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§1: The set-up:
Recall from Daniel’s talk last week:

Theorem 1

Let K be a finite extension of Qp and let L/K be a finite extension which
is H-Galois for some cocommutative K -Hopf algebra H.
[Motivating case: H = K [G ] with L/K Galois and G = Gal(L/K ).]

Let
AH := {h ∈ H : h · OL ⊆ OL}

be the associated order of OL in H.

If AH is a Hopf order, then OL is AH -tame and is therefore AH -free.

Moreover, if AH is a local ring (not necessarily commutative), then OL is
AH -Galois.

In this talk, we investigate the consequences of AH being a Hopf order
and give construct some examples.
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§2: Hopf orders in K [Cp]

Fix notation: K is a finite extension of Qp with valuation vK , valuation
ring OK , and pK is the maximal ideal of OK .

Let π = πK be a uniformiser of K , so vK (π) = 1 and pOK = πeOK where
e = eK/Qp

is the ramification index.

Now let G = 〈σ〉 = Cp and write X = σ − 1 ∈ OK [G ].

Expanding (X + 1)p = σp = 1, we find

X p + pX p−1 +

(
p

2

)
X p−2 + · · ·+ pX = 0.

Also
∆(X ) = σ ⊗ σ − 1⊗ 1 = X ⊗ 1 + 1⊗ X + X ⊗ X .

So OK [X ] is a Hopf order in K [G ].

This is not surprising since OK [X ] = OK [G ]!
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Now let i ∈ Z and write

Xi = π−iX , Hi = OK [Xi ].

For which i is Hi a Hopf order?

For Hi to be a finitely generated OK -module, we need Xi to satisfy a
monic equation over OK . Now

X p
i + pπ−iX p−1

i +

(
p

2

)
π−2iX p−2

i + · · ·+ pπ−(p−1)iXi = 0.

So Hi is an order in K [G ]⇔ p−(p−1)i ∈ OK ⇔ i ≤ e/(p − 1).

For Hi to be a Hopf order, we also need ∆(Xi ) ∈ Hi ⊗OK
Hi . But

∆(Xi ) = Xi ⊗ 1 + 1⊗ Xi + πiXi ⊗ Xi .

So ∆(Hi ) ⊂ Hi ⊗OK
Hi ⇔ i ≥ 0.

Thus we get a family of Hopf orders Hi ⊂ K [G ] for 0 ≤ i ≤ be/(p − 1)c.
Then Hi is a local ring unless i = e/(p − 1).
In fact, these are the only Hopf orders in K [Cp] (proof omitted).
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We now investigate when these Hopf orders Hi occur as associated orders.

Let L/K be a Galois extension of degree p, with ramification break t:

t = max{j : (σ − 1) · OL ⊆ pj+1
L }

Then −1 ≤ t ≤ ep/(p − 1), and p - t unless (p − 1) | e and
t = ep/(p − 1).

If t > 0 then L/K is totally (and wildly) ramified.
If t = −1 then L/K is unramified.

If t > 0 then, for any ρ ∈ L×, we have

vL
(
(σ − 1) · ρ

) {
= vL(ρ) + t if p - vL(ρ),

> vL(ρ) + t if p | vL(ρ).

We consider 4 cases:
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(i) t > 0 and t ≡ −1 (mod p), say t = pi − 1 with 1 ≤ i ≤ e/(p − 1).

Pick any ρ ∈ L with vL(ρ) = p − 1.

Recall that Xi = π−iK (σ − 1). So

vL(X s
i · ρ) = p − 1− s for 0 ≤ s ≤ p − 1, and vL(X p

i · ρ) ≥ 0.

Thus the elements X s
i · ρ form an OK -basis for OL.

So OL is a free module over the Hopf order Hi = OK [Xi ] on the generator
ρ.

Also, OL is a Galois Hi -extension.

(ii) For t = −1, L/K is unramified and OL is free over H0 = OK [G ], and is
a Galois H0-extension.

