1. Equazione differenziale

$$y' = \frac{y^2}{e^x \sqrt{4 + e^{-x}}}$$

C.E.
$$x, y \in R$$

SLZ COSTANTI
$$y = 0$$

SLZ NON COSTANTI L'equazione va studiata per y > 0 e per y < 0

$$\int \frac{dy}{y^2} = \int \frac{dx}{e^x \sqrt{4 + e^{-x}}}$$

$$-\frac{1}{y} = -2\sqrt{4 + e^{-x}} + c$$

$$y = \frac{1}{2\sqrt{4 + e^{-x}} + c}$$

Soluzioni positive

Deve essere
$$\sqrt{4 + e^{-x}} > -c/2$$
.

Per $c \ge 0$ la condizione è sempre verificata : $x \in R$.

Per c < 0 : elevando al quadrato si trova $e^{-x} > (c^2/4) - 4$.

Se $-4 \le c < 0$, la condizione è sempre verificata : $x \in R$.

Se c < -4, deve essere x <
$$-\log((c^2/4)-4)$$
.

Soluzioni negative

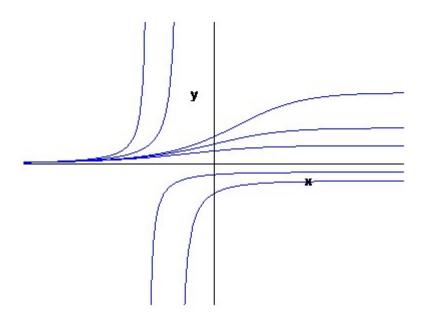
Deve essere
$$\sqrt{4 + e^{-x}} < -c/2$$
.

Per $c \ge 0$ la condizione non è mai verificata.

Per c < 0 : elevando al quadrato si trova $\,e^{-x} < \,c^{\,2}\,/\,4 - 4$.

Se $-2 \le c < 0$, la condizione non è mai verificata.

Se c < -2 , deve essere x >
$$-\log((c^2/4)-4)$$
.



2. Funzione

$$f(x) = \frac{\log |x|}{|x|} - x$$

C.E.
$$x \neq 0$$

LIMITI per
$$x \to 0$$
 f(x) $\to -\infty$

per
$$x \to \pm \infty$$
 $f(x) \to \mp \infty$

la retta y = x è asintoto ; la funzione si avvicina all'asintoto da sopra

DERIVATA
$$f'(x) = \frac{(sgn x)(1-log|x|)-x^2}{x^2}$$

Per ottenere il segno della derivata , occorre ricavare graficamente quello della funzione al numeratore.

$$\phi(x) = (sgn x)(1-log|x|) - x^2$$

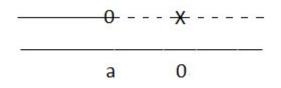
per
$$x \rightarrow 0^{\pm}$$
 $\phi(x) \rightarrow \pm \infty$

per
$$x \to \pm \infty$$
 $\varphi(x) \to -\infty$

$$\phi(1) = 0$$

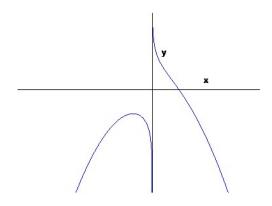
$$\phi'(x) = \frac{-2x^2 - \operatorname{sgn} x}{x}$$

segno di ϕ' (x)

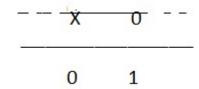


a = -1 /
$$\sqrt{2}$$

grafico di φ (x)



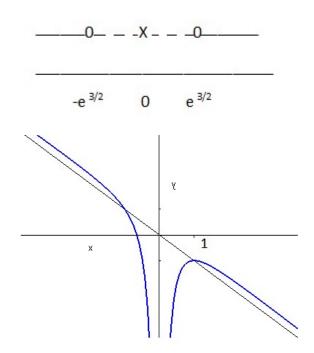
SEGNO DERIVATA f ' (x)



DERIVATA SECONDA

$$f''(x) = \frac{(sgn x)(2log|x|-3)}{x^3}$$

SEGNO DERIVATA SECONDA f" (x)



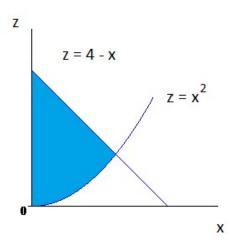
Nell'intervallo ($-\infty$, 0) la funzione è decrescente, dunque iniettiva.

Poiché f (-e) = e + (1/e), la derivata richiesta è 1/f'(-e) = -1.

3. Volume

$$x^2 + y^2 \le z \le 4 - \sqrt{x^2 + y^2}$$

La regione si ottiene ruotando attorno all'asse delle z il dominio sotto indicato:



Volume =
$$\int_{0}^{(\sqrt{17}-1)/2} 2 \pi x (4-x-x^2) dx =$$

4. Serie

Usando il criterio del rapporto è immediato verificare che il raggio di convergenza della serie di potenze è 3/2; inoltre per il criterio di Leibnitz la serie converge in 3/2; non converge invece in -3/2, perché in questo caso si riduce ad una serie armonica.

Applicando il teorema di derivazione per serie, otteniamo che F'(x) è definita da una serie geometrica :

$$F'(x) = \sum_{k=2}^{+\infty} (-1)^k \frac{3^{k-2}}{2^{k-1}} x^{k-1} = -\frac{1}{3} \sum_{k=2}^{+\infty} \left(-\frac{3}{2} x \right)^{k-1} =$$

$$= -\frac{1}{3} \sum_{m=1}^{+\infty} \left(-\frac{3}{2} x \right)^m = -\frac{1}{3} \left(\frac{1}{1 + \frac{3}{2} x} - 1 \right) = \frac{x}{2 + 3 x} .$$

Integrando, si ottiene F (x) = $\frac{x}{3} - \frac{2}{9} \log |2 + 3x| + c$, Ma essendo F (x) somma della serie di partenza, è facile vedere che F (0).

Questo si ottiene per c = (2/9) log2 e dunque F (x) =
$$\frac{x}{3} - \frac{2}{9} log \left| 1 + \frac{3}{2} x \right|$$
.