Compito 12/1/2018

Nome e cognome (stampatello)	
matricola	

PRIMA PARTE

1. (a) Al variare di $a \in \mathbb{R}$, classificare i punti critici della funzione

$$f_a(x,y) = x^2 - \log(a + x^2 + y^2), \quad a \in \mathbb{R}.$$

- (b) Determinare gli estremi vincolati della $f_a(x,y)$ dell'esercizio precedente, con a=1, soggetta al vincolo $x^2+y^2=1$.
- 2. Descrivere il dominio del campo

$$\vec{F}(x,y,z) \equiv (\frac{1}{y^2+z^2}, -\frac{2xy}{(y^2+z^2)^2}, -\frac{2xz}{(y^2+z^2)^2})$$

e dire se è semplicemente connesso. Dire anche se \vec{F} è conservativo e in caso affermativo determinarne un potenziale.

Nome e cognome (stampatello);

SECONDA PARTE

1. Sia $r := \sqrt{x^2 + y^2}$ e sia, per $\alpha \in \mathbb{R}, \ \alpha > 0$,

matricola.....

$$T_{\alpha} = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le \frac{1}{r^{\alpha}}, r \le 1\}.$$

- (a) Sia S_{α} la parte di T_{α} sottostante al piano z=3. Calcolare il volume di $S_{\alpha}.$
- (b) Dire quali sono le coordinate x,y del baricentro di S_{α} , argomentando senza fare espliciti conti.

Calcolare inoltre la coordinata z_{α} del baricentro di S_{α} . Calcolare $\lim_{\alpha \to +\infty} z_{\alpha}$.

- (c) [solo compitino] Dire per quali $\alpha \in \mathbb{R}, \ \alpha > 0$, il volume di T_{α} risulta finito.
- 2. Data la molecola con atomi uguali nei punti

$$A_0 \equiv (1, 1, 1), \ A_1 \equiv (1, -1, -1), \ A_2 \equiv (-1, 1, -1), \ A_3 \equiv (-1, -1, 1)$$

- (a) osservare che tutti i lati A_iA_j hanno la stessa lunghezza e quindi la molecola ha forma di tetraedro regolare. Descrivere geometricamente (indicandone l'asse di rotazione e/o il piano di simmetria) una delle operazioni di simmetria di tipo σ_d e una di tipo S_4 .;
- (b) determinare il carattere della rappresentazione totale Γ completando la tabella (I) allegata;
- (c) Decomporre la rappresentazione Γ nelle componenti irriducibili, utilizzando la tavola di caratteri allegata (e la tabella (I));
- (d) [solo compitino]
 - i. Dimostrare che il baricentro della molecola è l'origine (0,0,0) e che ogni simmetria conserva il baricentro (e quindi induce una simmetria lineare di \mathbb{R}^3).
 - ii. [facoltativo] Dire se la rappresentazione del gruppo di simmetria su \mathbb{R}^3 del punto precedente è irriducibile e in caso affermativo dire (giustificandolo) se risulta equivalente alla F_1 oppure alla F_2 in tabella.

Il gruppo \mathcal{T}_d ha 24 elementi E, $8C_3$, $3C_2$, $6\sigma_d$, $6S_4$ e ha 5 rappresentazioni irriducibili (A_1, A_2, B, F_1, F_2) con tavola dei caratteri

Γ_i	E	$8C_3$	$3C_2$	$6\sigma_d$	$6S_4$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B	2	-1	2	0	0
F_1	3	0	-1	1	-1
F_2	3	0	-1	-1	1

Si ricorda che il carattere della rappresentazione totale si determina considerando, $\,$

per ogni elemento del gruppo che sia una rotazione propria di angolo θ , il numero u_n di atomi che rimangono al loro posto, e moltiplicando $u_n*(2cos(\theta)+1)$; se l'elemento e' una rotazione impropria di angolo θ , si considera il numero u_n di atomi fissi e si moltiplica $u_n*(2cos(\theta)-1)$.

	E	$8C_3$	$3C_2$	$6\sigma_d$	$6S_4$	
θ						
$2cos(\theta) \pm 1$ u_n						(,
u_n						
$\chi(R)$						