[So all our Hopf orders Hi occur as associated orders of valuation rings
OL.]
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(iii) If t = pi − a for 2 ≤ a ≤ p − 1 then

Hi−1 ( AL/K ( Hi

so AL/K is not a Hopf order.

Then OL is free over AL/K if and only if (p − a) divides p − 1, unless
t + 1 ≥ ep/(p − 1).

(iv) If t = pe/(p − 1), we have ζp ∈ K and L = K (α) with α = p
√
π for

some choice of π.

Then OL is free over Hi for i = e/(p − 1) on the generator

1 + α + α2 + · · ·+ αp−1.

Hi is the maximal order, and it is not a local ring.

OL is Hi -tame but not Hi -Galois.

Summary: OL is H-Galois for some Hopf order H ⇔ t ≡ −1 (mod p).

The only other case where the associated order is a Hopf order is when
t = ep/(p − 1).
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§3: A weak congruence for the ramification breaks
From now on, L/K is a totally ramified Galois extension of degree pn.
Then G = Gal(L/K ) has ramification filtration

Gj = {σ ∈ G : (σ − 1) · x ∈ pj+1
L for all x ∈ OL}.

The ramification breaks (in the lower numbering) are the t with
Gt+1 6= Gt .
We will list these “with multiplicity”: t1 ≤ t2 ≤ · · · ≤ tn where

ti = max{j : |Gj | > pn−i}.

Then the inverse different

D−1L/K = {x ∈ L : TrL/K (xOL) ⊆ OK}

is determined by the ramification breaks: D−1L/K = p−wL where

w = (pn − 1)(t1 + 1) +
n−1∑
i=1

(ti+1 − ti )(pn−i − 1) ≡ −(tn + 1) (mod p).
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Theorem 2

Suppose that AL/K = H is a local Hopf order in K [G ]. Then

ti ≡ −1 (mod pi ) for 1 ≤ i ≤ n.

Proof.
Use induction on n. We have just seen this for n = 1.

Let N C G with |N| = p and N ≤ Gtn . Let F = LN .

Since N is chosen to be compatible with the ramification filtration, L/F
has ramification break tn and F/K has ramification breaks t1, . . . , tn−1.
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Corresponding to the exact sequence of groups

1→ N → G → G/N → 1,

we have an exact sequence of Hopf orders over OK :

OK → H1 → H → H → OK

where H1 = H ∩ K [N] and H is the image of H in K [G/N].

Then H1 and H are still local, and OL, OF are respectively tame for the
Hopf orders H1 ⊗OK

OF = AL/F and H = AF/K .

Applying the induction hypothesis to F/K , we get ti ≡ −1 (mod pi ) for
1 ≤ i ≤ n − 1.

Applying the induction hypothesis to L/F , we get tn ≡ −1 (mod p), say
tn = pm − 1. We need to strengthen this to a congruence mod pn.
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Now the ideal of integrals in H1 is

I (H1) = a−1
∑
σ∈N

σ

for some (integral) OK -ideal a.

Hence the ideal of integrals in H1 ⊗ OF is

I (H1 ⊗ OF ) = a−1OF

∑
σ∈N

σ

and TrL/F (OL) = aOF .

Now D−1L/F = P−wL where w = (p − 1)(tn + 1) = (p − 1)pm, so

p
(p−1)m
F = TrL/F (OF ) = aOF .

But F/K is totally ramified of degree pn−1, so (p − 1)m ≡ 0 (mod pn−1).
Then pn−1 | m and

tn = pm − 1 ≡ −1 (mod pn).
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Corollary

If AL/K is a local Hopf order, then D−1L/K = a−1OL for some OK -ideal a.

Proof.

We have D−1L/K = p−wL where

w = (t1+1)(pn−1)+
n−1∑
i=1

(ti+1−ti )(pn−i−1) ≡ −(tn +1) ≡ 0 (mod pn),

since ti ≡ −1 (mod pi ) for each i . So D−1L/K = p
−w/pn
K OL.

