08/04/2020 - Secondo (e ultimo) Compitino Geometria (corso A)

Parte I. Per ogni quesito riempire con il risultato la pagina adibita a ricevere le risposte. Indicare con precisione a quale domanda si riferisce la risposta.

- 1. Sia $A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 2 & -2 & 1 \end{pmatrix}$ e consideriamo l'endomorfismo f_A di \mathbb{R}^4 definito da $f_A(x) = Ax$.
 - a) Calcolare gli autovalori di f_A , riempiendo dove serve la seguente tabella:

Autovalore	Molteplicità algebrica	Molteplicità geometrica

b) Indicare per quali valori di $k = \dots$ la matrice

$$B = \begin{pmatrix} 1 & -2 & 2 & 1 \\ 0 & -1 & 2 & k \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

risulta simile ad A.

2. A meno di similitudine, scrivere qui (a) quante sono le matrici reali 3×3 con polinomio minimo $x^2 - 3x + 2$. Giustificare la risposta qui sotto:

(b).....

3. Sia A una matrice reale 3×3 con polinomio minimo $x^3 - 4x^2 + 5x - 2$.

a) Dire se A risulta invertibile, ed in tale caso esprimere A^{-1} come combinazione lineare di Id,A,A^2 :

.....

b) Dare un esempio di $A=\begin{pmatrix} \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & 0 & \dots \end{pmatrix}$

- 4. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ una rotazione tale che $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 2 \\ -11 \\ 10 \end{pmatrix}$ e $T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$.
 - a) Determinare l'immagine tramite T del vettore $\begin{pmatrix} 0 \\ 0 \\ 15 \end{pmatrix}$: $\begin{pmatrix} \\ \end{pmatrix}$
 - b) Determinare un vettore a coefficienti interi che generi l'asse di rotazione di T: $\begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix}$
- 5. Consideriamo il prodotto scalare ϕ di \mathbb{R}^4 che in base canonica ha matrice

$$\mathbf{M}_{\mathrm{can}}(\phi) = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & -1 \end{pmatrix}.$$

- 6. Sia f un endomorfismo di \mathbb{C}^2 tale che f(1,1)=(i,i) e f(1,0)=(-1,0). Dire, giustificando la risposta, se f risulta unitario rispetto al prodotto hermitiano canonico di \mathbb{C}^2 .

7. Trovare una matrice unitaria $U=\begin{pmatrix} \dots & \dots \\ \dots & \dots \end{pmatrix}$ tale che $U^{-1}\,A\,U$ sia diagonale, quando $A=\begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix}$.

Parte II. Giustificare la risposta in un foglio: dopo aver scritto la soluzione in maniera ordinata su un foglio (uno o al massimo due immagini perché l'esercizio ammette soluzione molto breve) usare nella colonna a sinistra l'opzione "scan solution" e inserirla seguendo le istruzioni con un telefono cellulare. L'immagine viene aggiunta al testo. Chi non avesse un computer o un telefono cellulare ce lo comunichi.

Esercizio. Sia V, φ uno spazio euclideo (ricordiamo: V è uno spazio vettoriale su \mathbb{R} e $\varphi: V \times V \to \mathbb{R}$ è un prodotto scalare definito positivo). Sia f un endomorfismo simmetrico di V. Sia inoltre $\varphi_f: V \times V \to \mathbb{R}$ definito da $\varphi_f(v,w) = \varphi(f(v),w), \ v,w \in V$.

- 1. Dimostrare che $\varphi_f(w,v) = \varphi_f(v,w)$ per ogni $v,w \in V$ (e quindi φ_f è un prodotto scalare, essendo la bilinearità ovvia).
- 2. Sia \mathcal{B} una base ortonormale di V rispetto a φ . Dimostrare che la matrice associata al prodotto φ_f rispetto a \mathcal{B} coincide con la matrice associata a f rispetto a \mathcal{B} , cioè: $M_{\mathcal{B}}(\varphi_f) = M_{\mathcal{B}}(f)$.
- 3. Dimostrare che

$$\begin{array}{rcl} \iota_+(\varphi_f) & = & \sum_{\lambda>0} \mu_g(\lambda) \\ \iota_-(\varphi_f) & = & \sum_{\lambda<0} \mu_g(\lambda) \\ \iota_0(\varphi_f) & = & \dim(Ker(f)). \end{array}$$

dove le somme sono fatte sugli autovalori di f (nel primo caso quelli positivi, nel secondo caso quelli negativi).

4. Sia $\psi: V \times V \to \mathbb{R}$ un prodotto scalare. Dimostrare che esiste un unico endomorfismo simmetrico f tale che $\psi = \varphi_f$.