^n}$. Let $t_i = p^n m + a$ with $1 \leq a \leq p^n - 2$, and take

$$\beta_1 = \pi^{-m}(\sigma - 1)$$
 where $\sigma \in G_{t_i} \setminus G_{t_i+1}$.

So for any $y \in L^{\times}$,

$$v_L(\beta_1 \cdot y) \quad \begin{cases} = v_L(y) + a & \text{if } p \nmid v_L(y), \\ > v_L(y) + a & \text{if } p \mid v_L(y). \end{cases}$$

Thus $\beta_1 \in \mathcal{A}_{L/K}$.

Now

$$\label{eq:vl} \begin{split} & \mathsf{v}_{\mathsf{L}}(\beta_1\cdot y_1) \geq \mathsf{v}_{\mathsf{L}}(y_1) + \mathsf{a} = \mathsf{p}^n - \mathsf{w} - 1 + \mathsf{a} \geq \mathsf{p}^n - \mathsf{w}, \\ & \mathsf{so} \ \beta_1\cdot y_1 \in \pi \mathcal{D}^{-1}. \end{split}$$

On the other hand

$$v_L(\beta_1 \cdot y_{p^n-1}) = (p^n - w - (p^n - 1)) + a \le p^n - w - 1,$$

so $\beta_1 \cdot y_{p^n-1} \notin \pi \mathcal{D}^{-1}$, and $\beta_1 \notin \pi \mathcal{A}_{L/K}$. Hence none of the y_j is a generator for \mathcal{D}^{-1} over \mathcal{A} , and \mathcal{D}^{-1} cannot be free. If K is a finite extension of \mathbb{Q}_p and L/K is a totally ramified Galois extension of degree p^n such that $\mathcal{A}_{L/K}$ is a Hopf order then O_L is free over $\mathcal{A}_{L/K}$.

Moreover, if $\mathcal{A}_{L/K}$ is a local ring, then O_L is $\mathcal{A}_{L/K}$ -Galois, $\mathcal{D}_{L/K}^{-1} = \mathfrak{a}^{-1}O_L$ for some O_{K} -ideal \mathfrak{a} , and the ramification numbers of L/K (counted with multiplicity) satisfy

 $t_i \equiv -1 \pmod{p^n}$.

We want a way of creating Hopf orders.

In geometry, the ring of regular functions on an algebraic group is a Hopf algebra. In more sophisticated language, a commutative Hopf algebra is the representing algebra for an affine group scheme.

This suggests we should start with some kind of group operation "defined over O_{κ} ".

Definition

A (one-dimensional) formal group over O_K is a power series $F(X, Y) \in O_K[[X, Y]]$ such that (i) $F(X, Y) \equiv X + Y$ mod deg 2; (ii) F(F(X, Y), Z) = F(X, F(Y, Z));(iii) F(X, 0) = X, F(0, Y) = Y;(iv) F(X, Y) = F(Y, X);(v) there exists a series $i(X) \in O_K[[X]]$ with i(0) = 0 such that F(X, i(X)) = 0.

(In fact, (iv) and (v) follow from (i)–(iii).)

For any algebraic extension E of K, $(\mathfrak{p}_E, +_F)$ is an abelian group, where $x +_F y = F(x, y).$

This makes sense as K(x, y) is complete. The identity element is 0 and the inverse of x is i(x).

Examples

(i) The additive formal group

$$F(X,Y) = X + Y:$$

this gives the usual addition.

(ii) The multiplicative formal group

$$F(X, Y) = X + Y + XY = (1 + X)(1 + Y) - 1$$

this gives the usual operation of multiplication on $1 + \mathfrak{p}_E \subseteq O_E^{\times}$, shifted to make the identity element 0.

Definition

A homomorphism $\phi : F \to G$ between formal groups is a power series $\phi(X) \in O_K[[X]]$ such that $\phi(X) = 0$ and $\phi(F(X, Y)) = G(\phi(X), \phi(Y))$.

This gives a homomorphism $\phi : (\mathfrak{p}_E, +_F) \to (\mathfrak{p}_E, +_G)$ for each *E*.

