[Ref: Childs book, Chapter 2]
GOAL: DESCRIBE THE CLASSIFICATON OF HOPFGAROIS STRUCTRES (HES). on a finite and separable field extension.

1. RECAP

Def: L / K finite and separable; H finite cocommutative K-thpf-agebre. L / K is H-Galois if L is an H-mod-efg and

$$
\begin{aligned}
I: L \otimes H & \longrightarrow E_{d}(L) \\
C \otimes h & \longmapsto(m \mapsto C h(m))
\end{aligned} \text { is bigective. }
$$

BASE CHANGE. L / K finite \& sep. $F \supseteq k$ finite.

1) $L / k H$-Galois $F \otimes$ is $F \otimes L / F F \otimes H$-Golors
2) Suppose $L H$-mod-alg over K

$$
\begin{aligned}
& (F \otimes L) / F F \otimes H-G o b o s \\
& \text { with action induced by } H \sim L \quad \Rightarrow L / K \quad H \text {-Golois }
\end{aligned}
$$

GALOIS DESCENT.
[lemma 10.24, Notes] $\delta / k H$-Galois; $k M \frac{s \otimes_{k}}{\stackrel{\simeq}{\rightleftarrows}}$ End $_{k}(s) M$
In particular for $M \in \sum M \leadsto M_{\varepsilon} M$
Remark: V / K Galois $\Rightarrow\left(\operatorname{End}_{k}(L), 0\right) \stackrel{\Im}{\simeq}(L \otimes K G, \#)$ as agebnes ΔD the $E_{n} d_{k}(L)$-mod are the $L \otimes \in k G$-mod

Def: L / K Golors, G; A-vec .sp.
A is a G-compatible L-ven. δ if:

- A is a $K G-\bmod$
- $\delta: L \otimes A \longrightarrow A$ (scalar milt.) is G-equivoriant, that is,

PRoP:

1) A is a $L \otimes K G$-mod IFF A is a G-compatible L-vec.sp.
2) $f: A \rightarrow B$ is a $(\otimes K G$-mod hon IFF f is a G-equivariant L-linear map

THERFORE FOR A-vec. $s p$, f L-linear:

- A descends $\Leftrightarrow A$ is a lokk-mod
$\Leftrightarrow G$ ACTS on A COMPATBly WITt THE LIve. sp. STeuci.
(In this case $A \simeq L \otimes A^{G}$, where $A^{G} K$-vec. 8 .).
- f DESCENDS $\Leftrightarrow f$ is a $L \otimes K G$-mod hor.
$\Leftrightarrow f$ IS $A-$ EquIVARIANT L-lUNAR MAP.
(In this case $f=$ ido, where $f_{0}: A^{G} \rightarrow B^{G} K$-linear)

WE can define G-coupatible algebras
G-compatible Hops agetores
IN THE sarre way: $K G$-mod $+G$-action compatible with stricire maps,
2. GP THEOREM

Basics.
Def: X finite set;
$N \leq \operatorname{Perm}(X)$ is Regular if two ot the following hold:

1) $|N|=|x|$
2) $N \curvearrowright x$ is trausitury
3) $\operatorname{std}_{N}(x)=1_{N} \quad \forall x \in X$
the space $X E: E$ field, x finite set.

$$
X E=\bar{E} \text {-vector space } \operatorname{Map}(x, E)=\{f: x \rightarrow \bar{E}\}
$$

Basis for $X E \quad\left\{u_{x}\right\}_{x \in X}$, duet by

$$
\begin{aligned}
& u_{x}: x \longrightarrow E \\
& y \mapsto u_{x}(y)=\delta_{x, y}=1 \begin{array}{l}
0 \text { if } x \neq y \\
1 \text { if } x=y
\end{array} ~
\end{aligned}
$$

XE E-alg. with componarienge multipl.

