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We consider regular right continuous stochastic processes X = (X¢)o<t<1 de-
fined on the finite time interval [0,1]: let PX be the distribution of X on the
canonical Skorokhod space D = D([0,1];R) of “cadlag” paths.

We consider on D, besides the usual Skorokhod topology referred as S—topology
(Jacod—Shiryaev is perhaps the best reference for our purposes, see [4]), the “pseudo-
path” or MZ-topology: we refer to the paper of Meyer—Zheng ([6]) for a complete
account of this rather neglected topology (see also Kurtz [5]).

We will use the notation X" == X (respectively X" =M% X') to indicate
that the probabilities PX" converge strictly to PX when the space D is endowed
respectively with the S— or the MZ-topology. We will write also X" ==-/-4-4- X to
indicate that all finite dimensional distributions of (X")o<¢<1 converge to those of
(Xt)o<t<1 -

The following theorem holds true:

Theorem. Let (M™) be a sequence of martingales, and M a continuous mar-
tingale, and suppose that the following integrability condition is satisfied:

(1) all random variables (supg<,<; |[M{']) ,n = 1,2,... are uniformly inte-
grable.
Then the following statements are equivalent:

(a) M™ =5 M,

(b) M™ :f.d.d. M,

(c) M" =MZ ).

The implication (a)==(b) is quite obvious, since Skorokhod convergence implies
convergence of finite dimensional distributions for all continuity points of M (see [4]).



The implications (b)==(c) is an easy consequence of the results of Meyer—
Zheng: in fact the sequence (M™) is “tight” for the MZ-topology ([6] p. 368) and,
if X is a limit process, there exists ([6] p. 365) a subsequence (M"™) and a set
I C [0,1] of full Lebesgue measure such that all finite dimensional distributions
(M{'"),c; converge to those of (X;),.;: necessarily P* = PM.

Aldous (in [2]) gives a proof of the implication (b) = (a) , but (although he does
not mention the MZ-topology) the implication (¢) ==(a) is more or less implicit in
his paper (see [2] p. 591).

The purpose of this paper is to give a proof of the implication (¢)=(a),
completely different form the Aldous’ original one and strictly in the spirit of the
paper of Meyer—Zheng; I hope that this contributes also to a better knowledge of
the result of “Stopping times and tightness II” ([2]), which is in my opinion very
important and seems to be almost unknown.

The proof will be postponed after some remarks.

Remark 1. I want to point out that Aldous’ proof of the implication (b) = (a)
requires the following weaker integrability condition:

(2) all random variables M{* ,n = 1,2,... are uniformly integrable.
Condition (2) implies that all r.v. of the form M7 ,n = 1,2,..., with T" a natural
stopping time for M™, are uniformly integrable; instead our proof needs a more
stringent condition, i.e. that all r.v. of the form Mg , n =1,2,..., with S a random
variable in [0, 1], are uniformly integrable.

Remark 2. The extension of the Theorem to processes whose time interval is
[0, +00) is straightforward: in that case the correct hypothesis is that, for every
fixed t, the r.v. supg<s<; |MZ?| , n=1,2,... are uniformly integrable.

In fact, if the limit function f is continuous, f, — f for the S—topology (re-
spectively the MZ-topology) on D(R™;R) if and only if the restrictions of f, to
every finite time interval converge to those of f (for the S— or the MZ—topology).

Remark 3. The Theorem fails to be true if the limit martingale M is not continuous
([2] p. 588), and fails for more general processes, e.g. for supermartingales.
Let indeed T be a Poisson r.v. and put, for every n :

The processes X™ are supermartingales whose paths converge in measure (but not
uniformly) to the paths of the continuous supermartingale X; = —(t A T).

Remark 4. Suppose that the processes X" are supermartingales, and consider
their Doob-Meyer decompositions X" = M"™ — A™. If separately M" =M% M
and the martingale M is continuous, and if A" =% A and the increasing process
A is continuous, then X" =X = M — A (remark that, for monotone processes,
convergence in the MZ-sense to a continuous limit implies convergence for the S—

topology).
An application of the latter result can be found in [7], theorem 5.5 .



The proof of the implication (¢) = (a) of the Theorem is rather technical, and
will be divided in several steps.

Step 1. Given € > 0, there exists 6 > 0 such that, if S is a r.v. with values in [0, 1]
and 0<d<9:

(3) E[[Msiqa— Ms|] < €.

