Compito 16/1/2019

Nome e cognome (stampatello)	:
(**************************************	,
matricola	

PRIMA PARTE

1. Determinare tutti i punti critici della funzione

$$f(x,y) = e^{x^2+2y^2} + e^{-x^2+1} + e^{-2y^2+1}.$$

Classificare i punti critici che si trovano nel primo quadrante $\{x \geq 0, y \geq 0\}$.

Dire se esiste $\lim_{(x,y)\to\infty} f(x,y)$ e in caso affermativo calcolarlo.

- 2. Trovare gli eventuali estremi vincolati della f(x,y) dell'esercizio precedente sul vincolo $y=\frac{1}{\sqrt{2}}x$, specificando quali sono massimi e quali minimi assoluti.
- 3. Descrivere il dominio D in \mathbb{R}^3 del campo

$$\vec{F}(x,y,z) \equiv (\frac{-y}{x^2 + y^2}, \frac{-x}{x^2 + y^2}, 1)$$

e dire se D è semplicemente connesso. Discutere la conservatività di \vec{F} giustificando la risposta: se \vec{F} è conservativo in D determinarne un potenziale, altrimenti dire perché non lo è.

Calcolare il lavoro di \vec{F} lungo il percorso elicoidale

$$x = cos(t), y = sen(t), z = t, 0 \le t \le 2\pi.$$

Nome e cognome (stampatello)	;
0 (1)	,
matricola	

SECONDA PARTE

- 1. Consideriamo l'insieme T_{α} dei punti $\vec{r} \equiv (x,y,z) \in \mathbb{R}^3$ tali che il vettore posizione \vec{r} forma un angolo minore di α con l'asse z posistivo. Sia inoltre $S_{\beta} = \{\vec{r} \in \mathbb{R}^3 : ||\vec{r}|| \leq \beta\}$ il disco di raggio β con centro l'origine.
 - (a) Calcolare il volume di $D_{\alpha,\beta} = T_{\alpha} \cap S_{\beta}$.
 - (b) Calcolare le coordinate del baricentro di $D_{\alpha,\beta}$.
 - (c) [solo II compitino] Individuare, se esistono, quelle costanti $\gamma>0$ per cui, posto $\alpha=\frac{1}{\beta\gamma}$, si abbia

$$\lim_{\beta \to \infty} Volume(D_{\frac{1}{\beta^{\gamma}},\beta}) < \infty.$$

2. Data la molecola con atomi uguali nei punti

$$A_0 \equiv (0,0,0), \ A_1 \equiv (1,0,0), \ A_2 \equiv (0,1,0), \ A_3 \equiv (0,0,1)$$

- (a) osservare che il gruppo di simmetria è un C_{3v} descrivendone tutte le simmetrie e le rotazioni: per ogni simmetria propria indicare l'asse di rotazione, scrivendone un'equazione parametrica, per quelle improprie indicare il piano di simmetria, scrivendone un'equazione cartesiana.
- (b) determinare il carattere della rappresentazione totale Γ completando la tabella (I) allegata;
- (c) Decomporre la rappresentazione Γ nelle componenti irriducibili, utilizzando la tavola di caratteri allegata (e la tabella (I));
- (d) [solo II compitino, facoltativo per chi fa il compito] dire come cambiano (in funzione di n) le componenti irriducibili di Γ aggiungendo n atomi nei punti $(1,1,1),\ (2,2,2),\ \ldots,(n,n,n)$.

$$\begin{array}{c|ccccc}
\theta & E & 2C_3 & 3\sigma_v \\
2\cos(\theta) \pm 1 & \dots & \dots \\
u_n & \dots & \dots \\
\hline
\chi(R) & \dots & \dots & \dots
\end{array}$$
(I)

Si ricorda che il carattere della rappresentazione totale si determina considerando, per ogni elemento del gruppo, il numero u_n di atomi che rimangono al loro posto, e moltiplicando $(u_n)*(2cos(\theta)\pm 1)$ secondo che l'elemento sia una rotazione propria o impropria di angolo θ .

Γ_i	E	$2C_3$	$3\sigma_v$
A_1	1	1	1
A_2	1	1	-1
B	2	-1	0