Anna Rio Universitat Politècnica de Catalunya-Barcelona Tech

Induced Hopf Galois

Skew left braces With multiplicative group isomorphic to G

Yang Baxler Equations

Group theoretical

G-stable regular Subgroups of Perm(G)

Hopf algebra Hopf action

Hopf Galois structures of Galois field extensions with Galois group isomorphic to G

> Local or global fields Arithmetic questions

Almost classical N $C \lambda_{G,G'}(G)$ (Prop 4.1 C-P)

Group cheoretical Hopf-Calois G group, G'a core-free subgroup $\lambda_{G,G'}: G \rightarrow \operatorname{Perm}(G/G')$ left action on left cosets

A Hopf-Galois structure for (G,G') is N a regular subgroup of Perm(G/G') normalized by $\lambda_{G,G'}(G)$

Equivalently, N normal complement of $\lambda_{G,G'}$ (G')

(G,G) almost classical iff G'has normal complement Normal complements -> Almost classical structures $= \lambda_{G,G'} ()$

$\mathbb{J}_1 = \langle r \rangle \simeq \mathbb{Z}_8$

Almost classical

256

W of H

then the map Fix:

is injective and inclusion-reversing.

 $N^{opp} = Cent_{Perm}(G/G')(N)$

Hopf-Galois "correspondence"

GREITHER AND PAREIGIS

- 5.1. THEOREM [2, Theorem 7.6]. If we define for a k-sub-Hopf algebra
 - $\operatorname{Fix}(W) = \{ x \in K | \mu(w)(x) = \varepsilon(w) \cdot x \text{ all } w \in W \},\$
 - $\{W \subset H \text{ sub-Hopf algebra}\} \rightarrow \{E \mid k \subset E \subset k, E \text{ field}\}$

Thm 5.2 Almost classical \implies \exists Hopf Galois structure such that also surjective

Group checretical formulation

is injective and inclusion reversing.

Theorem 2.3. If K/k is a Hopf Galois extension with Hopf algebra $H = \widetilde{K}[N]^G$ for a regular subgroup N of Perm(G/G'), then the map $\mathcal{F}_N: \{Subgroups \ N' \subseteq N \ stable \ under \ \lambda(G)\} \longrightarrow \{Fields \ E \mid k \subseteq E \subseteq K\}$ $N' \longmapsto K^{\widetilde{K}[N']^G}$

> Publ. Mat. 60 (2016), 221–234 DOI: 10.5565/PUBLMAT_60116_08

ON THE GALOIS CORRESPONDENCE THEOREM IN SEPARABLE HOPF GALOIS THEORY

TERESA CRESPO, ANNA RIO, AND MONTSERRAT VELA

Theorem 3.4. Let $p \ge 5$ be a prime number, d a nontrivial divisor of p - 1. Let K/k be an extension of degree pd such that its Galois closure \widetilde{K} has Galois group over k the Frobenius group $F_{p(p-1)}$. We can endow K/k with a non almost classically Galois Hopf Galois structure of type C_{pd} such that the Galois correspondence is one-to-one. We can also endow K/k with a Hopf Galois structure of type F_{pd} , which is almost classically Galois exactly when gcd((p-1)/d, d) = 1 and such that the Galois correspondence is always one-to-one.

Corollary 3.5. There exist Hopf Galois extensions which are not almost classically Galois but may be endowed with a Hopf Galois structure such that the Galois correspondence is one-to-one.

Theorem 5.4. There exist separable Hopf Galois extensions K/k such that the Galois correspondence is not bijective for any of its Hopf Galois structures.

Classical

A CONTRACTOR OF THE OWNER

Canonical Non Classical

Cyclic (Induced)

Related? Hopf Galois structures

(G,G') Hopf Galois structures for E/K (G,1) Hopf Galois structures for L/K (G',1) Hopf Galois structures for L/E

Related? Hopf Galois structures

(G,G') Hopf Galois structures for E/K Regular subgroups of Perm(G/G') normalized by $\lambda_{G,G}(G)$ (G,1) Hopf Galois structures for L/K Regular subgroups of Perm(G) normalized by $\lambda_G(G)$ (G',1) Hopf Galois structures for L/E Regular subgroups of Perm(G') normalized by $\lambda_G(G')$

 $l: Perm(G/G') \times Perm(G') = Perm(J) \times Perm(G') \rightarrow Perm(G')$

 $l(\sigma, \tau)(g) \in \operatorname{Perm}(G)$ 1 morphism, 1 injective

Normal complements

$\iota(\sigma,\tau)(g) = \iota(\sigma,\tau)(xy) = \sigma(x)\tau(y)$

Due to unique decompositions 9 = xy, x in J, y in G'

