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Abstract

We apply the perspective provided by Hopf-Galois theory to some classical notions of Galois
module theory. The notions of integrals and Hopf orders are introduced, as well as the notion
of associated order in an arbitrary Hopf-Galois structure of a finite extension of fields. For a
commutative ring R, we shall study a generalization of the tame condition for an R-algebra S
which is an H-module algebra for some finite cocommutative R-Hopf algebra H. Finally, we
prove different results concerning logical relations between different properties of S involving
H, for instance H-free, H-tame and H-Galois.

The main reference for this lecture is [Chi00, Chapters 1 and 3]

1 First notions

1.1 Integrals
Let R be a commutative ring and H an R-Hopf algebra. Recall that if M is a left H-module, the
submodule fixed by H is

MH = {m ∈M |hm = ε(h)m for all h ∈ H}.

Since H has the trivial left and right H-module structures, this inspires:

Definition 1.1. • A left integral in H is an element θ ∈ H such that hθ = ε(h)θ for every
h ∈ H.

• A right integral in H is an element θ ∈ H such that θh = ε(h)θ for every h ∈ H.

With the previous notation, the set of left integrals is HH . We will denote it by I (notation in
[Chi00]) or by

∫ l
H

(notation in [Und15]). Now, the trivial left H-module structure of H is given
by the product in its underlying algebra, so I is a two-sided ideal of H:

h′(hθ) = (h′h)θ = ε(h′h)θ = ε(h′)ε(h)θ = ε(h′)hθ =⇒ hθ ∈ I,

h′(θh) = (h′θ)h = ε(h′)θh =⇒ θh ∈ I.

Example 1.2. 1. Let H = R[G] for a finite group G. Then

θ =
∑
σ∈G

σ

is a left and right integral of R[G]. Moreover, it generates the modules of left and right
integrals (for a detailed proof, see [Und15, Proposition 3.2.4]).

2. Let H = R[G]∗ =
∑
σ∈GReσ, where eσ(τ) = δστ for every σ, τ ∈ G. Since R[G] is always

cocommutative, H is commutative, so the modules of left and right integrals coincide. Let us
prove that e1 is an integral. Indeed, for σ ∈ G,

eσe1 = δ1σe1 = ε(eσ)e1.

As every f ∈ R[G]∗ is an R-linear combinations of the eσ, fe1 = ε(f)e1. Again, e1 generates
the module of integrals of R[G]∗ (see [Und15, Proposition 3.2.5]).

1



Recall that H acts on H∗ by means of

x · f =
∑
(f)

f(1)〈x, f(2)〉.

In particular, if H = R[G], R[G] acts on R[G]∗ by σ · eτ = eτσ−1 , whence R[G]∗ = R[G]e1 and
e1 is a generating integral of R[G]∗. On the other hand, R[G]∗ acts on R[G] by eσ · τ = δσττ . We
deduce then that R[G] = R[G]∗

(∑
σ∈G σ

)
, where the last element is a generating integral of R[G].

More generally (see [Chi00, (3.3)]):

Theorem 1.3 (Larson-Sweedler). If H is a finite R-Hopf algebra, then H∗ ∼= H ⊗R
∫ l
H∗ as R-

modules.

Since H∗∗ ∼= H, this theorem also gives H ∼= H∗ ⊗R
∫ l
H
. Assume that R is local. Then H and

H∗ are free of the same rank, so we have the following:

Corollary 1.4. If R is local,
∫ l
H

is R-free of rank one.

1.2 Hopf orders
Let R be a Dedekind domain with fraction field K of characteristic zero. Let A be a finite (i.e,
finitely generated and projective) K-Hopf algebra. We want to define consistently an R-module H
in A that inherits its K-Hopf algebra structure so that it becomes an R-Hopf algebra. This notion
is the one of Hopf order.

