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We consider regular right continuous stochastic processes X = (Xt)0≤t≤1 de-
fined on the finite time interval [0, 1]: let PX be the distribution of X on the
canonical Skorokhod space D = D([0, 1];R) of “càdlàg” paths.

We consider on D , besides the usual Skorokhod topology referred as S–topology
(Jacod–Shiryaev is perhaps the best reference for our purposes, see [4]), the “pseudo-
path” or MZ–topology: we refer to the paper of Meyer–Zheng ([6]) for a complete
account of this rather neglected topology (see also Kurtz [5]).

We will use the notation Xn =⇒S X (respectively Xn =⇒MZ X ) to indicate
that the probabilities PXn

converge strictly to PX when the space D is endowed
respectively with the S– or the MZ–topology. We will write also Xn =⇒f.d.d. X to
indicate that all finite dimensional distributions of (Xn

t )0≤t≤1 converge to those of
(Xt)0≤t≤1 .

The following theorem holds true:

Theorem. Let (Mn) be a sequence of martingales, and M a continuous mar-

tingale, and suppose that the following integrability condition is satisfied:

(1) all random variables
(
sup0≤t≤1 |Mn

t |
)

, n = 1, 2, . . . are uniformly inte-

grable.

Then the following statements are equivalent:

(a) Mn =⇒S M ,

(b) Mn =⇒f.d.d. M ,

(c) Mn =⇒MZ M .

The implication (a)=⇒(b) is quite obvious, since Skorokhod convergence implies
convergence of finite dimensional distributions for all continuity points of M (see [4]).



The implications (b)=⇒(c) is an easy consequence of the results of Meyer–
Zheng: in fact the sequence (Mn) is “tight” for the MZ–topology ([6] p. 368) and,
if X is a limit process, there exists ([6] p. 365) a subsequence (Mnk) and a set
I ⊂ [0, 1] of full Lebesgue measure such that all finite dimensional distributions
(Mnk

t )t∈I converge to those of (Xt)t∈I : necessarily PX = PM .
Aldous (in [2]) gives a proof of the implication (b)=⇒ (a) , but (although he does

not mention the MZ–topology) the implication (c)=⇒(a) is more or less implicit in
his paper (see [2] p. 591).

The purpose of this paper is to give a proof of the implication (c)=⇒ (a) ,
completely different form the Aldous’ original one and strictly in the spirit of the
paper of Meyer–Zheng; I hope that this contributes also to a better knowledge of
the result of “Stopping times and tightness II” ([2]), which is in my opinion very
important and seems to be almost unknown.

The proof will be postponed after some remarks.

Remark 1. I want to point out that Aldous’ proof of the implication (b)=⇒ (a)
requires the following weaker integrability condition:

(2) all random variables Mn
1 , n = 1, 2, . . . are uniformly integrable.

Condition (2) implies that all r.v. of the form Mn
T , n = 1, 2, . . ., with T a natural

stopping time for Mn , are uniformly integrable; instead our proof needs a more
stringent condition, i.e. that all r.v. of the form Mn

S , n = 1, 2, . . ., with S a random
variable in [0, 1] , are uniformly integrable.

Remark 2. The extension of the Theorem to processes whose time interval is
[0,+∞) is straightforward: in that case the correct hypothesis is that, for every
fixed t , the r.v. sup0≤s≤t |Mn

s | , n = 1, 2, . . . are uniformly integrable.
In fact, if the limit function f is continuous, fn → f for the S–topology (re-

spectively the MZ–topology) on D(R+;R) if and only if the restrictions of fn to
every finite time interval converge to those of f (for the S– or the MZ–topology).

Remark 3. The Theorem fails to be true if the limit martingale M is not continuous
([2] p. 588), and fails for more general processes, e.g. for supermartingales.

Let indeed T be a Poisson r.v. and put, for every n :

Xn
t =

(
I{t≥T} − t ∧ T

) − n
(
(t− T ) I{t≥T} ∧ 1

)
.

The processes Xn are supermartingales whose paths converge in measure (but not
uniformly) to the paths of the continuous supermartingale Xt = −(t ∧ T ) .

Remark 4. Suppose that the processes Xn are supermartingales, and consider
their Doob–Meyer decompositions Xn = Mn − An . If separately Mn =⇒MZ M

and the martingale M is continuous, and if An =⇒MZ A and the increasing process
A is continuous, then Xn =⇒S X = M − A (remark that, for monotone processes,
convergence in the MZ–sense to a continuous limit implies convergence for the S–
topology).
An application of the latter result can be found in [7], theorem 5.5 .



The proof of the implication (c)=⇒ (a) of the Theorem is rather technical, and
will be divided in several steps.

Step 1. Given ε > 0 , there exists δ > 0 such that, if S is a r.v. with values in [0, 1]
and 0 ≤ d ≤ δ :

(3) E [|MS+d −MS |] ≤ ε .

This is an easy consequence of the path-continuity of the limit process M , and of the
integrability of M∗ = sup0≤t≤1 |Mt| . Remark that the function f → sup0≤t≤1 |f(t)|
is lower semi-continuous on D endowed with the topology of convergence in mea-
sure (i.e. the MZ–topology); therefore the integrability of M∗ is a consequence of
condition (1) of the theorem.