If F(X, Y) is a formal group over O_K , we can make $O_K[[T]]$ into a (completed) Hopf algebra as follows.

Let $U = T \otimes 1$ and $V = 1 \otimes T$. Define continuous algebra maps Δ , ϵ , inv

$$\begin{split} \Delta: O_{\mathcal{K}}[[\mathcal{T}]] &\to O_{\mathcal{K}}[[\mathcal{U}, \mathcal{V}]] = O_{\mathcal{K}}[[\mathcal{U}]] \hat{\otimes} O_{\mathcal{K}}[[\mathcal{V}]], \qquad \mathcal{T} \mapsto \mathcal{F}(\mathcal{U}, \mathcal{V}) \\ &\epsilon: O_{\mathcal{K}}[[\mathcal{T}]] \to O_{\mathcal{K}}, \qquad \mathcal{T} \mapsto 0; \\ &\text{inv}: O_{\mathcal{K}}[[\mathcal{T}]] \to O_{\mathcal{K}}[[\mathcal{T}]], \qquad \mathcal{T} \mapsto i(\mathcal{T}). \end{split}$$

These satisfy the usual Hopf algebra axioms.

(Note that $1 + UV + U^2V^2 + \cdots$ is an element of $O_K[[U]] \hat{\otimes} O_K[[V]]$ but not of $O_K[[U]] \otimes O_K[[V]]$.)

Now suppose $\phi(X) = a_1 X + a_2 X^2 + \cdots$ is a homomorphism $F \to G$ such that, for some d, we have

$$a_j \in \mathfrak{p}_K$$
 for $1 \leq j \leq d-1$, $a_d \notin \mathfrak{p}_K$.

By the Weierstrass Preparation Theorem, $\phi(X) = f(X)u(X)$ where f(X) is a monic polynomial of degree d with $f(X) \equiv X^d \pmod{\mathfrak{p}_K}$, and $u(X) \in O_K[[X]]^{\times}$.

Then the quotient O_K -algebra $H = O_K[[X]]/(\phi) \cong O_K[[X]]/(f)$ is a free O_K -module of rank d, and Δ induces a comultiplication $H \to H \otimes_{O_K} H$, making H into an O_K -Hopf algebra of rank d.

H represents ker(ϕ): for each algebraic extension *E* of *K*, the *O*_K-algebra homomorphisms $H \to L$ correspond to $x \in \mathfrak{p}_E$ with $\phi(x) = 0$, and these form a group under $+_F$.

Now let $c \in \mathfrak{p}_{\mathcal{K}}$ and write $S = O_{\mathcal{K}}[[T]]/(\phi(T) - c)$. We have a well-defined function

$$S \to S \otimes_{O_K} H$$
, $T \mapsto F(T \otimes 1, 1 \otimes X)$.

This makes S into a Galois H-object and so into a Galois H^* -extension, where H^* is the dual O_K -Hopf order to H.

If $v_{\mathcal{K}}(c) = 1$ then $\phi(T) - c \in O_{\mathcal{K}}[[T]]$ is "morally" an Eisenstein polynomial of degree d, and $S = O_L$ for some totally ramified extension L/K of degree d.

So we have created an extension L/K for which O_L is free over some commutative, cocommutative Hopf order H^* . The underlying K-Hopf algebra $H^* \otimes K$ is a group algebra if and only if ker $(\phi) \subseteq K$.

If we apply this to the multiplicative formal group

$$F(X,Y) = X + Y + XY$$

and the (shifted) p^n -power homomorphism

$$\phi(X) = (1+X)^{p^n} - 1 = p^n X + \dots + X^{p^n},$$

then $H^* \subseteq K[\mathcal{C}_{p^n}] \Leftrightarrow \zeta_{p^n} \in K$.

If $v_K(c) = 1$ we get $S = O_K[\sqrt[p^n]{c}]$, which is the valuation ring in $L = K(\sqrt[p^n]{c})$, and is free over the Hopf order H^* .

For example, if we start with $K = \mathbb{Q}_p(\zeta_p)$ and take $c = \zeta_p - 1$, we get $L = \mathbb{Q}_p(\zeta_{p^{n+1}})$ which is certainly a Galois extension of K, but H^* gives some *non-classical* Hopf-Galois structure if n > 1.