Since R is included in K, A has also R-module structure. Let H be a finite R-submodule of A.
The inclusion H ↪→ A induces a map

ν : H ⊗R H −→ A⊗K A∑
i ai ⊗R bi −→

∑
i ai ⊗K bi,

which is an one-to-one R-linear homomorphism. To prove this, we may assume that R is local,
otherwise we would work in the completions. Now, if {hi}ni=1 is anR-basis ofH, then {hi⊗Rhj}ni,j=1

is an R-basis of H ⊗R H, which by means of ν is mapped to the K-basis

{hi ⊗K hj | 1 ≤ i, j ≤ n}

of A⊗K A. Then, ν is injective and H ⊗R H can be identified with a subset of A⊗K A.
Under these considerations, it makes sense to consider the restrictions

µ : A⊗K A −→ A  µ|H⊗RH : H ⊗R H −→ A,
ι : K −→ A  ι|R : R −→ A,

∆: A −→ A⊗K A  ∆|H : H −→ A⊗K A,
ε : A −→ K  ε|H : H −→ K,
λ : A −→ A  λ|H : H −→ A.

Note that ι(R) ⊆ H by definition.

Definition 1.5. We say that H is an R-Hopf order in A if K⊗RH = A (so H is an R-order in
A) and H has R-Hopf algebra with the operations induced from those on A, that is, µ(H⊗RH) ⊆ H,
∆(H) ⊆ H ⊗R H, ε(H) ⊆ R and λ(H) ⊆ H.

Example 1.6. If A = K[G] for a finite group G, then R[G] is an R-Hopf order in A. This is an
immediate consequence of how the operations of the K-Hopf algebra K[G] are defined. Actually,
this is the minimal one.

Proposition 1.7. [Chi00, (5.2)] Let H be an R-Hopf order in K[G]. Then, R[G] ⊆ H.

Proof. We may assume that R is local, so H is finitely generated and free. Then H∗ is a finite
R-Hopf order in (K[G])∗. Now, (K[G])∗ is commutative, so it has a unique maximal R-order. On
the other hand, it has K-basis {eσ}σ∈G, where eσ(τ) = δστ , which is the basis dual to the basis of
K[G] formed by the elements of G. Moreover, it is easy to check that this is a basis of primitive
pairwise orthogonal idempotents of (K[G])∗. Thus, the unique maximal order is (R[G])∗, with
basis {eσ}σ∈G. Since H is an R-order, H∗ ⊆ (R[G])∗, whence R[G] ⊆ H.
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When A = K[G], the condition of Hopf order reduces to check that the comultiplication restricts
correctly.

Proposition 1.8. [Tru09, Proposition 2.3.12] Let R be a Dedekind domain such that char(K) = 0,
where K = Frac(R). Let G be a finite group of order n and let H be an R-order in K[G]. If
∆H(H) ⊆ H ⊗R H, then H is an R-Hopf order.

1.3 Associated orders in Hopf algebras
Let L/K be an A-Galois extension of fields, where K is the fraction field of a Dedekind domain R
and char(K) = 0. Let S be the integral closure of R in L. When L/K is Galois and A = K[G] is
the classical Galois structure, we consider the module structure of S over its associated order

AK[G] = {λ ∈ K[G] |λS ⊆ S}.

In a complete analogy, for an arbitrary Hopf Galois structure, we have:

Definition 1.9. The associated order of S in A is defined as

AA = {α ∈ A |αS ⊆ S}.

Its algebraic properties are pretty similar as the ones for the classical case. Clearly AA is an
R-algebra and actually it is an R-order in A. However, it is not necessarily an R-Hopf algebra.
For instance, if L/Q is an abelian extension with group G which is wildly ramified at some odd
prime, then AK[G] is not an R-Hopf algebra (see [Chi87, Corollary 5.6].

Proposition 1.10. [Chi00, (12.5)] If L/K is A-Galois and H is an R-order in A such that S is
H-free, then H = AA.

Proof. Let t be a generator of S as H-module. Tensorizing by K, t is a generator of L as A-module.
Let α ∈ AA. Since αt ∈ S, there is some h ∈ H such that α · t = h · t. This equality in particular
holds in L = A · t, so uniqueness of coordinates gives α = h ∈ H.

