Anno Accademico 2023/2024 Geometria 1 - Compito 1/7/2024

Esercizio 1. Al variare di $A \in \mathcal{M}_{2,3}(\mathbb{C})$ determinare la forma canonica di Jordan della matrice a blocchi $M = \begin{pmatrix} A_1 & A \\ 0 & A_2 \end{pmatrix} \in \mathcal{M}_5(\mathbb{C})$, dove $A_1 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$.

Esercizio 2. Sia (V, ϕ) uno spazio euclideo reale di dimensione $n \geq 2$ finita e siano $v, w \in V$ due vettori non nulli.

- a) Dimostrare che $\forall f \in \mathcal{L}(V)$ vale $\operatorname{Im}(f) = (\operatorname{Ker}(^tf))^{\perp}$ e $\operatorname{Ker}(f) = (\operatorname{Im}(^tf))^{\perp}$.
- b) Nel caso $\phi(v,w) \neq 0$, costruire una f tale che f(v) = 0, ${}^tf(w) = 0$ e 1 sia autovalore di f di molteplicità geometrica n-1.
- c) Nel caso $\phi(v,w) = 0$ e $n \geq 3$, costruire una f di rango n-1 tale che f(v) = 0, $^{t}f(w) = 0$ e 1 è autovalore di f di molteplicità geometrica n-2.

Esercizio 3. Siano $a, b, c \in \mathbb{R}$ e consideriamo la matrice $A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- a) Mostrare che a + b + c è un autovalore di A e calcolare il polinomio caratteristico di A.
- b) Nel caso a, b, c siano gli autovalori (eventualmente ripetuti) di una matrice triangolabile $B \in \mathcal{M}_3(\mathbb{R})$ con polinomio carattersitco $P(x) = -x^3 - 5x^2 - 8x + \det B$, calcolare lo spettro di A. Mostrare che in questo caso $\mathrm{Span}(\left(\begin{smallmatrix}1\\0\\-1\end{smallmatrix}\right),\left(\begin{smallmatrix}1\\1\\-1\end{smallmatrix}\right))$ è somma diretta di autospazi di A.
- c) Mostrare, usando le restrizioni a rette e piani coordinati, che comunque si scelgano $a, b, c \in \mathbb{R}$, A non risulta mai essere definita positiva.

Esercizio 4. Un'affinità f del piano affine E (modellato su V, spazio vettoriale su \mathbb{K} di dimensione 2) si dice assiale se esiste una retta $l \subset E$ (detta asse dell'affinità) tale che f(p) = p per ogni $p \in l$.

- a) Mostrare che data una retta $l \subset E$, e dati due punti $p, q \in E$ che non appartengono a l, esiste un'unica affinità assiale f di asse l tale che f(p) = q.
- b) Mostrare che se f è un'affinità assiale e $p \in E$ non è un punto fisso per f, allora la retta che contiene $p \in f(p)$ è invariante per f.
- c) Sia $\mathbb{K} = \mathbb{R}$ e sia C un'ellisse reale. Dire se esistono affinità assiali $f \neq id_E$ tali che fmandi C in sé. Nel caso di risposta affermativa, dire da quanti parametri dipendono tali affinitá.