- The elements of the form " u_{x} for some $x \in X$ " are PRIMITIVE
- The u_{x} 's are ORTHOGONALS and IDEMPOTENTS:

$$
\left(u_{x} u_{z}\right)(y)=u_{x}(y) u_{z}(y)=\delta_{x, y} \delta_{z, y}
$$

If $x \neq z \Rightarrow u_{x} u_{z}=0$
othenurse $x=z \quad\left(u_{x} u_{x}\right)(y)=u_{y}^{2}(y)=\delta_{x, y}^{2}=\delta_{x_{2} y}=u_{x}(y)$
$\leadsto u_{x} u_{z}=\left\{\begin{array}{ll}0 & \text { if } x \neq z \\ u_{x} & \text { IF } x=z\end{array} \leadsto \begin{array}{c}\text { the } u_{x} \text { 's ere a bors of } \\ \text { primitive orthogond idemp }\end{array}\right.$ primitive athogand idempotents.

TOWARDS THE CLASSIFICATION THEOREM
THEOREM (SPECIAL CASE): E field, X finite set

1) $X E / E H$-Golois $\Rightarrow H=E N$ whare N is (identified with) a regular Subgraup of Perm (X).
2) N rog subgr. of $\operatorname{lerm}(X) \Rightarrow X E / E \quad E N$-Golois.

P($\delta K E T C H)$:
1). $H=E N, N=\{$ grouplike elem. of $H\}$

$$
\nu_{i}: H^{*} \xrightarrow{\simeq} \underbrace{E x-x E}_{n} \xrightarrow{\pi_{i}} E \quad \text { nomornouph. of } \bar{E}-a_{g}
$$

Recall [Remark 9.36, Notes]:
$f \in H^{*}=\operatorname{Hom}_{k}(H, K)$ is Grouplike IFF f is an algebra hon.
$\rightarrow U^{\prime}$'s ore gramphke elements of $W^{* *}$
N Isthe Groul of AU Groupuke El..S of H

- $N \leq \operatorname{Perm}(X)$ if $x+y$ mod-dy. pgrapluce

$$
\Rightarrow \forall x \in x \quad \exists y \in x \text { s,t. } v\left(u_{x}\right) \mathbb{F} x=y \text { (ux) }=u_{y}
$$

$$
\begin{aligned}
& H \simeq H^{* *} \\
& N \longleftrightarrow n=\left\{v_{i}\right\}_{i=1, \neg n} \\
& \nu_{i} \text { a grouphreelin.s. } \\
& \begin{aligned}
E_{n^{2}-\text { times }} & \simeq x E \times X=X E
\end{aligned} \\
& \begin{array}{l}
n^{2} \text {-times } \\
n=(x)
\end{array} \underset{1}{\sim} \times \otimes_{\bar{E}} X E \\
& X \bar{E} / \pm H-\operatorname{cob} \text { is } \triangle \simeq X \bar{E} \otimes_{E} H^{*} \\
& \Rightarrow x \tilde{E}^{2} H^{*}-\operatorname{cosect} \simeq \underbrace{H^{*} x--x H^{*}}_{n-\text { tines }} \\
& \Rightarrow H_{\substack{*} \underbrace{E x \cdots \times E}_{n-+i n e s}}^{\text {or } E-\text { afdoren }}
\end{aligned}
$$

$N \longrightarrow \operatorname{Perm}(x)$
$\nu \longmapsto \delta: x \mapsto y$ of $\nu(x)=y$

- one can check that n is acso regucar AND 2) Holds.