Example 1.11. [Chi00, (12.6)] We consider the extension L = Q(
√

2) of K = Q. Then L/K is
Galois with group G = {1, σ}, where σ(

√
2) = −

√
2. The ring of integers of L is S = R[

√
2], where

R = Z. We know by definition that L/K is tamely ramified at a prime p if and only if p does not
divide the ramification index of L/K at that prime. An equivalent definition is that the image of
the trace tr : S −→ R is not divisible by p. Since tr(a + b

√
2) = 2a, tr(S) = 2R and we see that

L/K is wildly ramified at 2. By Noether’s theorem, S is not locally free as R[G]-module, so it is
not R[G]-free. However, S is AK[G]-free. Indeed, the elements

e1 =
1 + σ

2
, e−1 =

1− σ
2

are primitive pairwise orthogonal idempotents of K[G] and then R[e1, e−1] is the maximal R-order
in K[G]. In particular, AK[G] = R[e1, e−1]. Let α = 1 +

√
2. Then,

e1(α) = 1, e−1(α) =
√

2,

so S = AK[G]α and hence S is AK[G]-free.

2 H-tame extensions
We know that a Galois extension of p-adic fields L/K is tamely ramified if p does not divide
the ramification index e(L/K). In this section we generalize this notion to extensions of rings
by rewriting the previous definition in a suitable way so that it is natural to replace the classical
Galois structure by an arbitrary one.

Assume that L/K is an extension of local fields with valuation rings S and R. Then, L/K
is tamely ramified if and only if the trace map tr : S −→ R is surjective. But the definition of
the trace map is tr(a) = θ(a), where θ =

∑
σ∈G σ is a left integral in K[G]. Now, recall that θ

generates
∫ l
K[G]

. Then, L/K is tamely ramified if and only if
∫
K[G]

S = R. This motivates the
following definition:
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Definition 2.1. Let R be a commutative connected ring and let H be a cocommutative R-Hopf
algebra which is finite as R-module. Let S be a finite R-algebra and assume that S is an H-module
algebra with SH = R. We say that S is a tame H-extension of R or H-tame if:

1. rankR(S) = rankR(H).

2. S is a faithful H-module.

3.
∫ l
H
S = R.

The first two conditions are compatibility conditions which in the Galois case are assured.
Actually, they always hold when S and R are valuation rings of an A-Galois extension L/K of
local fields. The condition of R being connected (i.e, it has no non-trivial idempotents) is required
so that projective modules have a well defined rank. Indeed, the rank is a function defined at
Spec(R) which is locally constant, and if R is connected, this function is constant.

On the other hand, the third condition means that
∫ l
H
S is as large as possible, because of the

following result:

Proposition 2.2. [Chi00, (13.2)] Let H be a finite cocommutative R-Hopf algebra and let S be
an H-module algebra. Then

∫ l
H
S ⊆ SH .

Proof. Let ξ =
∑
i θisi ∈

∫ l
H
S, where θi ∈

∫ l
H

and si ∈ S for all i. Given h ∈ H,

hξ = h

(∑
i

θisi

)
=
∑
i

(hθi)si =
∑
i

ε(h)θisi = ε(h)ξ.

Thus, ξ ∈ SH .

3 Linking notions

3.1 Maximal order implies freeness
Proposition 3.1. [Tru09, Proposition 2.5.5] Let K be a p-adic field with valuation ring R and
let A be a commutative separable K-algebra. Let M be the maximal R-order in A and let S be a
finite R-module which is also a M-module. Suppose that S ⊗R K is H-free of rank one. Then, S
is M-free of rank one.

In particular if L/K is A-Galois and AA is the maximal order in A, then S is AA-free of rank
one.

3.2 H-tame implies H-free
Theorem 3.2. [Chi00, (13.5)] Let R be a local ring. Let H be a finite cocommutative R-Hopf
algebra and S a finite R-algebra which is an H-module algebra. If S is H-tame, then S is H-
projective.

Proof. Let I = Rθ be the module of left integrals of H. Since S is H-tame, then θS = R, so there
exists z ∈ S such that θz = 1. Since S is R-projective and H is R-free, the tensorized H-module
H ⊗R S (that is, H acts on H ⊗R S with the product in the first factor) is projective. In order to
prove that S is H-projective, we prove it is a direct summand of H⊗RS, which by H-projectiveness
is a direct summand of an H-free module.

