Compito di Geometria I - 11/6/2014

Nome e cognome (stampatello)

matricola
I parte
Per ogni quesito spuntare una (sola!) casella o riempire col risultato (dove richiesto); 1 punto per ogni risposta giusta; -1 per ogni risposta errata.
1) L'equazione del piano passante per il punto $P\equiv (1,-1,0)$ e parallelo al piano $x+2y+3z=1$ è:
2) Un insieme $\mathcal A$ di k vettori in $\mathbb R^n$ è linearmente indipendente se e solo se
A per ogni sottospazio $W \subset \mathbb{R}^n$ di dimensione $n-k$ si ha
$dim(Span(A) \cap W) > 0.$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$dim(Span(A) \cap W) > 0.$
$\boxed{\mathbf{C}}$ per ogni sottospazio $W \subset \mathbb{R}^n$ di dimensione $< n-k$ si ha
$dim(Span(A) \cap W) = 0.$
3) Sia $V = \mathcal{M}_n(\mathbb{R})$ e sia $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} \neq 0$. Sia $W := \{M \in V : M\mathbf{v} = 0\}$. Allora
La dimensione di W é: ;
4) Se nel punto precedente si ha $\mathbf{v}=(1,,1)\in\mathbb{R}^n$ (tutte le coordinate ugual a 1) allora un supplementare di W in V è dato dal sottospazio $U\subset V$
$U:=\dots$
5) Sia $V = \mathbb{C}^2$. L'insieme delle soluzioni di: $i \mathbf{v} = \overline{\mathbf{v}}, \mathbf{v} \in V,$ $(\overline{\mathbf{v}} \text{ è il coniugato del vettore } \mathbf{v})$ costituisce:
$oxed{A}$ un sottospazio vettoriale di dimensione 1 di V , visto come spazio vet
toriale su \mathbb{C} ; B un sottospazio vettoriale di dimensione 2 di V , visto come spazio vet-
toriale su \mathbb{R} ;
C nessuna delle precedenti.

(risolvere su un foglio)

Esercizio~1. Sia $V_3:=\mathbb{R}_3[x].$ Per ogni $\alpha\in\mathbb{R}$ definiamo $T_\alpha:V_3\to V_3$ come

$$T_{\alpha}(p(x)) := p(\alpha) + (x - \alpha)p'(\alpha) + \frac{1}{2}(x - \alpha)^{2}p''(\alpha)$$

(qui p' e p'' sono le derivate prime e seconde di p. Se $p(x)=a_0x^3+a_1x^2+a_2x+a_3$ allora $p'(x)=3a_0x^2+2a_1x+a_2$ e $p''(x)=6a_0x+2a_1$).

- 1. Dimostrare che ogni T_{α} è lineare.
- 2. Sia $V_2:=\mathbb{R}_2[x]$ il sottospazio dei polinomi di grado ≤ 2 . Dimostrare che ogni T_α è una proiezione su V_2 (cioè
 - (a) $Im(T_{\alpha}) = V_2$
 - (b) $T_{\alpha}|_{V_2} = id_{V_2}$)
 - e dedurre che $T_{\alpha}^2 = T_{\alpha}$.
- 3. Determinare base per $ker(T_{\alpha})$.

Nome e cognome (stampatello)
matricola
II parte
Per ogni quesito spuntare una (sola!) casella o riempire col risultato (dove richiesto); 1 punto per ogni risposta giusta; -1 per ogni risposta errata.
1) La matrice
$\begin{bmatrix} cos(\theta) & 0 & -sen(\theta) \\ 0 & 1 & 0 \\ sen(\theta) & 0 & cos(\theta) \end{bmatrix}, \theta \neq k\pi, \ k \in \mathbb{Z},$
$oxed{A}$ è diagonalizzabile sui reali; $oxed{B}$ è diagonalizzabile sui complessi; $oxed{C}$ non è diagonalizzabile su $oxed{\mathbb{C}}$.
2) Scrivere un esempio di una matrice $A \in \mathcal{M}_n(\mathbb{K})$ tale che A^2 sia diagonalizzabile ma A non lo sia (su \mathbb{K} : dire che campo si sta usando)
$A = \dots$
3) Sia $p(\lambda) = \lambda^4 - 1$ il polinomio caratteristico di una matrice A . Scrivere i valori di: ordine di A , $det(A)$, $tr(A)$, e dire se A è diagonalizzabile su \mathbb{R} e su \mathbb{C} :
4) Sia $A \in \mathcal{M}_n(\mathbb{R})$. Allora
$\boxed{\mathbf{A}} \ \forall \ \text{autovalore} \ \lambda \ \text{di} \ A \ \text{vale} \ \mu_a(\lambda) = \mu_a(\overline{\lambda}) \ \text{ma può essere} \ \mu_g(\lambda) \neq \mu_g(\overline{\lambda})$
B \forall autovalore λ di A vale $\mu_g(\lambda) = \mu_g(\overline{\lambda})$ ma può essere $\mu_a(\lambda) \neq \mu_a(\overline{\lambda})$
$\boxed{\mathbb{C}}$ \forall autovalore λ di A vale $\mu_g(\lambda) = \mu_g(\overline{\lambda})$ e $\mu_a(\lambda) = \mu_a(\overline{\lambda})$
5) Sia A una matrice quadrata di ordine n tale che $\exists m \in \mathbb{N}$ tale che $A^m = 0$. Allora
A L'unico autovalore (complesso) di $A \ge 0$ e quindi $tr(A) = 0$.
B $tr(A) = 0$ ma A può avere autovalori complessi $\neq 0$.
C Si può dedurre che $det(A) = 0$ ma non che $tr(A) = 0$.