$G \rightarrow Perm(J) \times Perm(G)$ $g = \chi_{y}$ $(\lambda_{f}(\chi)\Phi_{y}, \lambda_{G}(y))$

Action of element gazy xin J yin G'

For a in G $ga = xyx_ay_a = xyx_ay^{-1}yy_a = xx_a^y yy_a$

 $\Phi_y \in Aul(J)$ $x_{y} \cdot x_{1} \leftarrow = x_{y} \times x_{1} - 1 \leftarrow = x_{1} \times y \leftarrow 1$ Action on cosels

Theorem If N_1 is a Hopf Galois structure for (G,G') and N_2 is a Hopf Galois structure for (G',1), then $N = i(N_1 \times N_2)$ is a Hopf Galois structure for (G,1)Corollary If G= J X G', then (G,1) has Hopf Galois structures of Lype J x C

(Almost classical for (G,G') and classical for (G',1))

Induced Hopf Galois structures of G

of type $Z_8 \times Z_2$ and structures of type $D_8 \times Z_2$ Dihedral group of order 8 has Hopf Galois structures of type $Z_4 \times Z_2$ and structures of type $V_4 \times Z_2$

- tures of cyclic type $C_6 = C_3 \times C_2$.
- structures of type $C_n \times C_2$.
- tures of type $A_n \times C_2$.
- tures of type $V_4 \times C_3$.
- groups occur as Galois groups over \mathbb{Q} .

Dihedral group of order 16 has Hopf Galois structures

• Galois extensions with Galois group $S_3 = C_3 \rtimes C_2$ have induced Hopf Galois struc-

• Galois extensions with Galois group $D_{2n} = C_n \rtimes C_2$ have induced Hopf Galois

• Galois extensions with Galois group $S_n = A_n \rtimes C_2$ have induced Hopf Galois struc-

• Galois extensions with Galois group $A_4 = V_4 \rtimes C_3$ have induced Hopf Galois struc-

• Galois extensions with Galois group a Frobenius group $G = H \rtimes G'$, where H is the Frobenius kernel and G' a Frobenius complement, have induced Hopf Galois structures of type $H \times G'$. Let us note that Sonn [17] has proved that all Frobenius

T. Crespo et al. / Journal of Algebra 457 (2016) 312-322

in G. Then K/F is Hopf Galois with group N_2 and F/k is Hopf Galois with group N_1 . Moreover the Hopf Galois structure of K/k given by N is induced by the Hopf Galois structures given by N_1 and N_2 .

Split structures which are induced

Theorem 9. Let K/k be a finite Galois field extension, n = [K : k], G = Gal(K/k). Let K/k be given a split Hopf Galois structure by a regular subgroup N of S_n such that $N = N_1 \times N_2$ with N_1 and N_2 G-stable subgroups of N. Let $F = K^{N_2}$ be the subfield of K fixed by N₂ and let us assume that $G' = \operatorname{Gal}(K/F)$ has a normal complement

317

(G,G) Hopf Galois structures for E/K Regular subgroups of Perm(J) normalized by $\lambda_{G,G}(G)$

(G',1) Hopf Galois structures for L/K (or L/E) Regular subgroups of Perm(G') normalized by $\lambda_G(G')$

(G=JXG',1) induced Hopf Galois structures for L/K

"Induced" Hopf algebra

 $H_1 = L[N_1]^G$

 $H_2 = L^J [N_2]^{G'}$

Induced Hopf Galois Structures and their Local Hopf Galois Modules

Daniel Gil-Muñoz, Anna Rio

Proposition 5.5. Let $N_1 \subseteq \text{Perm}(J)$ be regular and normalized by $\lambda_c(G)$ and let $N_2 \subseteq \text{Perm}(G/J)$ be regular and normalized by $\lambda^{G/J}(G/J)$. Then $N = \iota(N_1 \times N_2) \subseteq \text{Perm}(G)$ gives the induced Hopf Galois structure of L/K. Therefore, the corresponding Hopf algebras are $H = L[N]^G$, $H_1 = L[N_1]^G$ and $\overline{H} = F[N_2]^{G/J}$. Then,

Proof.