Let µ : H⊗S −→ S be the R-linear map defined by µ(h⊗s) = hs, which clearly is an H-module
homomorphism. If we prove that this map splits, then H ⊗ S = Ker(µ) ⊕ S as desired. Let us
define ν : S −→ H⊗RS by ν(s) =

∑
(θ) θ(1)⊗z(λ(θ(2))s). We need to prove that ν is an H-module

homomorphism and µ ◦ ν = IdS .
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First, we prove that ν is an H-module homomorphism. Let h ∈ H, s ∈ S. Then,

h · (ν(s)) = h

∑
(θ)

θ(1) ⊗ z(λ(θ(2))s)


=
∑
(θ)

(hθ(1))⊗ z(λ(θ(2))s)

= (1⊗ z)

∑
(θ)

(hθ(1))⊗ λ(θ(2))

 (1⊗ s)

Now, we note that
∑

(θ)(hθ(1))⊗ λ(θ(2)) = (h⊗ 1)((1⊗ λ)∆(θ)). By [Chi00, (3.7)], this coincides
with ((1⊗ λ)∆(θ))(1⊗ h) =

∑
(θ) θ(1) ⊗ λ(θ(2))h. Then,

h(ν(s)) = (1⊗ z)

∑
(θ)

θ(1) ⊗ λ(θ(2))h

 (1⊗ s)

=
∑
(θ)

θ(1) ⊗ z(λ(θ(2))(hs))

= ν(hs),

which proves that ν is an homomorphism of H-modules.
Finally, we show that µ ◦ ν is the identity. Let s ∈ S. Then,

µ ◦ ν(s) =
∑
(θ)

θ(1)(z(λ(θ(2))s))

=
∑
θ

(θ(1)z)(θ(2)(λ(θ(3))s))

=
∑
θ

(θ(1)z)(ε(θ(2)) s)

=
∑
(θ)

((θ(1)ε(θ(2)))z) s

= (θz) s = s,

as we wanted.

Theorem 3.3 (Schneider [Sch77]). Let R be a local domain with fraction field K = Frac(R) of
characteristic zero. Let H be a finite cocommutative R-Hopf algebra and let P and Q be finite left
H-modules. If K ⊗R P ∼= K ⊗R Q as K ⊗R H-modules, then P ∼= Q as H-modules.

Proposition 3.4. [Chi00, (13.6)] Let L/K be an A-Galois extension of p-adic fields and call S
and R the corresponding valuation rings. Let H be an R-Hopf order in A such that H ⊆ AA and
S is H-projective. Then, S is H-free (in particular, H = AA).

Proof. Let us check that we can apply Schneider theorem. Since K is p-adic, char(K) = 0. On the
other hand, H is an R-Hopf order in A, and hence a finite cocommutative R-Hopf algebra. Since
L/K is A-Galois, L ∼= A as A-modules. But L = K ⊗R S and A = K ⊗RH, so Schneider theorem
gives that S ∼= H as H-modules, that is, S is H-free.

Joining Theorem 3.2 and Proposition 3.4, we obtain:

Corollary 3.5. Let L/K be an A-Galois extension of p-adic fields and call S and R the corre-
sponding valuation rings. Let H be an R-Hopf order in A such that H ⊆ AA and S is H-tame.
Then, S is H-free (in particular, H = AA).
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3.3 Hopf order implies freeness
Theorem 3.6. [Chi00, (13.3)] Let L/K be an A-Galois extension of local fields, let R be the
valuation ring of K and let S be the integral closure of R in L. If AA is an R-Hopf order in A,
then S is AA-tame.

Proof. Since R is local, I =
∫ l
AA

is R-free of rank one. Let θ be an R-generator of I. Since L/K
is A-Galois, LA = K. Then we can prove easily that SAA = R. By Proposition 2.2, θS ⊆ SAA ,
whence θS is an ideal of R. If π is an uniformizer of R, this means that θS = πiR for some i ≥ 0,
so θ

πiS = R. In particular, θ
πi ∈ AA.

Let us check that θ
πi is actually a left integral of AH . Indeed, given α ∈ AA, since θ is a left

integral, θ
πiα =

εAA
(θ)

πi α. Now,

εAA
(θ) = εAA

(
θ

πi
πi
)

= εAA

(
θ

πi

)
εAA

(πi) = εAA

(
θ

πi

)
πi,

and joining this with the last expression gives θ
πiα = εAA

( θπi )α, as desired.
Then, we have proved that θ

πi ∈ I, while θ is a generator of I as R-module. Then, i = 0 and
θS = R, so S is AA-tame.