GP THEOREM.
SETUP:

Def: the translation map is

$$
\begin{aligned}
\lambda: G & \longrightarrow \operatorname{Perm}(x) \\
\sigma & \longmapsto \lambda_{6}: \overline{2} \longmapsto \overline{6 z}
\end{aligned}
$$

lemma: λ is ingective
THEOREM (GP):
Assume ($\$$); then

$$
\{H G S \text { on } L / K\} \longleftrightarrow\left\{\begin{array}{l}
\text { REGUAR SGR } N \leq \operatorname{Perm}(X) \\
\text { NoRMAlIZED By } \lambda(G)
\end{array}\right\}
$$

Q (SKETCH):

- A hGS ON U/K IDENTIFIES a REGULAR SGR NORMALIZED by $\lambda(G)$

$$
\begin{aligned}
& \text { U/K } H \text {-GaloIs borechage } \underset{\sim}{\sim} \text { ERL/E E®H - GoloIs } \\
& \leadsto \alpha: E \otimes H \curvearrowright \bar{\tau} \Delta l \text { as mod-alg } \\
& \rightarrow \phi: E D L \simeq X E=\operatorname{Map}(G / G 1, \bar{E}) \\
& e \otimes \ell \mapsto(\bar{\sigma} \mapsto e \sigma(l))
\end{aligned}
$$

D isan csonorphism of E-ag. G-modules $C \equiv K G$ - \bmod)
$G \curvearrowright E \otimes L$ is gicon by G-acteran on the $\mathcal{1}^{\text {BT }}$ coup.

$$
G \curvearrowright X E \text { is given by } \sigma \cdot f=\sigma f: \bar{\zeta} \longmapsto \sigma\left(f\left(\overline{\sigma^{-1} \sigma}\right)\right)
$$

$a: E \otimes H \curvearrowright X E$ by spricit ast $E \otimes H \simeq E N$ N regulon gg of $\operatorname{Perm}(x)$

CLAIM: $G \curvearrowright E \otimes H$ translates to $G \curvearrowright E N$ given by

$$
\begin{aligned}
& \sigma \cdot(\text { eע })=\sigma(e)\left(\lambda_{6} \nu \lambda^{-1}\right) \\
& \text { - G৯XE } \sigma\left(u_{\sigma}\right)(\bar{\rho})=\sigma\left(u_{\bar{\sigma}}\left(\overline{\sigma^{-1} \rho}\right)\right)=\sigma\left(\delta_{\bar{\delta}}, \overline{\sigma^{-1} \beta}\right) \\
& u_{\overline{\gamma \gamma}}(\bar{\rho})=\delta_{\bar{\gamma}, \bar{\rho}} \stackrel{l}{=} \delta_{\bar{\gamma}, \overline{\sigma^{\prime} \rho}} \\
& \leadsto \sigma\left(u_{\bar{\sigma}}\right)=u_{\overline{\sigma \bar{b}}}=u_{\lambda_{\sigma}(\bar{r})}
\end{aligned}
$$

- g NEN

EN is $A G-\cos ^{2} A n b u$ tut E-Hopf - ag

$$
\leadsto \quad \Delta(\sigma(\nu))=\sigma(\Delta(\nu))=\sigma(\nu \otimes \nu)=\sigma(\nu) \otimes \sigma(\nu)
$$

$\rightarrow y$ grapline
$6(\nu)$ is grouplire ($\in N$)
$\Rightarrow G$ ACTSON N
$\left.\begin{array}{ll}\alpha & \text { is } G \text {-equiveriant } \\ \phi \text { is iso of } G \text {-mod }\end{array} \right\rvert\,=D \alpha^{\prime}: B N \curvearrowright X \bar{T}$ is G-equicriant

$$
\begin{aligned}
& \sigma\left(\nu\left(u_{\bar{\sigma}}\right)\right)=\sigma\left(u_{\nu(\bar{\gamma})}\right)=u_{\lambda_{\sigma}}(\nu(\bar{\sigma})) \\
& \sigma(\nu) \sigma\left(u_{\bar{\sigma}}\right)=\underbrace{\sigma(\nu)}_{\epsilon N}\left(u_{\sigma}(\bar{\sigma})\right)=u_{\sigma(\nu)\left(\lambda_{\sigma}(\bar{\sigma})\right)} \\
& \left.\Rightarrow \lambda_{\sigma}(\nu(\bar{\sigma}))=\sigma(\nu) \lambda_{\sigma}(\bar{\sigma})\right) \\
& \Rightarrow \lambda_{\sigma} \nu=\sigma(\nu) \lambda_{\sigma}
\end{aligned}
$$