- $H = L[N]^G = L[\iota(N_1 \times N_2)]$
 - $= (L[\iota(N_1 \times 1)] \otimes_K L[\iota])$

Since the action of conjugation by $\lambda(G)$ on $\operatorname{Perm}(G)$ factors through $\operatorname{Perm}(J) \times \operatorname{Perm}(G/J)$ as conjugation by $\lambda_c(G)$ on the first component and conjugation by $\lambda^{G/J}(G/J)$ on the second one, we have

$$H = L[N_1]^G \otimes$$

To appear in Pub Mat

 $H = H_1 \otimes_{\kappa} \overline{H}.$

$$_{2})]^{G} = \left(L[\iota(N_{1} \times 1) \times \iota(1 \times N_{2})] \right)^{G}$$

$$(1 \times N_2)]\big)^G = \big(L[N_1] \otimes_K L[N_2]\big)^G$$

 $\otimes_K F[N_2]^{G/J} = H_1 \otimes \overline{H}$

(G,G') Hopf Galois structures for E/KRegular subgroups of Perm(J) normalized by $\lambda_{G,G}(G)$

(G',1) Hopf Galois structures for L^{\prime}/K (or L/E) Regular subgroups of Perm(G') normalized by $\lambda_G(G')$

(G=JXG',1) induced Hopf Galois structures for L/K

"Induced" Hopf action

 $H_1 = L[N_1]^G$

$\rho_{H_1}: H_1 \to \operatorname{End}_K(E)$

 $H_2 = L^J [N_2]^{G'}$

 $\rho_{H_2}: H_2 \to \operatorname{End}_K(L^J)$

Proposition 5.8. With the previous notations for induced Hopf Galois structures, let $\rho_H : H \to$ $\operatorname{End}_K(L), \, \rho_{H_1}: H_1 \to \operatorname{End}_K(E) \text{ and } \rho_{\overline{H}}: \overline{H} \to \operatorname{End}_K(F) \text{ be the representations obtained from the}$ respective Hopf actions. We have $L = E \otimes_K F$, $H = H_1 \otimes \overline{H}$ and

$$\rho_H =
ho_{H_1} \otimes
ho_{\overline{H}}$$

That is, for $w \in H_1$, $\eta \in \overline{H}$, $\alpha \in E$ and $z \in F$, $(w \otimes \eta) \cdot (\alpha \otimes z) = (w \cdot \alpha) \otimes (\eta \cdot z)$. *Proof.* As $w \in L[N_1]^G$ and $\eta \in F[N_2]^{G/J}$, let us write

$$w = \sum_{i=1}^{r} c_i n_i^{(1)}, \, c_i \in L, \qquad \eta = \sum_{j=1}^{u} d_j n_j^{(2)}, \, d_j \in F,$$

where $N_1 = \{n_i^{(1)}\}_{i=1}^r$ and $N_2 = \{n_j^{(2)}\}_{j=1}^u$. Recall that $\iota(n_i^{(1)}, n_j^{(2)})(Id_G) = n_i^{(1)}(Id_J)n_j^{(2)}(Id_{G'})$. Then:

$$\begin{split} (w \otimes \eta) \cdot (\alpha \otimes z) &= \left(\sum_{i=1}^{r} \sum_{j=1}^{u} c_{i} d_{j} \iota \left((n_{i}^{(1)}, n_{j}^{(2)}) \right) \right) \cdot (\alpha \otimes z) \\ &= \sum_{i=1}^{r} \sum_{j=1}^{u} c_{i} d_{j} \iota \left((n_{i}^{(1)}, n_{j}^{(2)}) \right)^{-1} (\mathrm{Id}_{\mathrm{G}}) (\alpha z) \\ &= \sum_{i=1}^{r} \sum_{j=1}^{u} c_{i} d_{j} \iota \left(((n_{i}^{(1)})^{-1}, (n_{j}^{(2)})^{-1}) \right) (\mathrm{Id}_{\mathrm{G}}) (\alpha z) \\ &= \sum_{i=1}^{r} \sum_{j=1}^{u} c_{i} d_{j} (n_{i}^{(1)})^{-1} (\mathrm{Id}_{\mathrm{J}}) (\alpha) (n_{j}^{(2)})^{-1} (\mathrm{Id}_{\mathrm{G}'}) (z) \\ &= \left(\sum_{i=1}^{r} c_{i} (n_{i}^{(1)})^{-1} (\mathrm{Id}_{\mathrm{J}}) (\alpha) \right) \left(\sum_{j=1}^{u} d_{j} (n_{j}^{(2)})^{-1} (\mathrm{Id}_{\mathrm{G}'}) (z) \right) \\ &= \left(\sum_{i=1}^{r} c_{i} n_{i}^{(1)} \right) \cdot \alpha \left(\sum_{j=1}^{u} d_{j} n_{j}^{(2)} \right) \cdot z = (w \cdot \alpha) \otimes (\eta \cdot z). \end{split}$$

$$\rho_H: H \to \operatorname{End}_K(L)$$

$$\left(\sum_{n \in \mathbb{N}} c_n n\right) x = \sum_{n \in \mathbb{N}} c_n n^{-1}(\overline{1}_G)(n)$$

suitable choice of basis, matrices of ρ_H are Kronecker products of matrices of ρ_{H_1} and ρ_{H_2}