§6: Lubin-Tate formal groups

Change of notation: Start with a finite extension k of \mathbb{Q}_p with residue field of order $q = p^f$. Let $\pi = \pi_k$ be a uniformiser of k. Write $\overline{\mathfrak{p}}$ for the maximal ideal in the valuation ring of the algebraic closure of k.

Let $f(X) \in O_k[[X]]$ satisfy • $f(X) \equiv \pi X \mod \deg 2;$ • $f(X) \equiv X^q \pmod{\mathfrak{p}_k}.$ [$f(X) = \pi X + X^q$ would do.

If $k = \mathbb{Q}_p$ and $\pi = p$, we could take $f(X) = (1 + X)^p - 1 = pX + \dots + X^p$.

Lubin and Tate proved there is a unique formal group F(X, Y) over O_k such that f(X) is an endomorphism of F.

In fact, there is an isomorphism of rings $O_k \to \operatorname{End}(F)$ given by $a \mapsto [a]$ with $[\pi](X) = f(X)$ and [2](X) = F(X, X), etc.

For each $n \ge 1$, the set

$$G_n = \{x \in \overline{\mathfrak{p}} : [\pi^n](x) = 0\}$$

is an O_k -module isomorphic to O_K/\mathfrak{p}_k^n . In particular, it is an abelian group of order q^n .

The field

$$k_n = k(G_n)$$

is a totally ramified Galois extension of degree $q^{n-1}(q-1)$ and

$$\mathrm{Gal}(k_n/k)\cong \left(rac{O_k}{\mathfrak{p}_k^n}
ight)^{ imes}\cong rac{O_k^{ imes}}{1+\mathfrak{p}_k^n}.$$

If $\omega_n \in G_n \setminus G_{n-1}$ then ω_n is a uniformiser for k_n .

If *M* is any finite abelian extension of *k* then $M \subseteq k_n k_m^{(ur)}$ for some *n*, *m*, where $k_m^{(ur)}$ is the unique unramified extension of *k* of degree *m*.

We now use the Lubin-Tate formal group F attached to f to construct some extensions of p-power degree with interesting properties.

For our *p*-power degree extension L/K we choose $K = k_m$ and $L = k_{m+n}$ for *n*, $m \ge 1$.

Then L/K is a totally ramified abelian extension of degree q^n with Galois group $G \cong (1 + \mathfrak{p}_k^m)/(1 + \mathfrak{p}_k^{m+n})$.

Its ramification breaks (with multiplicity) are

$$t_1 = \dots = t_f = q^m - 1,$$

 $t_{f+1} = \dots = t_{2f} = q^{m+1} - 1,$
 \vdots
 $t_{(n-1)f+1} = \dots = t_{nf} = q^{m+n-1} - 1.$

Its inverse different is $\mathcal{D}_{L/K}=\mathfrak{P}_L^{-w}$ with

$$w=(q-1)(n-m)q^{n-1}\equiv 0\pmod{q^n}.$$

Since $L = K(\omega_{m+n})$ where ω_{m+n} is a root of $[\pi^n](X) = \omega_m$, the formal group construction gives a Hopf order H^* over O_K so that O_L is a free H^* -module of rank 1.

One can check from the ramification numbers that the associated order $\mathcal{A}_{L/K}$ of \mathcal{O}_L in K[G] is local if and only if $p-1 < (q-1)e_{k/\mathbb{Q}_p}$, i.e. $k \neq \mathbb{Q}_p$.

If $n \leq m$ then $H^* = A_{L/K} \subseteq K[G]$, so O_L is free over its associated order in K[G].

If n > m then L/K is still a Galois extension but H^* is *not* contained in K[G], so O_L is free over its associated order in some non-classical Hopf-Galois structure. But $t_1 = q^m - 1 \not\equiv -1 \pmod{q^n}$, so O_L is *not* free over its associated order $\mathcal{A}_{L/K}$ in K[G] (provided $k \neq \mathbb{Q}_p$).

Conclusion: We have constructed a family of Galois extensions L/K where O_L is not free over its associated order in K[G] but is free over its associated order in some other Hopf-Galois structure.