Le funzioni trascendenti - Eserciziario

Chiara Spagnoli

1 Gradi vs Radianti

Esercizio 1.1 Trasforma in radianti i seguenti angoli e disegnali sulla circonferenza goniometrica

- a) $\alpha_1 = 90^{\circ}$
- b) $\alpha_2 = 120^{\circ}$
- c) $\alpha_3 = 210^{\circ}$
- d) $\alpha_4 = 135^{\circ}$
- e) $\alpha_5 = 270^{\circ}$
- f) $\alpha_6 = 335^{\circ}$
- g) $\alpha_7 = 800^{\circ}$
- h) $\alpha_8 = 15^{\circ}$

Esercizio 1.2 Dopo averli disegnati sulla circonferenza goniometrica, trasforma in gradi i seguenti angoli

- a) $\alpha_1 = \frac{3}{4}\pi$
- b) $\alpha_2 = \frac{\pi}{2}$
- c) $\alpha_3 = \frac{11}{6}\pi$
- d) $\alpha_4 = \frac{7}{6}\pi$
- e) $\alpha_5 = \frac{2}{3}\pi$
- f) $\alpha_6 = \frac{5}{4}\pi$
- g) $\alpha_7 = \frac{\pi}{4}$
- h) $\alpha_8 = \frac{80}{3}\pi$

2 Funzioni esponenziali, logaritmiche e trigonometriche: i grafici

Esercizio 2.1 Di ciascuna funzione esponenziale, disegna il grafico corrispondente. Evidenzia in ROSSO la parte di grafico POSITIVA, in BLU la parte NEGATIVA e segna in NERO gli zeri.

- a) $y = 2^x$
- b) $y = -2^x$
- c) $y = 2^{x+1}$
- d) $y = \left(\frac{1}{2}\right)^x$
- e) $y = \frac{1}{2^x}$
- $f) y = -\left(\frac{1}{2}\right)^x$
- g) $y = 10^x + 3$

Esercizio 2.2 Di ciascuna funzione logaritmica, disegna il grafico corrispondente ed evidenzia in ROSSO la parte di grafico POSITIVA, in BLU la parte NEGATIVA e segna in NERO gli zeri.

- a) $y = \log_2(x)$
- $b) y = -\log_2(x)$
- c) $y = \log_2(x+1)$
- d) $y = \log_2(x) + 1$
- e) $y = \log_{1/2}(x)$
- f) $y = -\log_{1/2}(x)$
- g) $y = \log(x 1) + 2$

Esercizio 2.3 Di ciascuna funzione trigonometrica, disegna il grafico corrispondente ed evidenzia in ROSSO la parte di grafico POSITIVA, in BLU la parte NEGATIVA e segna in NERO gli zeri.

- a) $y = \cos(x)$
- b) $y = \sin(x)$
- c) $y = \tan(x)$
- d) $y = \cos(x + \pi/2)$
- e) $y = -\sin(x)$
- f) $y = \tan(x) + \pi$

3 Conti e proprietà

Esercizio 3.1 Esegui le seguenti semplificazioni, quando possibile. Specificare quando l'espressione non ha significato:

- a) $\log_2\left(\frac{1}{2}\right)$
- b) $\log_{\frac{1}{2}}(4)$
- c) $10^{\log_{10}(10x)}$
- d) $(-3)^{\log_4(1)}$
- e) $\log_5(-5)^2$
- f) $\log_5(-5^2)$
- g) $\log_5^2(-5)$
- h) $5^{\log_{25}(2)}$
- i) $\log_4\left(\frac{1}{\sqrt{2}}\right)$
- $j) \log_3(\log_5(5))$
- k) $2^{\log_3 0}$

Esercizio 3.2 Esegui le seguenti operazioni, quando possibile. Specificare quando l'espressione non ha significato:

- a) $\log_2(3) + \log_2(6)$
- b) $2^2(2^{2\sqrt{2}})^{\sqrt{2}}$
- c) $2\log_3(6) \log_3(4)$
- d) $\left(9^{\frac{3}{4}}\right)^{-2} \frac{1}{3^3}$
- e) $\ln(4e^5) \ln(e^2) 2\ln(2)$
- $f)\ \frac{\left(10^{\sqrt{10}}\right)^{10\sqrt{10}}}{10^{10^2}}$
- g) $\log(400) 2\log(5) \frac{1}{2}\log(4)$
- h) $(5^{2-\sqrt{5}})(5^{2+\sqrt{5}}) \cdot 5^3$
- i) $\log_5(3) + 1$