Remark

In particular this means that D−1L/K and OL are isomorphic as

OK [G ]-modules, so they both have associated order AL/K and (by
Theorem 1) both are free over AL/K .

Nigel Byott (University of Exeter) Hopf Orders as Associated Orders Pisa, 15 July 2021 13 / 30



§4: A strong congruence for the ramification breaks

Theorem 3

Let L/K be a totally ramified abelian extension of degree pn with
D−1L/K = a−1OL for some OK -ideal a.

Suppose that D−1L/K (or, equivalently, OL) is free over its associated order

A in K [G ], and that A is a local ring. (A does not have to be a Hopf
order.)

Then the ramification numbers ti of L/K satisfy

ti ≡ −1 (mod pn) for 1 ≤ i ≤ n.

Note the modulus is now pn, not just pi as before!
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Proof. Let A have unique maximal ideal M, and let D−1 := D−1L/K be free
over A with generator y .

For any α ∈ A,
A · (α · y) = D−1 ⇔ α 6∈ M.

Let y1, y2, . . . ypn be any OK -basis of D−1.

Then we can write yj = αj · y for αj ∈ A, and α1, . . . , αpn is an OK -basis
of A.

So there is some j with αj 6∈ M and hence A · yj = D−1.

We will assume for a contradiction that some ti 6≡ −1 (mod pn), and
construct a basis y1, . . . , ypn for D−1 over OK so that none of the yj
satisfy A · yj = D−1. This will show D−1 cannot be free over A.

To show that A · yj 6= D−1, it is enough to find βj ∈ A so that
βj · yj ∈ πD−1 but βj 6∈ πA. We can do this without determining A.
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Write D−1 = p−wL with w ≡ 0 (mod pn). Then

TrL/K (D−1) = OK and TrL/K (p−1L D
−1) = p−1K .

So
TrL/K (πD−1) = pK and TrL/K (πp−1L D

−1) = OK .

Choose z ∈ πp−1L D
−1 with TrL/K (z) = 1.

Then vL(z) = pn − w − 1.

Now choose z1 = z , z2, . . . zpn with vL(zj) = pn −w − j . Then the zj form
an OK -basis for D−1.

We adjust this to get a nicer basis:

y1 = z1, yj = zj − TrL/K (zj)z1 for j ≥ 2.

Then TrL/K (yj) = 0 for j ≥ 2, and we still have vL(yj) = pn − w − j .
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For each j , we need to find βj ∈ A\πA with βj · yj ∈ πD−1.

For j ≥ 2, take

βj = β := π−w/p
n
∑
σ∈G

σ.

Then β · yj = π−w/p
n
TrL/K (yj) = 0.

But β · y1 = π−w/p
n
. Since D−1 = π−w/p

n
OL, we have β ∈ A but

β 6∈ πA, as required.

It remains to find a β1.
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Recall some ti 6≡ −1 (mod pn). Let ti = pnm + a with 1 ≤ a ≤ pn − 2,
and take

β1 = π−m(σ − 1) where σ ∈ Gti\Gti+1.

So for any y ∈ L×,

vL(β1 · y)

{
= vL(y) + a if p - vL(y),

> vL(y) + a if p | vL(y).

Thus β1 ∈ AL/K .

Now
vL(β1 · y1) ≥ vL(y1) + a = pn − w − 1 + a ≥ pn − w ,

so β1 · y1 ∈ πD−1.

On the other hand

vL(β1 · ypn−1) =
(
pn − w − (pn − 1)

)
+ a ≤ pn − w − 1,

so β1 · ypn−1 6∈ πD−1, and β1 6∈ πAL/K .
Hence none of the yj is a generator for D−1 over A, and D−1 cannot be
free.
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Summary so far:

If K is a finite extension of Qp and L/K is a totally ramified Galois
extension of degree pn such that AL/K is a Hopf order then OL is free over
AL/K .

Moreover, if AL/K is a local ring, then OL is AL/K -Galois, D−1L/K = a−1OL

for some OK -ideal a, and the ramification numbers of L/K (counted with
multiplicity) satisfy

ti ≡ −1 (mod pn).
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§5: Formal Groups and Hopf Orders

We want a way of creating Hopf orders.