$\Rightarrow \lambda_{6} \nu \lambda_{\sigma}{ }^{-1}=\sigma(\nu)$

- $N \stackrel{\text { ReG. }}{=} \operatorname{Perm}(X)$ normallzed by $\lambda(G)$ corresponds To a unique hGS
N Requare $\begin{gathered}\text { Speculcone } \\ = \\ \\ X E\end{gathered} / \bar{E}$ is EN-Golois
$\alpha: \overline{E N} \curvearrowright$ yE as mod-alg.
- xe ls a G-comp. E-acG.
- en is a q-corp. E-wpf-ale. check!
- $\alpha: E N \curvearrowright X \bar{t}$ Si G-equworuent
$\Rightarrow \quad<\begin{aligned} & X E, E N \text { ore } E \circledast K G-\bmod \\ & \alpha \text { is a EQKG-nod hononosph. }\end{aligned}$
By gators descent we Git

$$
\leadsto(X \bar{E})^{G} / \bar{E}^{G}=K \quad 18(E N)^{G}-\text { GAcols }
$$

CCAlo : $\begin{aligned} L & \rightarrow(x \bar{i})^{G} \quad \simeq \text { deck! } \\ e & \mapsto \sum_{\sigma \in X} \sigma(e) u_{\sigma}\end{aligned}$

EXAMPLES.
(1) APpLICATION TO GALOIS EXTENSIONS
L / k Gobis, $G .(E=L, X=G)$

$$
\begin{aligned}
& \text { - } \lambda: G \longrightarrow \operatorname{Perm}(G) \text { LEFT REGUAR MA } \lambda(G) \text { is REGULAR } \\
& \text { and Norralized } \\
& \text { By ITSELF } \\
& \text { - } \rho: G \rightarrow \operatorname{Perm}(G) \quad \text { RIGHT REGULAR }
\end{aligned}
$$

$$
\begin{aligned}
& \text { By } \lambda(G) \\
& \left(\lambda_{\sigma} \rho_{\pi} \lambda_{\sigma}-1\right)(\tau)=\sigma \sigma^{-1} \tau \pi=\sigma \pi=\rho_{\bar{u}}(\tau)
\end{aligned}
$$

$$
\leadsto \lambda_{\sigma} \rho_{\pi} \lambda_{\sigma}{ }^{-1}=\rho_{\pi}
$$

WE HAVE: $\quad \lambda(G)=\rho(G) \Leftrightarrow G$ IS ABELIAN

$$
\begin{aligned}
& (\Leftrightarrow) G d_{0} \Rightarrow \lambda_{\sigma}(r)=\sigma r=r \sigma=\rho_{\sigma^{-1}}(r) \Rightarrow \lambda(G)=\rho(G) \\
& \Leftrightarrow \lambda_{\pi}=\rho_{\sigma} ; \quad \pi=\lambda_{\pi}(1)=\rho_{\sigma}(1)=\sigma^{-1} \Rightarrow \lambda_{\sigma^{-1}}=\rho_{\sigma}
\end{aligned}
$$

Suppose that $\exists \gamma, \tau \in G \delta-\Gamma . \quad \sigma \tau \neq \tau \sigma$

$$
\leadsto \rho_{\sigma}(\sigma)=3 \sigma^{-1} \neq \sigma^{-1} \sigma=\lambda_{\sigma^{-1}}(\sigma) \text {, }
$$

COR: IF Y / K is GALOLS NON ABOUAN, THEN there are at least two different hes (those corresponding $t_{0} \lambda(G)$ and $\rho(G)$)

PROP: $\rho(G)$ CORRESPONDS TO THE CHA G tICAL GALOIS STRUCTURE P : $G P \leadsto N=\rho(G) \longleftrightarrow H=(E N)^{G}=(L \rho(G))^{G}$

$$
\sum_{\sigma \in G} \sigma_{G} e^{\frac{1}{1}} u_{6} \quad(x \bar{t})^{G}=(G l)^{G}
$$