Esercizio 3.3 Risolvi le seguenti espressioni goniometriche:

a)
$$\sin(120^{\circ}) + \sin(300^{\circ})$$

b)
$$\sin(\frac{\pi}{4}) - \cos(\frac{3\pi}{4})$$

c)
$$\cos(0^\circ) + \sin(90^\circ) - 3\cos(180^\circ) + 5\sin^2(270^\circ) - \sin(180^\circ) + 7\cos(270^\circ)$$

d)
$$3\tan(0^\circ) + 4\cos(30^\circ)\sin(60^\circ) - \sqrt{2}\cos(45^\circ) - 6\sin(90^\circ)$$

e)
$$\frac{1}{3}\cos(0^\circ) + \sqrt{3}\sin(60^\circ) + 4\cos(90^\circ) - \sqrt{2}3\cos(45^\circ) - 2\cos(60^\circ) - \frac{3}{2}\sin(90^\circ)$$

f)
$$\sqrt{2}\sin\left(\frac{\pi}{4}\right) + \sqrt{3}\cos\left(\frac{\pi}{3}\right) + \sin\left(\frac{4\pi}{3}\right)$$

Esercizio 3.4 Semplifica le seguenti espressioni:

a)
$$\sin(x + \frac{\pi}{3})$$

b)
$$\cos(x + \frac{\pi}{3})$$

c)
$$\sin(2x - \frac{\pi}{4})$$

d)
$$\cos(2x - \frac{\pi}{4})$$

e)
$$\cos(\frac{\pi}{4} - \frac{\pi}{3})$$

f)
$$\sin(\frac{\pi}{3} + \frac{5}{6}\pi)$$

g)
$$\cos\left(\frac{\pi}{2}\frac{11\pi}{6}\right)$$

4 Equazioni esponenziali, logaritmiche e trigonometriche

Esercizio 4.1 Risolvi le seguenti equazioni esponenziali:

a)
$$2^x = 3$$

b)
$$9^x = \frac{1}{81}$$

c)
$$25^{2-x} = 125$$

d)
$$2^x = 1$$

e)
$$25^x = \sqrt{5}$$

f)
$$\left(\frac{3}{4}\right)^{-2x} = \left(-\frac{3}{4}\right)^{-3}$$

g)
$$\left(\frac{3}{4}\right)^{-2x} = \left(-\frac{4}{2}\right)^{-2}$$

h)
$$2^{\frac{x-1}{x+2}} = 4\sqrt{2}$$

i)
$$\sqrt{2^x} \cdot \sqrt[3]{\frac{1}{2^{2-x}}} = \sqrt{2} \cdot \sqrt[3]{2}$$

Esercizio 4.2 Risolvi le seguenti equazioni logaritmiche:

a)
$$\log_2(x) = 3$$

$$b) \ln(-x) = -2$$

c)
$$10\log_2(x-2) - 5 = 0$$

d)
$$\log_2(x^2 - 4) = 1 + \log_2(4)$$

e)
$$\log(x) + \log(x - 2) = 1$$

f)
$$2\log_2(x) - \log_2(2x - 4) = 0$$

g)
$$\log(5-x) + \log(x) = \log(x-2) + \log(2)$$

h)
$$\log_2(1-x) + \log_2(-2x) = 2$$

i)
$$\ln^2(x) - \ln(x) - 2 = 0$$

Esercizio 4.3 Risolvi le seguenti equazioni goniometriche

a)
$$2\cos(x) - \sqrt{3} = 0$$

b)
$$4\sin^2(x) - 3 = 0$$

c)
$$4\cos(x+1) = 10$$

$$d) 2\sin\left(x + \frac{\pi}{4}\right) = 1$$

e)
$$2\sin^2(x) - (\sqrt{2} + \sqrt{3})\sin(x) = -\sqrt{5}$$

f)
$$\cos^2(x) - \sin(x) = 1 - \sin(x)\cos^2(x)$$

g)
$$\sin^2(x) - \sqrt{3}\sin(x)\cos(x) = 0$$

h)
$$\sin(x) + \cos(x) - 1 = 0$$

5 Esercizi a crocette

Esercizio 5.1 Le soluzioni dell'equazione $\log_3(x^3) + \log_3^3(x) = 0$:

- (A) x = 0
- (B) x = 1
- (C) x = 3
- (D) $x = 1 \lor x = 0$

Esercizio 5.2 Per quali $a \in \mathbb{R}$ è vera l'uguaglianza $\cos(x + \pi) = \sin(x + a)$:

