Trovare massa e baricentro della superficie S descritta dalle condizioni $z = 1 - \sqrt{|x|^2 + y^2}$, $x^2 + y^2 \le 1$ pensata come costituita da un materiale di densità di massa δ (x, y, z) = z.

2.

Dati il campo vettoriale F (x,y,z) = (y², xy, xz) e la curva γ definita da x² + y² = 2 y, y +1 = z orientata in modo che la sua proiezione sul piano xy sia descritta in senso antiorario,

- calcolare la circuitazione di F lungo γ direttamente e poi usando il teorema di Stokes;
- calcolare l'area della superficie piana racchiusa da γ ;
- calcolare con il metodo dei moltiplicatori di Lagrange i punti di γ di massima e minima distanza dall'origine (dopo averne giustificata l'esistenza).
- 3. Si studi la convergenza della serie

$$\sum_{k=1}^{+\infty} \frac{\sqrt{2^k + 3^k}}{k^2 + k^3} x^k.$$

In particolare determinare l'insieme di convergenza puntuale ed uniforme della serie. Detta F(x) la somma della serie, dire se si tratta di una funzione derivabile all'interno dell'insieme di definizione, e dire se la derivata può essere estesa fino al bordo dell'insieme di definizione.

4. La lunghezza delle viti prodotte da un macchinario è modellizzata da una variabile aleatoria che segue la legge normale $\mathcal{N}(\mu, \sigma^2)$. La macchina viene tarata per produrre viti lunghe $\mu = 45mm$, e la deviazione standard che si registra è di $\sigma = 0.5mm$. Sapendo che il controllo qualità scarta i pezzi che si discostano da μ per più di 1mm, determinare la il valore atteso della percentuale di viti che vengono scartate.

Una seconda macchina produce in ogni unità oraria il doppio dei pezzi, è tarata come la prima, ma con una deviazione standard di $\sigma = 0.8mm$.

Qual è la probabilità che prendendo a caso un pezzo che ha superato il controllo qualità, questo risulti prodotto dalla prima delle due macchine?

4bis. (per esame 9CFU)

Data la curva descritta in forma implicita da cos $(y^2 + x)$ – sen $(y + x^2) = 1$,

- provare che in un intorno del punto (0,0) definisce una funzione $\phi(x)$ con $\phi(0) = 0$;
- trovare lo sviluppo di Taylor della funzione ϕ (x) di punto iniziale $x_0 = 0$ e grado n = 2;
- provare che ϕ (x) ha in x_0 = 0 un punto di massimo locale.