Hoff Action $K \rho(G) \curvearrowright(G l)^{G} \longleftrightarrow K G \curvearrowright L$
(2) EX of HDPF GAlOIS, NOT GALDIS, EXT.

$$
\begin{array}{ll}
k=\mathbb{Q} & =\operatorname{Gol}(\nabla / k) \\
L=\mathbb{Q}(\sqrt[3]{2}) & \text { not Galas } \\
E=\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3}\right) & G
\end{array}
$$

$$
\begin{aligned}
& \text { The ACTION HP(} \left.\mathrm{XE}^{G}\right)^{G} \longleftrightarrow G \curvearrowright L \\
& r(e) \in L
\end{aligned}
$$

$$
\begin{aligned}
& =L^{G} \rho(G) \\
& =K \rho(G)
\end{aligned}
$$

$\lambda: S_{3} \longrightarrow \operatorname{Perm}(x)=\operatorname{Perm}\left(G / \omega^{\prime}\right)=S_{3}$
SGRRS of $\operatorname{Perm}(x)$ NORMALISAD BY $l(G) \equiv S_{3}$
三 morral sores of S_{3}
A_{3} Nortar , REGuAR
(3) EX.OF EXT. NOT HOPF GAlOIS

Yk of degree 5 s.t. $G \alpha(E / k) \simeq S_{5}$

$$
\lambda: S_{5} \rightarrow S_{S}
$$

SGRPS NORTALIBD By $\lambda(G)=\delta_{5} \equiv$ NOMRAL SGRPS $\leadsto A_{S}$ NORRAL, BUT $1 F$ NoT NOGUAR ($\left|A_{\rho}\right| \neq$).
3. ByOTT TRANSLATION

Def: The Holomorpt of N is the normaker of $\lambda(N)$ in Perm(N)

$$
H_{0}(N)=[\pi \in \operatorname{Perm}(x): \pi \text { norndizes } \lambda(N)]
$$

PROP: $\quad \operatorname{Hol}(N)=\rho(N) \rtimes \operatorname{Aut}(N)$

GALDIS CASE. L / K GdaIS, G; N regulor sgr of Perm (灰) normalized by $\lambda(G) \equiv G$
Nregulor $\Rightarrow b: N \not \longrightarrow G$ BIJECTIVE and induces

$$
\begin{aligned}
i(b): \operatorname{PermG} & \longmapsto \operatorname{PermN} \\
\pi & \longmapsto b^{-1} \pi b
\end{aligned} \text { isomorphian. }
$$

Note:

- Go is regular ($\lambda(G)$ is reguloo and icb) (80)
- $\lambda(G)$ norndazes $N \Rightarrow G_{0}$ normalaes $\lambda(N)$

REGULAR SGR. N IN
reglar sgr. Go in Permn Permx Nopracuzed ~us iso To G AND WHIdt BY $\lambda(G)$ NORTAMZES $\lambda(N)$ $1 \subseteq$ HolN
general case.
THEOREM (BYOT):
$G^{\prime} \subseteq G$ finite groups, $X=G / G^{\prime}$, N group of order $|X|$.
There is a bijection between:

$$
\begin{aligned}
& N=\{a: N c \operatorname{Perm} X \text { REGULAR EMBEDDING }\} \\
& \mathcal{Y}=\left\{\beta: G \longrightarrow \operatorname{PermN} \text { EMBEDDING: } \beta\left(G^{\prime}\right)=\delta \operatorname{Stob}_{\beta(G)}\left(e_{N}\right)\right\}
\end{aligned}
$$

Moreover if α, α^{\prime} correspond to β, β^{\prime} :