- (A) $a = \frac{\pi}{4} \pm 2k\pi$
- (B) $a = \frac{\pi}{4} \pm k\pi$
- (C) $a = -\frac{\pi}{4} \pm 2k\pi$
- (D) $a = -\frac{\pi}{4} \pm k\pi$

Esercizio 5.3 L'angolo $\alpha = \frac{11}{3}\pi$ vale:

- (A) 660°
- (B) 1320°
- (C) 330°
- (D) Non è possibile determinar lo perchè maggiore di 2π

Esercizio 5.4 Le soluzioni dell'equazione $10^{(x-2)} \cdot 10^{(x+2)} = 100$ sono:

- (A) $x = \pm \sqrt{2}$
- (B) x = 1
- (C) x = 0
- (D) L'equazione è impossibile

Esercizio 5.5 Le soluzioni dell'equazione $\sin(x + \frac{\pi}{5}) = \frac{1}{2}$ con $x \in [0; 2\pi]$ sono :

- (A) $x = \frac{29}{30}\pi \lor x = \frac{19}{30}\pi$
- (B) $x = \frac{\pi}{6} \lor x = \frac{5}{6}\pi$
- (C) Non ci sono soluzioni in quel intervallo
- (D) $x = -\frac{\pi}{30} \lor x = \frac{19}{30} \pi$

Esercizio 5.6 Le soluzioni dell'equazione $\log_3(x+2) + \log_3(x-2) = 2$ sono :

- (A) x = 1
- (B) $x = \pm \sqrt{6}$
- (C) $x = \sqrt{13}$
- (D) $x = \pm \sqrt{13}$

Esercizio 5.7 Le soluzioni dell'equazione $(3^{x+2})^{x-2} = \frac{1}{9}$ sono :

- (A) x = -1
- (B) $x = \pm \sqrt{2}$
- (C) x = 1
- (D) $x = \pm \sqrt{6}$

Esercizio 5.8 Il valore minimo della funzione $y = \cos(x) + 3$ è :

- (A) 1
- (B) -1
- (C) 3
- (D) 2

Esercizio 5.9 L'espressione $\log(1+(x-2)^2)$ è equivalente a :

- (A) $2\log(x-1)$
- (B) $1 + 2\log(x 2)$
- (C) $2\log(x-2)$
- (D) nessuna delle precedenti

Esercizio 5.10 L'espressione $\cos(\frac{\pi}{2} + \frac{\pi}{3})$ vale :

- (A) $-\frac{\sqrt{3}}{2}$
- (B) $-\frac{\sqrt{3}}{2}$
- (C) $\sqrt{3}$
- (D) nessuna delle precedenti

Esercizio 5.11 Le soluzioni dell'equazione $\log_{10}(100^x)=12$ sono :

- (A) x = 12
- (B) $x = \pm \sqrt{10}$
- (C) x = 0
- (D) x = 6

Esercizio 5.12 Una delle soluzioni di $\cos\left(x+\frac{\pi}{4}\right)=0$ è:

- (A) x = 0
- (B) $x = \frac{\pi}{4}$
- (C) $x = -\frac{\pi}{4}$
- (D) $x = \frac{\pi}{2}$

Esercizio 5.13 Il valore massimo della funzione $y = \sin\left(x + \frac{\pi}{3}\right)$ è :

- (A) 1
- (B) -1
- (C) $\frac{\pi}{3} + 1$
- (D) $\frac{\pi}{3}$

Esercizio 5.14 L'espressione $10^{\log_{10}(x-3)+\log_{10}(x+3)}$ è equivalente a :

- (A) $x^2 9$
- (B) 2x
- (C) $9\log_1 0(x)$
- (D) nessuna delle precedenti

Esercizio 5.15 Le soluzioni dell'equazione $100^x - 10^{x+1} + 1 = 0$ sono :

- (A) $x = 5 \pm 2\sqrt{6}$
- (B) $x = \log_{10}(5 \pm 2\sqrt{6})$
- (C) $x = \log_{10}(5 + 2\sqrt{6})$
- (D) $x = \log_{10} 3$

Esercizio 5.16 Le soluzioni dell'equazione $1^{10^4+8^{23}}=10^x$ sono :

- (A) $x = 10^4 + 8^{23}$
- (B) x = 0
- (C) $x = \log_1 0(10^4 + 8^{23})$
- (D) L'equazione è impossibbile