Step 2. Suppose that (a) is false; then the sequence does not verify Aldous’ tightness
condition ([1] p. 335, see also [4]); therefore there exists ε > 0 such that for every
δ > 0 it is possible to determine a subsequence nk and, for every k , a natural
stopping time Tk (i.e. a stopping time for the filtration generated by Mnk ) and
0 < dk ≤ δ such that

(4) Enk
[ |Mnk

Tk+dk
−Mnk

Tk
| ] ≥ ε .

(In the sequel, for the sake of simplicity of notations, we will assume that indices
have been renamed so that the whole sequence verifies (4)). We choose δ such that,
for any r.v. S whatsoever, we also have (step 1) E

[|MS+2δ −MS |
] ≤ ε

4 .

Step 3. There exists a random variable T with values in [0,1] such that (Mn, Tn)
converge in distribution to (M, T ) on the space D([0, 1],R+)× [0, 1] equipped with
the product topology (D being equipped with the MZ–topology).

In fact the laws of (Mn, Tn) are evidently tight since the laws of Mn are tight
on D ([6] p. 368); we point out that the limit r.v. T is not a natural stopping time
for the stochastic process M (but it can be proved that M is a martingale for the
canonical filtration on D× [0, 1], i.e. the smallest filtration that makes M adapted
and T a stopping time).

Step 4. For c and d in [0, 1], we have the inequality

(5) En
[∣∣Mn

Tn+δ+c − Mn
Tn−d

∣∣] ≥ ε

2
.

(It is technically convenient to regard each process M as extended to [−1, 2] by
putting Mt = M0 for t < 0 and Mt = M1 for t > 1 : this enables us to write MT+δ

instead of M(T+δ)∧1 .)
Concerning the inequality (5), firstly we note that

(
Mn

Tn+dn
−Mn

Tn

)
= En

[
Mn

Tn+δ+c −Mn
Tn

∣∣FTn+dn

]

and therefore

En
[∣∣Mn

Tn+δ+c −Mn
Tn

∣∣] ≥ En
[∣∣Mn

Tn+dn
−Mn

Tn

∣∣] ≥ ε .



Then we remark that (Tn − c) is not a stopping time, but the r.v. Mn
Tn−c is

FTn
–measurable: in fact Mn

Tn−c.I{Tn ≤ t} = Mn
(Tn∧t)−c.I{Tn≤t} and (Tn ∧ t− c) is

Ft–measurable.
Let X =

(
Mn

Tn+δ+c −Mn
Tn

)
, Y =

(
Mn

Tn
−Mn

Tn−c

)
and G = FTn

: Y is G-
adapted and E[X|G] = 0 .

We remark that E [X+|G] = E [X−|G] = 1
2 E [|X| |G] , and that |X + Y | ≥

X+.I{Y≥0} + X−.I{Y <0} .
One gets E

[ |X + Y | ∣∣G ] ≥ 1
2 E

[ |X|∣∣G ]
; and, taking the expectations, the

inequality (5).

Step 5. There exists a subsequence and a set I ⊂ [−1, 1] of full Lebesgue measure
such that the finite dimensional distributions of

(
Mn

Tn+t

)
t∈I

converge to those of
(MT+t)t∈I .

The proof of this step is a slight modification of the argument given in [6]
(p. 364): Dudley’s extension of the Skorokhod representation theorem implies that
one can find on some probability space (Ω,F ,P) some random variables (Xn, Sn)
and (X, S) with values in D× [0, 1] such that the laws of (Xn, Sn) (resp. (X,S)) are
equal to those of (Mn, Tn) (resp. (M, T )) and that, for almost all ω , (Xn(ω), Sn(ω))
converge to (X(ω), S(ω)) : to be accurate, the “paths” t → (Xn

t (ω)) converge in
measure to the path t → (Xt(ω)) and Sn(ω) converge to S(ω) .

We remark that the Skorokhod theorem cannot be applied directly since D is
not a Polish space ([6] p. 372), but Dudley’s extension works well (see [3]).

By substituting Xn with arctg(Xn) , we can suppose that Xn and X are uni-
formly bounded: therefore we have

(6) lim
n→∞

(∫ +1

−1

dt

∫

Ω

∣∣∣Xn
Tn(ω)+t(ω) − XT (ω)+t(ω)

∣∣∣ dP(ω)
)

= 0 .

By taking a subsequence, we find that for every t in a set I ⊂ [−1, 1] of full Lebesgue
measure,

(7) lim
n→∞

∫

Ω

∣∣∣Xn
Tn(ω)+t(ω) − XT (ω)+t(ω)

∣∣∣ dP(ω) = 0 .

Hence one gets easily the convergence of finite dimensional distributions of(
Mn

T+t

)
t∈I

.

Step 6. We choose 0 ≤ d, c ≤ 1 such that d + c < δ and that
(
Mn

Tn+δ+c , Mn
Tn−d

)
converge in distribution to (MT+δ+c , MT−d ); since the r.v. involved are uniformly
integrable, the inequality (5) gives in the limit

E
[ |MT+δ+c − MT−d|

] ≥ ε

2
and finally we have a contradiction.
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