Nome e cognome (stampatello) matricola..... I parte Per ogni quesito spuntare il si o il no o riempire col risultato (dove richiesto); 1 punto per ogni quesito giusto; se c'è un errore il totale della domanda corrispondente vale -1. 1) Dire quali delle seguenti matrici sono diagonalizzabili: $\begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \quad \begin{bmatrix} \text{si} \\ \text{no} \end{bmatrix}; \quad \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} \text{si} \\ \text{no} \end{bmatrix}; \quad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} \text{si} \\ \text{no} \end{bmatrix}$ 2) Sia A una matrice quadrata invertibile (indichiamo con A^{-n} la matrice $(A^{-1})^n$). si ha sempre: $det(A^{-2}) \le 0$ | si | no | ; si ha sempre: $det(A^2) \ge 0$ | si | si ha sempre: $det({}^{t}\overline{A}) = det(A) \mid si \mid \mid no$ 3) Sia $p(\lambda) = -\lambda^3 - \lambda + 2$ il polinomio caratteristico di una matrice A. Allora: l'ordine di A vale $\boxed{\dots}$; tr(A) vale $\boxed{\dots}$; det(A) vale $\boxed{\dots}$; A è diagonalizzablile sui reali || no A è diagonalizzablile sui complessi si 4) Sia $A \in \mathcal{M}_3(\mathbb{R})$ una matrice tale che $A = -^t A$. Allora ${\cal A}$ ha necessariamente tutti gli autovalori reali no tutti gli autovalori di A hanno parte reale nulla

no

 \sin

A non è invertibile

no

Parte II

Esercizio 1. Sia data la matrice

$$M_{\alpha} = \begin{bmatrix} 1 & -1 & 0 & -1 \\ \alpha & -\alpha + 1 & 1 & -\alpha \\ \alpha & \alpha + 1 & 2\alpha + 1 & -\alpha \\ 1 & -1 & 0 & -1 \end{bmatrix}$$

 $\alpha \in \mathbb{R}$.

- 1. Per ogni $\alpha \in \mathbb{R}$, calcolare il rango di M_{α} e una base per $ker(M_{\alpha})$.
- 2. Al variare di $\alpha \in \mathbb{R}$, discutere la diagonalizzabilità di M_{α} .
- 3. Per $\alpha = 1$ trovare una base di autovettori per \mathbb{R}^4 .

Esercizio 2. Sia $V = \mathbb{K}_2[x]$. Siano $a, b \in \mathbb{K}$ e sia $f: V \to V$ data da

$$f: p(x) \to p(0) + p(a)x + p(b)x^2.$$

- 1. Dimostrare che f è un'applicazione lineare.
- 2. Sotto quali condizioni su $a \in b$ si ha che f è isomorfismo? (giustificare la risposta).
- 3. Discutere la diagonalizzabilità di f (per $\mathbb{K} = \mathbb{R}$) nei casi
 - (a) a = b = 0
 - (b) a = -1, b = 1
 - (c) a = 1, b = -1