Corollary 3.7. If AA is an R-Hopf order, then S is AA-free.

3.4 H-Galois implies H-tame
To prove this implication, we will need Morita theory. Let R be a commutative ring with unity and
H a finite cocommutative R-Hopf algebra. Let S be an H-Galois extension and let E = EndR(S).
Then, there is an equivalence of categories (see [Chi00, (2.13)]):

RM −→ EM
N 7−→ S ⊗R N

,

EM −→ RM
M 7−→ MH .

Proposition 3.8. [Chi00, (14.3)] For any left E-module M , we have

MH ∼=
∫ l

H

M.

In particular, M ∼= S ⊗
∫ l
H
M as left E-modules.

Proof. Since S is H-Galois, by the proof of [Chi00, (2.13)], we have the isomorphism

MH ∼= HomE(S,M)

for any E-module M . Now, we claim that

HomE(S,M) ∼= HomE(S,E)⊗E M.

Indeed, if we fixM , the equality holds for S = E, hence for a free E-module, hence for a projective
E-module. Then it holds for S.

Joining the two isomorphisms above, we have

MH ∼= HomE(S,E)⊗E M.

In particular, for M = E we have
EH ∼= HomE(S,E).

Then,
MH ∼= EH ⊗E M.

It is enough to prove that EH ∼=
∫ l
H
E, because in that case

MH ∼=
∫ l

H

E ⊗E M ∼=
∫ l

H

M.
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Let us prove EH ∼=
∫ l
H
E. Since S is H-Galois, E ∼= H ⊗ S as left H-modules. Then, the last

isomorphism is equivalent to (H⊗RS)H ∼=
∫ l
H

(H⊗RS). Now, if P =
∑n
i=1Rvi is a free R-module,

then

(H ⊗ P )H =

(
n∑
i=1

Hvi

)H
=

n∑
i=1

∫ l

H

vi =

n∑
i=1

∫ l

H

(Hvi) =

∫ l

H

(H ⊗ P ),

so the isomorphism holds for any free R-module. Since S is R-projective, it is the direct summand
of a free R-module, and then it also holds for S.

Finally, using the previous equivalence,

M ∼= S ⊗MH ∼= S ⊗
∫ l

H

M.

Proposition 3.9. [Chi00, (14.1)] Let S be an H-Galois extension of R. Then, S is H-tame.

Proof. Since S is H-Galois, rankR(S) = rankR(H) and S is H-faithful. On the other hand,
applying Proposition 3.8 to the E-module M = S, we have

∫ l
H
S = R. Then S is H-tame.

3.5 H-free implies H-tame
Corollary 3.10. [Chi00, (14.5)] Let S be an H-module algebra with SH = R and S ∼= H∗ as
H-modules. Then, S is H-tame.

Proof. Since H∗ is faithful as H-module and S ∼= H∗ as H-modules, S is faithful as H-module.
On the other hand, rankR(S) = rankR(H∗) = rankR(H). In order to check that S is H-tame, it
remains to prove that

∫ l
H
S = R. The image of

∫ l
H
S under the isomorphism S ∼= H∗ is

∫ l
H
H∗. Now,

H∗ is the trivial H-Galois extension, so by Proposition 3.9, H∗ is H-tame. Hence,
∫ l
H
H∗ = R,

proving that
∫ l
H
S = R.

In particular, when R is a local ring, we have that H ∼= H∗ as H-modules. Then:

Corollary 3.11. Assume that R is a local ring. If S is H-free, then S is H-tame.

3.6 Equivalence between notions
If the Hopf algebra is local, then the three notions studied in this lecture are equivalent. Namely:

Theorem 3.12. [Chi00, (14.7)] Let R be a local ring, let H be a local cocommutative R-Hopf
algebra with module of integrals Rθ and let S be a finite R-algebra which is also a faithful H-
module algebra. The following are equivalent:

1. S is H-tame.

2. S is H-free.

3. S is H-Galois.

If so, any element t ∈ S satisfying θt = 1 is a free generator of S as H-module.
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