In geometry, the ring of regular functions on an algebraic group is a Hopf
algebra. In more sophisticated language, a commutative Hopf algebra is
the representing algebra for an affine group scheme.

This suggests we should start with some kind of group operation “defined
over OK”.
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Definition

A (one-dimensional) formal group over OK is a power series
F (X ,Y ) ∈ OK [[X ,Y ]] such that

(i) F (X ,Y ) ≡ X + Y mod deg 2;

(ii) F (F (X ,Y ),Z ) = F (X ,F (Y ,Z ));

(iii) F (X , 0) = X , F (0,Y ) = Y ;

(iv) F (X ,Y ) = F (Y ,X );

(v) there exists a series i(X ) ∈ OK [[X ]] with i(0) = 0 such that

F (X , i(X )) = 0.

(In fact, (iv) and (v) follow from (i)–(iii).)

For any algebraic extension E of K , (pE ,+F ) is an abelian group, where

x +F y = F (x , y).

This makes sense as K (x , y) is complete. The identity element is 0 and
the inverse of x is i(x).
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Examples

(i) The additive formal group

F (X ,Y ) = X + Y :

this gives the usual addition.

(ii) The multiplicative formal group

F (X ,Y ) = X + Y + XY = (1 + X )(1 + Y )− 1 :

this gives the usual operation of multiplication on 1 + pE ⊆ O×E , shifted to
make the identity element 0.

Definition

A homomorphism φ : F → G between formal groups is a power series
φ(X ) ∈ OK [[X ]] such that φ(X ) = 0 and φ(F (X ,Y )) = G (φ(X ), φ(Y )).

This gives a homomorphism φ : (pE ,+F )→ (pE ,+G ) for each E .
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If F (X ,Y ) is a formal group over OK , we can make OK [[T ]] into a
(completed) Hopf algebra as follows.

Let U = T ⊗ 1 and V = 1⊗ T . Define continuous algebra maps ∆, ε, inv

∆ : OK [[T ]]→ OK [[U,V ]] = OK [[U]]⊗̂OK [[V ]], T 7→ F (U,V );

ε : OK [[T ]]→ OK , T 7→ 0;

inv : OK [[T ]]→ OK [[T ]], T 7→ i(T ).

These satisfy the usual Hopf algebra axioms.

(Note that 1 + UV + U2V 2 + · · · is an element of OK [[U]]⊗̂OK [[V ]] but
not of OK [[U]]⊗ OK [[V ]].)
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Now suppose φ(X ) = a1X + a2X
2 + · · · is a homomorphism F → G such

that, for some d , we have

aj ∈ pK for 1 ≤ j ≤ d − 1, ad 6∈ pK .

By the Weierstrass Preparation Theorem, φ(X ) = f (X )u(X ) where f (X )
is a monic polynomial of degree d with f (X ) ≡ X d (mod pK ), and
u(X ) ∈ OK [[X ]]×.

Then the quotient OK -algebra H = OK [[X ]]/(φ) ∼= OK [[X ]]/(f ) is a free
OK -module of rank d , and ∆ induces a comultiplication H → H ⊗OK

H,
making H into an OK -Hopf algebra of rank d .

H represents ker(φ): for each algebraic extension E of K , the OK -algebra
homomorphisms H → L correspond to x ∈ pE with φ(x) = 0, and these
form a group under +F .
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Now let c ∈ pK and write S = OK [[T ]]/(φ(T )− c). We have a
well-defined function

S → S ⊗OK
H, T 7→ F (T ⊗ 1, 1⊗ X ).

This makes S into a Galois H-object and so into a Galois H∗-extension,
where H∗ is the dual OK -Hopf order to H.

If vK (c) = 1 then φ(T )− c ∈ OK [[T ]] is “morally” an Eisenstein
polynomial of degree d , and S = OL for some totally ramified extension
L/K of degree d .