(risolvere su un foglio)

Esercizio 2. Sia V uno spazio vettoriale di dimensione n su \mathbb{R} . Sia W un sottospazio vettoriale di dimensione n-1 e sia $f:V\to V$ un endomorfismo tale che $f|_W=id|_W$.

- 1. Dimostrare che f è diagonalizzabile se e solo se W ha un supplementare invariante.
- 2. Sia T_{α} , $\alpha \in \mathbb{R}$, l'operatore dell'esercizio 1. Dimostrare che T_{α} è diagonalizzabile e determinarne una base di autovettori.
- 3. Dimostrare che se $\alpha \neq \beta$ allora T_{α} e T_{β} non sono simultaneamente diagonalizzabili.

Nome e cognome (stampatello)
matricola
III parte
Per ogni quesito spuntare una (sola!) casella o riempire col risultato (dove richiesto); 1 punto per ogni risposta giusta; -1 per ogni risposta errata.
1) Scrivere la segnatura della matrice $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$
$\sigma(A) = \dots$
2) Sia V spazio vettoriale di dimensione n . L'indice di positività di un prodotto scalare $\varphi:V\times V\to\mathbb{R}$ si può definire come:
$\boxed{\mathbf{A} min\{n-dim\ W:\ W\subset V\ \text{sottospazio tale che}\ \ \varphi _{ W}<0\}};$
$\boxed{\mathbf{B} min\{n-dim\ W:\ W\subset V\ \text{sottospazio tale che}\ \ \varphi _{ W}\leq 0\};}$
$\boxed{\mathbf{C} max\{k \in \mathbb{N}: \ \exists \ \mathbf{v}_1,, \mathbf{v}_k \ t.c. \ \varphi(\mathbf{v}_i, \mathbf{v}_i) > 0, \ i = 1,, k\};}$
3) Sia $D \in \mathcal{M}_{3,2}(\mathbb{R})$ di rango 2. Siano $A = D(^tD), \ B = (^tD)D.$ Scrivere quanto indicato.
Dimostrare che A e B sono simmetriche:
Dimostrare che $A \geq 0$ e $B \geq 0$
Dimostrare che $\iota_0(A)>0$ (e quindi non può essere $A>0.$)
Dimostrare che $B>0:[pti\;3]$

4) (facoltativo) Data la conica $x^2 - 2y^2 + 2x + 2 = 0$ determinare	e le coordinate
dei centri (se esistono) e scrivere la forma canonica affine	

(risolvere su un foglio)

Esercizio 3. SI
aVuno spazio vettoriale reale e sia $\varphi:V\times V\to\mathbb{R}$ un prodotto scalare definito positivo.

1. Dimostrare che se l'endomorfismo $T:V\to V$ è simmetrico allora

$$Ker(T) \perp Im(T)$$
.

- 2. Dimostrare che se T è una proiezione (su Im(T)) allora la condizione precedente è anche sufficiente affinché T sia simmetrico.
- 3. Sia $V = \mathbb{R}_3[x]$ e sia $\varphi: V \times V \to \mathbb{R}$ il prodotto scalare canonico

$$\varphi(p(x), q(x)) := \sum_{i=0}^{3} p_i q_i$$

se $p(x) = p_0 x^3 + p_1 x^2 + p_2 x + p_3$, $q(x) = q_0 x^3 + q_1 x^2 + q_2 x + q_3$.

Se T_{α} , $\alpha \in \mathbb{R}$, è come negli esercizi 1 e 2, determinare tutti i valori di $\alpha \in \mathbb{R}$ per cui T_{α} risulti simmetrico rispetto al prodotto φ .