1) $\alpha(N)=\alpha^{\prime}(N)$ IFF $\beta(G), \beta^{\prime}(G)$ ARE CONJUGATE BY ON EVENT IN Aut(N);
2) $\alpha(N)$ is Normanzed by $\lambda(G)$ in Perm x IFF $\beta(G) \subseteq$ fol G

$$
\begin{aligned}
& P(\text { SKETCH): } \\
& \text { - } \alpha \in \mathcal{N} \Rightarrow \alpha(N) \text { REGular } \Rightarrow \operatorname{orb}_{a(N)}(\bar{e})=\alpha(N)(\bar{e})=x \text {; } \\
& \alpha(N) \equiv N \text { and } \quad \begin{aligned}
a: N & \longrightarrow X \\
\nu & \mapsto \alpha(\nu)(\bar{e})
\end{aligned} \quad \text { BIJECTION } \\
& i(\Omega): \operatorname{Perm} N \rightarrow \operatorname{Perm} X \\
& \pi \longmapsto a \pi e^{-1} \text { is a } 180 \\
& i(a)^{-1} \lambda^{x}: G \longrightarrow \operatorname{Pem}(x) \rightarrow \operatorname{Perm}(N) \text { e } Y \\
& \delta: e N \longrightarrow Y \\
& \alpha \longmapsto i(a)^{-1} \lambda^{x}
\end{aligned}
$$

- $\beta \in Y ; \quad b: x \rightarrow N$

$$
\bar{\sigma} \longmapsto \beta(\sigma)\left(e_{N}\right)
$$

condition $\beta\left(G^{\prime}\right)=\operatorname{stab}_{\beta(G)}\left(e_{N}\right) \Rightarrow \cdot b$ well defined - binjective
\Rightarrow b bisective

$$
\begin{aligned}
i(b): \operatorname{Perm}(X) & \longrightarrow \operatorname{Perm}(N) \\
\rho & \mapsto b b^{-1}
\end{aligned}
$$

$$
\begin{aligned}
i(b)^{-1} \lambda^{N}: N & \rightarrow \operatorname{perm} N \rightarrow \operatorname{Pem}(x) \in \Delta N^{N} \\
g: Y & \longrightarrow N \\
\beta & \mapsto i^{-1} \lambda^{N}
\end{aligned}
$$

- $g \circ f=i d$ or and $f \circ g=i d g_{g}$

2) $\alpha(N)$ is normaized by $\lambda^{X}(G) \Rightarrow \beta(G)$ noudazes $\lambda^{N}(N)$

$$
\begin{aligned}
& \otimes f(\alpha)=\beta \\
&=i(\alpha)^{-1} \lambda^{x} \\
& \\
& \lambda_{6}^{x} \alpha(\nu) \lambda_{\sigma}-1 \in \alpha(N) \subseteq \operatorname{Pern}(x) \\
&\left.\Leftrightarrow i(a)^{-1}\left(\lambda_{6}^{x} \alpha \nu \nu\right) \lambda_{\sigma}^{x}-1\right) \in i(a)^{-1} \alpha(N) \subseteq \operatorname{Pem}(N)
\end{aligned}
$$

and we have:

$$
\begin{aligned}
& \left.i(a)^{-1}\left(\lambda_{\sigma} \alpha(\nu) \lambda_{\sigma}-1\right)=\left(i(0)^{-1} \lambda_{\sigma}\right)\left(i \omega_{0}\right)^{-1} \alpha(\nu)\right)\left(i(a)^{-1} \lambda_{\sigma}\right) \\
& =\beta(\sigma)(\underbrace{(i \cos }{ }^{-1} \alpha(\nu)) \beta\left(\sigma^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \beta(G) \text { mananzoss } l^{N}(N) \text { in Perm }(N)=2=2(\nu) \alpha(\mu)(\bar{e}) \\
& \Rightarrow \beta(G) \subseteq \text { HolcN } \\
& =e^{-1} \alpha(\nu \mu)(\bar{e}) \\
& =\nu \mu=\lambda_{\nu}^{N}(\mu)
\end{aligned}
$$

1) CHECK!