So we have created an extension L/K for which OL is free over some
commutative, cocommutative Hopf order H∗. The underlying K -Hopf
algebra H∗ ⊗ K is a group algebra if and only if ker(φ) ⊆ K .
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If we apply this to the multiplicative formal group

F (X ,Y ) = X + Y + XY

and the (shifted) pn-power homomorphism

φ(X ) = (1 + X )p
n − 1 = pnX + · · ·+ X pn ,

then H∗ ⊆ K [Cpn ]⇔ ζpn ∈ K .

If vK (c) = 1 we get S = OK [ pn
√
c], which is the valuation ring in

L = K ( pn
√
c), and is free over the Hopf order H∗.

For example, if we start with K = Qp(ζp) and take c = ζp − 1, we get
L = Qp(ζpn+1) which is certainly a Galois extension of K , but H∗ gives
some non-classical Hopf-Galois structure if n > 1.
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§6: Lubin-Tate formal groups

Change of notation: Start with a finite extension k of Qp with residue field
of order q = pf . Let π = πk be a uniformiser of k. Write p for the
maximal ideal in the valuation ring of the algebraic closure of k .

Let f (X ) ∈ Ok [[X ]] satisfy

f (X ) ≡ πX mod deg 2;

f (X ) ≡ X q (mod pk).

[f (X ) = πX + X q would do.

If k = Qp and π = p, we could take
f (X ) = (1 + X )p − 1 = pX + · · ·+ X p. ]

Lubin and Tate proved there is a unique formal group F (X ,Y ) over Ok

such that f (X ) is an endomorphism of F .

In fact, there is an isomorphism of rings Ok → End(F ) given by a 7→ [a]
with [π](X ) = f (X ) and [2](X ) = F (X ,X ), etc.
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For each n ≥ 1, the set

Gn = {x ∈ p : [πn](x) = 0}

is an Ok -module isomorphic to OK/p
n
k . In particular, it is an abelian group

of order qn.

The field
kn = k(Gn)

is a totally ramified Galois extension of degree qn−1(q − 1) and

Gal(kn/k) ∼=
(
Ok

pnk

)×
∼=

O×k
1 + pnk

.

If ωn ∈ Gn\Gn−1 then ωn is a uniformiser for kn.

If M is any finite abelian extension of k then M ⊆ knk
(ur)
m for some n, m,

where k
(ur)
m is the unique unramified extension of k of degree m.
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We now use the Lubin-Tate formal group F attached to f to construct
some extensions of p-power degree with interesting properties.

For our p-power degree extension L/K we choose K = km and L = km+n

for n, m ≥ 1.

Then L/K is a totally ramified abelian extension of degree qn with Galois
group G ∼= (1 + pmk )/(1 + pm+n

k ).

Its ramification breaks (with multiplicity) are

t1 = · · · = tf = qm − 1,

tf+1 = · · · = t2f = qm+1 − 1,

...

t(n−1)f+1 = · · · = tnf = qm+n−1 − 1.

Its inverse different is DL/K = P−wL with

w = (q − 1)(n −m)qn−1 ≡ 0 (mod qn).
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Since L = K (ωm+n) where ωm+n is a root of [πn](X ) = ωm, the formal
group construction gives a Hopf order H∗ over OK so that OL is a free
H∗-module of rank 1.

One can check from the ramification numbers that the associated order
AL/K of OL in K [G ] is local if and only if p − 1 < (q − 1)ek/Qp

,
i.e. k 6= Qp.

If n ≤ m then H∗ = AL/K ⊆ K [G ], so OL is free over its associated order
in K [G ].

If n > m then L/K is still a Galois extension but H∗ is not contained in
K [G ], so OL is free over its associated order in some non-classical
Hopf-Galois structure. But t1 = qm − 1 6≡ −1 (mod qn), so OL is not free
over its associated order AL/K in K [G ] (provided k 6= Qp).

Conclusion: We have constructed a family of Galois extensions L/K
where OL is not free over its associated order in K [G ] but is free over its
associated order in some other Hopf-Galois structure.
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