This is an easy consequence of the path-continuity of the limit process M , and of the
integrability of M* = supg<,<; |M¢|. Remark that the function f — supg<;< |f(t)]
is lower semi-continuous on D endowed with the topology of convergenge in mea-
sure (i.e. the MZ-topology); therefore the integrability of M* is a consequence of
condition (1) of the theorem.

Step 2. Suppose that (a) is false; then the sequence does not verify Aldous’ tightness
condition ([1] p. 335, see also [4]); therefore there exists € > 0 such that for every
6 > 0 it is possible to determine a subsequence nj and, for every k, a natural
stopping time T} (i.e. a stopping time for the filtration generated by M™ ) and
0 < di, < ¢ such that

(4) B Mg g, — M) = e

(In the sequel, for the sake of simplicity of notations, we will assume that indices
have been renamed so that the whole sequence verifies (4)). We choose ¢ such that,
for any r.v. S whatsoever, we also have (step 1) E[|[Mgi25 — Mg|] < 5.

Step 3. There exists a random variable 7" with values in [0,1] such that (M™,T;,)
converge in distribution to (M, T) on the space D([0,1], R™") x [0, 1] equipped with
the product topology (D being equipped with the MZ-topology).

In fact the laws of (M™,T,,) are evidently tight since the laws of M™ are tight
on D ([6] p. 368); we point out that the limit r.v. T is not a natural stopping time
for the stochastic process M (but it can be proved that M is a martingale for the
canonical filtration on D x [0, 1], i.e. the smallest filtration that makes M adapted
and T a stopping time).

Step 4. For ¢ and d in [0, 1], we have the inequality
n n " €
() E HMTn+6+c - MTn—dH = 9"
(It is technically convenient to regard each process M as extended to [—1,2] by
putting M; = M, for t < 0 and M; = M; for t > 1: this enables us to write Mp,s
instead of M7 51 )
Concerning the inequality (5), firstly we note that

(M7 4, — Mz ) =E" [Mf, 5, — Mz, |Fr,1a, ]
and therefore

E" HMﬁ+6+c - MIQHH > E” HM%Lden - Mﬁ“ > €.



Fr,~measurable: in fact M7 _ .I{T, <t} = M(nTn/\t)—c'I{TnSt} and (T, N\t —c) is
Fi—measurable.

Let X = (Mp 5., —Mp), Y = (Mp —Mp ) and G = Fp,: Y is G-
adapted and E[X|G] =0.

We remark that E[XT|G] = E[X™|G] = 3 E[|X]||G], and that | X + Y| >
X+-I{YZO} + X_.I{y<0} .

One gets E[|X +Y]||G] > 3 E[|X]||G] ; and, taking the expectations, the
inequality (5).

Then we remark that (7, — c) is not a stopping time, but the r.v. Mz _ is

Step 5. There exists a subsequence and a set I C [—1,1] of full Lebesgue measure
such that the finite dimensional distributions of (M:"ﬁn +t) 1 converge to those of
(Mryt)pes -

The proof of this step is a slight modification of the argument given in [6]
(p. 364): Dudley’s extension of the Skorokhod representation theorem implies that
one can find on some probability space (€2, F,P) some random variables (X", S,,)
and (X, S) with values in D x [0, 1] such that the laws of (X", S,,) (resp. (X, S)) are
equal to those of (M™,T,,) (resp. (M, T)) and that, for almost all w, (X™(w), Sn(w))
converge to (X (w),S(w)): to be accurate, the “paths” t — (XJ'(w)) converge in
measure to the path ¢ — (X;(w)) and S,,(w) converge to S(w).

We remark that the Skorokhod theorem cannot be applied directly since D is
not a Polish space ([6] p. 372), but Dudley’s extension works well (see [3]).

By substituting X™ with arctg(X™), we can suppose that X™ and X are uni-
formly bounded: therefore we have

(6) lim ( /_ :1 dt /Q X7, () - XT(W)H(M))CZP(CU)) ~ 0.

n—oo

By taking a subsequence, we find that for every ¢ in a set I C [—1,1] of full Lebesgue
measure,

(7) i [ X7, 0)40(0) = Xryslw) dP@) = 0.

n—oo

Hence one gets easily the convergence of finite dimensional distributions of
(M%-i-t)tel :

Step 6. We choose 0 < d,c < 1 such that d + ¢ < § and that (M7T1n+5+c, Mﬁfd)
converge in distribution to (Mr74s54c, Mr_q4); since the r.v. involved are uniformly

integrable, the inequality (5) gives in the limit

E[|Mriste — Mr_q|] >

Do | ™

and finally we have a contradiction.
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