Compito 31 /1/2019

Nome e cognome (stampatello)	
matricola	

PRIMA PARTE

1. Determinare tutti i punti critici della funzione

$$f(x,y) = \frac{x^3}{3a^2} - \frac{xy^2}{a^2} - x + \frac{y^3}{3a^4}$$

al variare di a > 0.

Scrivere la matrice Hessiana di f e il suo determinante.

Classificare i punti critici che si trovano nel primo quadrante $\{x \geq 0, y \geq 0\}$.

- 2. Massimizzare il volume di una scatola con facce parallele ai piani coordinati e avente un vertice nell'origine e il vertice opposto che varia sulla parte dell'ellissoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ che sta nel primo ottante.
- 3. SI
a $D=\{(x,y)\in\mathbb{R}^2:\ |xy|<1\}.$ Dire (giustificandolo) seDé semplicemente connesso.

Stessa domanda per il dominio $D'=\{(x,y,z)\in\mathbb{R}^3:\ |xyz|<1\}$ di $\mathbb{R}^3.$

Determinare il lavoro del campo piano

$$\vec{F} = (\frac{xy^2}{x^2y^2 - 1}, \frac{x^2y}{x^2y^2 - 1})$$

lungo la circonferenza $\left\{ \begin{array}{lcl} x & = & cos(t) \\ y & = & sen(t) \end{array} \right., 0 \leq t \leq 1.$

SECONDA PARTE

1. Sia
$$C = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le e^{-x^2 - y^2} \}.$$

- (a) Calcolare il volume di C.
- (b) Calcolare le coordinate (x_G, y_G, z_G) del baricentro G di C.
- (c) [solo II compitino] Calcolare il volume $V_{a,b}$ di

$$C_{a,b} = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le e^{-a^2 x^2 - b^2 y^2} \}, \quad a, b > 0.$$

2. Data la molecola con atomi uguali nei punti

$$A_0 \equiv (0,0,0), \ A_1 \equiv (1,0,0), \ A_2 \equiv (\frac{1}{2},\frac{\sqrt{3}}{2},0), \ A_3 \equiv (\frac{1}{2},\frac{1}{2\sqrt{3}},\frac{\sqrt{2}}{\sqrt{3}})$$

- (a) dimostrare che la forma della molecola è un tetraedro regolare; descrivere un'operazione di simmetria di tipo S_4 per il tetraedro, identificando l'asse di rotazione con equazioni parametriche;
- (b) determinare il carattere della rappresentazione totale Γ completando la tabella (I) allegata;
- (c) Decomporre la rappresentazione Γ nelle componenti irriducibili, utilizzando la tavola di caratteri allegata (e la tabella (I));
- (d) dire se \mathcal{T}_d possiede un sottogruppo di ordine 8 descrivendone le operazioni.

Il gruppo \mathcal{T}_d ha 24 elementi E, $8C_3$, $3C_2$, $6\sigma_d$, $6S_4$ e ha 5 rappresentazioni irriducibili (A_1, A_2, B, F_1, F_2) con tavola dei caratteri

Γ_i	E	$8C_3$	$3C_2$	$6\sigma_d$	$6S_4$
A_1	1	1	1	1	1
$\begin{vmatrix} A_2 \\ B \end{vmatrix}$	1	1	1	-1	-1
B	2	-1	2	0	0
F_1	3	0	-1	1	-1
F_2	3	0	-1	-1	1

Si ricorda che il carattere della rappresentazione totale si determina considerando, per ogni elemento del gruppo che sia una rotazione propria di angolo θ , il numero u_n di atomi che rimangono al loro posto, e moltiplicando $u_n*(2cos(\theta)+1)$; se l'elemento e' una rotazione impropria di angolo θ , si considera il numero u_n di atomi fissi e si moltiplica $u_n*(2cos(\theta)-1)$.