Classical

can be written as a direct product $G = J \times G'$. Let $E = L^{G'}$ and $F = L^J$. Then:

- 1. E/K and F/K are Galois extensions.
- 2. L = EF and $E \cap F = K$.
- isomorphism.
- 4. $K[G] = K[J] \otimes_K K[G'].$
- E and K[G'] on F.

Proposition 1.2. Let L/K be a finite Galois extension with Galois group G and assume that G

3. E/K and F/K are linearly disjoint, namely the canonical map $E \otimes_K F \longrightarrow EF$ is a K-

5. The Galois action of K[G] on L is the Kronecker product of the Galois actions of K[J] on

Theorem 1.3. Let L/K be a finite Galois extension with Galois group $G = J \rtimes G'$. Let $E = L^{G'}$ and $F = L^J$. Then:

- 1. E/K and F/K are Hopf Galois extensions.
- 2. L = EF and $E \cap F = K$.
- 3. E/K and F/K are linearly disjoint.

Let E/K be H_1 -Galois and let L/E be H_2 -Galois. We consider the corresponding induced Hopf Galois structure of L/K. Let H be its associated Hopf algebra. Then:

4. $H = H_1 \otimes_K \overline{H}$, where \overline{H} is the Hopf algebra of the Hopf Galois structure of F/K such that $H \otimes_K E = H_2$ (see Proposition 5.3).

on F.

Induced structures mimic classical direct products

5. The Hopf action of H on L is the Kronecker product of the Hopf actions of H_1 on E and \overline{H}

Number fields, pradic fields...

Freeness of ring of inlegers over associated order? $\mathfrak{A}_H = \{h \in H : h \mathcal{O}_L \subseteq \mathcal{O}_L\}$

Proposition 1.4. Let K be the quotient field of a Dedekind domain \mathcal{O}_K and let E/K, F/K be finite Galois extensions. Put L = EF and suppose that E/K and F/K are arithmetically disjoint. Then:

- 1. $\mathfrak{A}_{L/F} = \mathfrak{A}_{E/K} \otimes_{\mathcal{O}_K} \mathcal{O}_F$ and $\mathfrak{A}_{L/K} = \mathfrak{A}_{E/K} \otimes_{\mathcal{O}_K} \mathfrak{A}_{F/K}$.
- 2. If there exists some $\gamma \in \mathcal{O}_E$ with $\mathcal{O}_E = \mathfrak{A}_{E/K} \cdot \gamma$, then $\mathcal{O}_L = \mathfrak{A}_{L/F} \cdot (\gamma \otimes 1)$. If there also exists $\delta \in \mathcal{O}_F$ with $\mathcal{O}_F = \mathfrak{A}_{F/K} \cdot \delta$, then $\mathcal{O}_L = \mathfrak{A}_{L/K} \cdot (\gamma \otimes \delta)$.

Theorem 1.5. Let K be the quotient field of a principal ideal domain \mathcal{O}_K , L/K a finite separable Hopf Galois extension and \mathcal{O}_L the integral closure of \mathcal{O}_K in L. Assume that the structure is an induced one and its Hopf algebra is $H = H_1 \otimes_K H$. If E/K and F/K are arithmetically disjoint then the following statements hold:

- 1. $\mathfrak{A}_H = \mathfrak{A}_{H_1} \otimes_{\mathcal{O}_K} \mathfrak{A}_{\overline{H}}$.
- 2. If \mathcal{O}_E is \mathfrak{A}_{H_1} -free and \mathcal{O}_F is $\mathfrak{A}_{\overline{H}}$ -free, then \mathcal{O}_L is \mathfrak{A}_H -free. Moreover, an \mathfrak{A}_H -generator of \mathcal{O}_L is the product of an \mathfrak{A}_{H_1} -generator of \mathcal{O}_E and an $\mathfrak{A}_{\overline{H}}$ -generator of \mathcal{O}_F .

Classic

Byott-Lett

Columns of a certain matrix give basis for the associated order

Linearly disjoint $O_L = O_E \otimes_{\mathcal{O}_F} O_F$ Induced matrix is the Kronecker product of factors matrices

Associated order is product of associated orders